• Tidak ada hasil yang ditemukan

PENGGUNAAN STIMULATOR DALAM PENENTUAN TAHANAN KAPAL MELALUI UJI MODEL

N/A
N/A
Protected

Academic year: 2021

Membagikan "PENGGUNAAN STIMULATOR DALAM PENENTUAN TAHANAN KAPAL MELALUI UJI MODEL"

Copied!
10
0
0

Teks penuh

(1)

PROSIDING 2012©

HASIL PENELITIAN FAKULTAS TEKNIK

Arsitektur

Elektro

Geologi

Mesin

Perkapalan

Sipil

PENGGUNAAN STIMULATOR DALAM PENENTUAN TAHANAN

KAPAL MELALUI UJI MODEL

Rosmani & Lukman Bochary

Program Studi Teknik Perkapalan Fakultas Teknik Universitas Hasanuddin Jl. Perintis Kemerdekaan Km. 10 Tamalanrea Makassar, Sulsel 90245

Telp/Fax: 0411-585637

e-mail: sunarto_kapal9uh@indosat.net.id

Abstrak

Beberapa penelitian terdahulu telah dilakukan pengujian model kapal di towing tank dimana model yang digunakan tanpa dilengkapi stimulator di haluan kapal. Secara umum prosedur dalam melakukan uji model kapal, dan dalam memperkirakan tahanan kapal yang sebenarnya berdasarkan hasil percobaan, diasumsikan bahwa model tersebut berada dalam aliran yang sepenuhnya turbulen. Karena itu saat percobaan harus benar-benar diusahakan agar bentuk aliran air di towing tank adalah turbulen. Jadi dalam pengujian model kapal perlu dilengkapi dengan stimulator yang dipasang di haluan kapal. Tujuan dari penelitian ini adalah, untuk mengetahui besar tahanan kapal pada percobaan model kapal dengan menggunakan stimulator pada model dengan bulbous bow dan tanpa bulbous bow, dan mengetahui besar daya efektif yang dibutuhkan oleh kapal antara model yang menggunakan stimulator dan tanpa stimulator. Metode yang digunakan adalah penentuan tahanan kapal melalui percobaan model di towing tank, dengan menggunakan model dengan bulbous bow dan tanpa bulbous bow yang masing-masing dilengkapi dengan stimulator. dan membandingkannya dengan hasil penelitian terdahulu dengan menggunakan model yang sama tanpa stimulator. Adapun hasilnya adalah perbandingan tahanan pada percobaan model tanpa bulbous bow, untuk model yang menggunakan stimulator rata-rata lebih besar 34% dari model tanpa stimulator, sedang model dengan bulbous bow pada percobaan dengan stimulator rata-rata lebih besar 28%. Daya efektif kapal untuk percobaan model bulbous bow dengan stimulator rata-rata lebih besar 34% jika dibandingkan dengan model bow tanpa stimulator, sedangkan daya efektif kapal untuk model tanpa bulbous bow pada percobaan model dengan stimulator lebih besar 37% dari percobaan tanpa stimulator. Kata Kunci: tahanan, stimulator, model kapal

PENDAHULUAN

Pada kenyataannya kapal yang berlayar dilaut memiliki tahanan berupa fluida, dimana tahanan sangat erat hubungannya dalam pencapaian kecepatan kapal yang diinginkan. Jika suatu benda diletakkan di dalam aliran akan timbul aliran laminar atau turbulen. Faktor yang menentukan laminar atau turbulennya suatu aliran adalah fluida, kecepatan, bentuk dan ukuran benda yang diletakkan di dalam aliran. Bentuk aliran yang umum terjadi adalah aliran turbulen, di mana bila kecepatan bertambah aliran akan berubah dari laminar ke turbulen pada angka Reynold yang tinggi (Rn=105-106). Dalam percobaan model, aliran di suatu daerah yang tak diketahui

pada model dapat saja bersifat laminar yang berarti bahwa kecepatan percobaan tidak sebaik yang diinginkan, sehingga pada percobaan model terjadi pada angka Reynolds yang relative rendah.

Secara umum prosedur dalam melakukan uji model kapal, dan dalam memperkirakan tahanan kapal yang sebenarnya berdasarkan hasil percobaan, diasumsikan bahwa model tersebut berada dalam aliran yang sepenuhnya turbulen. Karena itu harus benar-benar diusahakan agar aliran tersebut turbulen. Angka Reynolds local pada haluan model kapal mempunyai harga yang rendah dan di situ terdapat gradient tekanan yang negatif, sehingga kemungkinan terjadi aliran laminar atau sebagian laminar sangatlah besar. Oleh karena itu dalam percobaan model pada tangki percobaan sedapat mungkin dijadikan turbulen dengan pembuatan usikan turbulensi tiruan yang disebut Stimulator yang diletakkan 5% di belakang linggi haluan. Salah satu jenis stimulator ini berupa sisir dengan gigi yang diatur pada jarak yang sama.Karena adanya pemisahan aliran pada sisir tersebut, maka timbul arus ikut yang mengulak dan turbulen di daerah yang akan di lalui model.

(2)

Penggunaan Stimulator dalam Penentuan…

Rosmani & Lukman Bochary

Arsitektur

Elektro

Geologi

Mesin

Perkapalan

Sipil

Pada penelitian terdahulu, Menurut Rosmani (2010), pengurangan tahanan kapal dengan menggunakan maxsurf untuk model dengan bulbous bow lebih kecil 15,8% dari model tanpa bulbous bow, dan melalui percobaan model tanpa stimulator besarnya tahanan daya efektif kapal untuk model dengan bulbous bow lebih kecil 10,7 % dari model tanpa bulbous bow. Menurut Renaldy, (2010), pada percobaan model kapal tanpa stimulator di tangki percobaan, bahwa kapal yang dilengkapi dengan bulbous bow membutuhkan daya efektif lebih kecil 15 % dari kapal tanpa bulbous bow.

Tahanan Kapal

Pada dasarnya tahanan kapal dibagi menjadi dua yaitu tahanan yang berada di atas permukaan air dan tahanan yang berasal dari bawah permukaan air. Tahanan yang di atas permukaan air adalah yang bekerja pada bagian badan kapal yang kelihatan di atas permukaan air, disini pengaruh adanya udara yang mengakibatkan timbulnya hambatan.

Komponen tahanan yang bekerja pada kapal dalam gerakan mengapung di air adalah:

a. Tahanan gesek (Friction resistance); timbul akibat kapal bergerak melalui fluida yang memiliki viskositas seperti air laut, fluida yang berhubungan langsung dengan permukaan badan kapal yang tercelup sewaktu bergerak akan menimbulkan gesekan sepanjang permukaan tersebut, inilah yang disebut sebagai tahanan gesek. Tahanan gesek terjadi akibat adanya gesekan permukaan badan kapal dengan media yang di lalulinya. Oleh semua fluida mempuyai viskositas, dan viskositas inilah yang menimbulkan gesekan tersebut. Penting tidaknya gesekan ini dalam suatu situasi fisik tergantung pada jenis fluida dan konfigurasi fisik atau pola alirannya (flow pattern). Viskositas adalah ukuran tahanan fluida terhadap gesekan bila fluida tersebut bergerak. Jadi tahanan Viskos (RV) adalah komponen tahanan yang terkait dengan energi yang dikeluarkan akibat pengaruh viskos.

Tahanan gesek ini dipengaruhi oleh Angka Reynold (R

n), Koefisien gesek (Cf), dan Rasio kecepatan dan

panjang kapal (S

lr).

b. Tahanan sisa (Residual Resistance); didefinisikan sebagai kuantitas yang merupakan hasil pengurangan dari hambatan total badan kapal dengan hambatan gesek dari permukaan kapal. Hambatan sisa terdiri dari ;

1. Tahanan gelombang (Wake Resistance) 2. Tahanan udara (Air Resistance) 3. Tahanan bentuk

c. Tahanan tambahan (Added Resistance); Tahanan ini mencakup tahanan untuk korelasi model kapal. Hal ini akibat adanya pengaruh kekasaran permukaan kapal, mengingat bahwa permukaan kapal tidak akan pernah semulus permukaan model. Tahanan tambahan juga termasuk tahanan udara, anggota badan kapal dan kemudi. Komponen Tahanan tambahan terdiri dari:

1. Tahanan anggota badan (Appendages Resistance) 2. Tahanan kekasaran

3. Hambatan kemudi (Steering Resistance)

BulbousBow

Bulbous adalah suatu bentuk konstruksi haluan yang berbentuk bulat telur yang ditempatkan pada linggi haluan bagian depan. Perbandingan model percobaan menunjukkan bahwa sebuah kapal yang dilengkapi dengan Bulbous Bow dapat membutuhkan sedikit daya pendorong dan memiliki ketahanan yang jauh lebih baik karakteristik dari kapal yang sama tanpa menggunakan Bulbous Bow. Berdasarkan percobaan yang dilakukan oleh Wigley bahwa Bulbous Bows ini cocok dan memberikan keuntungan bilamana:

 Perbandingan antara kecepatan dan akar panjang berkisar antara 0,80-1,90  Posisi bulbous dan proyeksi ujungnya lebih panjang dari garis tegak depan  Bagian atas dari bulbous bow tidak boleh mendekati permukaan air.

Namun dari penelitian-penelitian lebih lanjut tepatnya pada tahun 1956 yang dikembangkan dari Grena bahwa ternyata untuk kapal yang mempunyai harga froud 0.17-0.23 dapat dipakai bulbous bows.

(3)

PROSIDING 2012©

HASIL PENELITIAN FAKULTAS TEKNIK

Arsitektur

Elektro

Geologi

Mesin

Perkapalan

Sipil

Gambar 1. Perubahan Aliran Gelombang akibat Penggunaan Bulbous Bow

Untuk menentukan ukuran dari Bulbous Bows ini didasarkan dari beberapa faktor, yaitu jenis kapal, daerah pelayaran kapal, kelangsingan kapal serta ukuran dari kapal itu sendiri. Menurut Mitsiu Eng and Ship Building Co,Ltd. (1985), memberikan rumus pendekatan sebagai berikut:

𝑎𝐵= 0,04 + 0,07 𝐵 (1)

𝐿𝐵= (3,1 − 1,3𝐸)%𝐿 (2)

𝐸 = (𝐵/𝐿)/(1,3(1 − 𝐶𝑏) + 0,031 𝐿𝐶𝐵) (3)

dimana, aB adalah luas bulbous bow, LB adalah panjang bulbous bow dan E adalah angka penunjuk.

Ukuran dari bulbous bow ini biasanya dinyatakan dalam bentuk harga perbandingan atau persentase antara luas Bulbous terhadap luas penampang tengah kapal. Menurut Scheenluth (1987), pada menyarankan bahwa panjang bulbous bows dari garis tegak depan berkisar 20% dari lebar kapal dan tidak boleh melebihi dari panjang forecastle deck.

a. Pengaruh BulbousBow Pada Karakteristik Kapal

Pengaruh Bulbous Bow dapat memberikan dampak dalam mendesain kapal, konstruksi kapal, pembuatan kapal dan pengoperasian kapal yang berkaitan dengan karakteristik seakeeping, tahanan dalam berlayar, karakteristik propulsi, effective drag, trim dan lain-lain.

Gambar 2. Perbandingan Tahanan (dengan Bulbous Bow dengan tanpa Bulbous Bow)

Aliran Laminar dan Turbulen Aliran fluida terdapat dua jenis yaitu:

1. Aliran laminar; Dalam aliran laminar, fluida bergerak sebagai sejumlah laminasi atau lapisan. Semua lapisan tersebut tidak saling memotong dan membaur tetapi saling bergesekan pada kecepatan relatif yang bervariasi dalam penampang aliran.

1 v 0 v 1 p po

(4)

Penggunaan Stimulator dalam Penentuan…

Rosmani & Lukman Bochary

Arsitektur

Elektro

Geologi

Mesin

Perkapalan

Sipil

Gambar 3. Aliran Laminar dan Turbulen

2. Aliran turbulensi; Dalam aliran turbulen, komponen kecepatan fluida mempunyai fluktuasi yang tak menentu. Aliran tersebut terpotong dan fluidanya terbaur dalam gerakan ulakan (edging motion). Kecepatan aliran harus dipandang sebagai harga rata-rata kecepatan partikel.

Stimulasi Turbulensi

Secara umum dalam melakukan percobaan model kapal, untuk memperkirakan tahanan kapal yang sebenarnya berdasarkan hasil percobaan diasumsikan bahwa model kapal berada dalam aliran yang sepenuhnya turbulen. Oleh karena itu harus diusahakan agar aliran di dalam tangki percobaan adalah turbulen.

Cara untuk menimbulkan turbulensi (teknik stimulasi turbulensi) adalah:

a. Pembuatan turbulensi tiruan dengan tingkat turbulensi yang tinggi di air yang dilalui model. Stimulator ini dapat berbentuk sisir dengan gigi yang diatur pada jarak yang sama, berbentuk batang bundar dengan diameter yang kecil kira-kira 1 mm. atau berupa tabir (screen) yang terbuat dari anyaman kawat. Karena adanya pemisahan aliran pada batang atau kawat tersebut, maka akan timbul arus ikut yang mengulak dan turbulen di daerah yang akan dilalui model.

b. Pembuatan usikan turbulen (Turbulent disturbances) tiruan di lapisan batas pada model. Teknik stimulator jenis yang paling banyak digunakan dalam percobaan model. Bahan yang sering digunakan adalah lajur (strip) pasir, batang kawat, atau paku cemat.

- Strip pasir yang digunakan terdiri dari pasir dengan butiran yang agak kasar dan ditempelkan pada haluan model

- Pemasangan strip pasir ini biasa juga diletakkan 5% di belakang linggi haluan dengan posisi vertikal - Penggunaan batang kawat dengan diameter kira-kira 1 mm. dan dipasang 5 % di belakang linggi

haluan

- Sejumlah stud atau paku semat (pin) terbuat dari silinder bundar yang mempunyai garis tengah kira-kira 3 mm dan tinggi yang kecil juga kira-kira-kira-kira 3 mm. dipasang tegak lurus permukaan lambung dengan jarak yang sama yaitu 25 mm

Gambar 4. Turbulensi Tiruan di dalam Lapisan Batas pada Model Kapal

Model Kapal

Dalam pembuatan model kapal harus memenuhi Hukum perbandingan sebagai berikut: 1) Kesamaan Geometris

Kondisi geometris yang dapat terpenuhi dalam suatu percobaan model hanya kesamaan geometris dimensi- dimensi linier model, misalanya:

Hubungan antara kapal dan model dinyatakan dengan λ dimana:

GARIS LINTASAN Aliran Turbulen Aliran Laminer Batang ST 19

(5)

PROSIDING 2012©

HASIL PENELITIAN FAKULTAS TEKNIK

Arsitektur

Elektro

Geologi

Mesin

Perkapalan

Sipil

𝜆 = 𝐿𝑆 𝐿𝑚 = 𝐵𝑆 𝐵𝑚 = 𝑇𝑆 𝑇𝑚 (4) dimana,  = Skala perbandingan

Ls, Lm = Panjang kapal, panjang model (m)

Bs, Bm = Lebar kapal, lebar model (m)

Ts, Tm = Sarat kapal, sarat model (m)

Kesamaan geometris juga menunjukkan hubungan antara model dan tangki percobaan, Harvald: Bm < 1/10 B

tangki

𝑇𝑚< 1/10 𝑇 𝑡𝑎𝑛𝑔𝑘𝑖

2) Kesamaan Kinematis

Kesamaan kinematis antara model dan kapal lebih menitikberatkan pada hubungan antara kecepatan model dengan kecepatan kapal sebenarnya. Dengan adanya skala yang menunjukkan hubungan antara kecepatan model dan kecepatan kapal yang sebenarnya maka dapat dikatakan bahwa kesamaan kinematis bisa terpenuhi.

𝐹𝑟= 𝑉𝑚 √𝑔𝐿𝑚 = 𝑉𝑠 √𝑔𝐿𝑠 (5) dimana, Fr = Angka Froude

Vs, Vm = Kecepatan kapal, kecepatan model (m/dt)

g = Percepatan gravitasi (9,81 m/dt2)

3) Kesamaan Dinamis

Gaya – gaya yang bekerja berkenaan dengan gerakan fluida sekeliling model dan kapal pada setiap titik atau tempat yang bersesuaian harus mempunyai besar dan arah yang sama, dalam hal ini kesatuan harga Reynold yang menggambarkan perbandingan gaya-gaya inersia dengan viskositas:

𝑅𝑒 =𝑉𝑚𝐿𝑚 𝑣 = 𝑉𝑠𝐿𝑠 𝑣 (6) dimana, Re = Angka Reynold

v = Viskositas kinematis fluida (m2/dt)

= 1,1883 x 10-6 (m2/dt)

Dengan demikian jika diinginkan tercapainya kesamaan dinamis disamping kesamaan geometris dan kesamaan kinematis, maka angka Reynold untuk model harus sama dengan angka skala penuh.

Penentuan Tahanan kapal

Tahanan model kapal adalah merupakan fungsi dari ukuran pokok, kecepatan kapal dan bentuk dari badan kapal itu sendiri. Langkah-langkah dalam perhitungan tahanan model dan tahanan kapal hasil percobaan laboratorium adalah sebagai berikut:

a. Perhitungan Koefisien tahanan

Tahanan total model merupakan jumlah antara tahanan sisa dan tahanan gesek.

𝑅𝑡= 𝑅𝑓+ 𝑅𝑟 (7)

Tahanan total berbanding lurus dengan kecepatan dan luas Permukaan Bidang Basah.

(6)

Penggunaan Stimulator dalam Penentuan…

Rosmani & Lukman Bochary

Arsitektur

Elektro

Geologi

Mesin

Perkapalan

Sipil

dimana,

m = Massa jenis fluida (kg.dt2/m4)

Vm = Kecepatan model (m/s)

Sm = Luas bidang basah model (m2)

Rtm = Hambatan total model (kg)

Ctm = Koefisien hambatan total

b. Tahanan Gesek

Koefisien tahanan gesek model dan kapal dapat dihitung dengan menggunakan rumus: - koefisien tahanan gesek model:

𝐶𝑓𝑚=

0,075

(𝐿𝑜𝑔10𝑅𝑒𝑚 − 2)2 (9)

- koefisien tahanan gesek kapal:

𝐶𝑓𝑘=

0,075

(𝐿𝑜𝑔10𝑅𝑒𝑘 − 2)2 (10)

c. Tahanan Sisa

Koefisien tahanan sisa dapat diketahui dengan memperkurangkan antara koefisien tahanan total dengan koefisien tahanan gesek:

𝐶𝑟𝑚= 𝐶𝑡𝑚− 𝐶𝑓𝑚 (11)

Koefisien tahanan sisa model dan kapal adalah sama untuk angka Froude yang sama.

𝐶𝑟𝑘= 𝐶𝑟𝑚 (12)

d. Tahanan Total Kapal

Koefisien tahanan total model adalah jumlah antara koefisien tahanan gesek dan koefisien tahanan sisa serta koefisien kekasaran kulit sebesar 0,0004.

𝐶𝑡𝑓= 𝐶𝑓𝑘+ 𝐶𝑟𝑘+ 𝐶𝑘𝑢𝑙𝑖𝑡 (13)

Jadi tahanan total kapal dapat diketahui dengan menggunakan rumus sebagai berikut:

𝑅𝑡= 1/2 × 𝜌 × 𝑉2× 𝑆 × 𝐶𝑡𝑘 (14)

dimana,

 = Massa jenis fluida (104,51 kg.dt2/m4)

V = Kecepatan kapal (m/s) S = Luas bidang basah kapal (m2)

Ct = Koefisien tahanan

e. Perhitungan EHP

Besarnya daya efektif kapal yaitu:

𝐸𝐻𝑃 =𝑅𝑇× 𝑉𝑠

75 (𝑘𝑊) (15)

Towink tank

Towing tank umumnya digunakan untuk mengetes tahanan dengan menggunakan model yang bergerak dalam tangki pada kecepatan tertentu sepanjang tangki. Ada 2 (dua) tipe towing tank yakni sebagai berikut:

(7)

PROSIDING 2012©

HASIL PENELITIAN FAKULTAS TEKNIK

Arsitektur

Elektro

Geologi

Mesin

Perkapalan

Sipil

1) Towing Tank dengan kereta penarik

Model dikemudikan oleh mesin dan dilengkapi dengan penarik yang berlawanan arah dengan model yang berada di bawahnya. Kereta penarik tersebut membawa alat yang dapat mengukur dan mencatat kecepatan pelayaran dan tahanan model yang bergerak di air.

2) Towing Tank dengan beban atau gravitasi

Tangki ini dilengkapi dengan tali(senar) yang mengelilingi rol atau katrol, masing-masing saling berlawanan pada ujung katrol. Salah satu katrol bertindak sebagai pengemudi dan lainnya sebagai pengikat atau pengantar. Katrol pengemudi ini mempunyai poros pada axisnya, proyeksi, proyeksi dari poros pada kedua sisinya. Salah satu sisi poros menahan tali pengikat system pemberat dan yang lainnya menahan bobot lawan. Tahanan dapat diketahui dengan menggunakan sistem pembebanan dengan memakai gaya pemberat melalui katrol, dimana pembebanan pada piringan bobot mula lebih berat dari bobot lawan.

Apabila model yang ditarik bergerak pada kecepatan konstan di bawah gaya ini, maka gaya tersebut sama dengan tahanan total model pada kecepatan tersebut. Tipe semacam inilah yang digunakan pada percobaan model dalam penentuan tahanan

Analisis dan Bahasan

Model kapal yang digunakan dalam percobaan adalah model yang dilengkapi dengan bulbous bow dan tanpa bulbous bow dan telah diuji sebelumnya dengan percobaan tanpa menggunakan stimulator. Adapun ukuran dan perbandingan skala sesuai pada tabel 1.

Tabel 1. Ukuran utama kapal sampel dan model kapal

Ukuran Satuan Kapal Model Kapal Tangki Percobaan

Panjang Lunas m 10,55 0,44 18,0 Panjang Lbp m 10 0,425 - Lebar m 2,85 0,12 - Tinggi m 0,89 0,036 1,75 Sarat m 0,60 0,025 1,20 Dislpasmen ton 7,187 0,533 - Kecepatan knot 6 1,22 -

Luas bidang basah m2 14,296 0,02647 -

Data Hasil Percobaan Model

Percobaan model dilakukan dengan beberapa variasi kecepatan yang sama untuk kedua model. Masing-masing model dilengkapi stimulator dengan ukuran gigi 0,5 cm. dan diletakkan 5% dari linggi haluan. Besarnya tahanan model sama dengan besarnya penambahan beban awal pada setiap percobaan penarikan model untuk setiap variasi kecepatan yaitu sebesar 100 gram. Setiap pembebanan dilakukan percobaan sebanyak 3 kali dan penambahan beban dilakukan sebanyak 7 kali. Kecepatan kapal diperoleh dari rata-rata waktu yang ditempuh oleh model pada masing-masing variasi pembebanan. Besarnya kecepatan dari hasil percobaan baik model dan kapal tercantum pada tabel 2.

Dan pada tabel tersebut terlihat bahwa besar tahanan model kapal yang sama dengan bentuk model yang menggunakan Bulbous Bow dan tanpa Bulbous Bow terjadi perubahan kecepatan, di mana kecepatan model tanpa Bulbous Bow lebih kecil dari model dengan Bulbous Bow. Berdasarkan kecepatan model dari hasil percobaan, maka kecepatan kapal dapat diketahui melalui kesamaan Froude. Besarnya tahanan kapal dapat diketahui berdasarkan kecepatan kapal untuk kedua model pada setiap variasi pembebanan dapat dilihat pada tabel 3.

Tabel 2. Kecepatan Model dan Kapal No. Tahanan

(kg)

Kecepatan Model (m/dt) Kecepatan Kapal (m/dt) Tanpa BulbousBow Dengan BulbousBow Tanpa BulbousBow Dengan BulbousBow 1 0,1 0,711 0,783 3,485 3,838 2 0,2 0,839 0,888 4,108 4,350 3 0,3 0,983 1,044 4,816 5,115 4 0,4 1,141 1,220 5,590 5,977

(8)

Penggunaan Stimulator dalam Penentuan…

Rosmani & Lukman Bochary

Arsitektur

Elektro

Geologi

Mesin

Perkapalan

Sipil

Tabel 2. Kecepatan Model dan Kapal (lanjutan) No. Tahanan

(kg)

Kecepatan Model (m/dt) Kecepatan Kapal (m/dt) Tanpa BulbousBow Dengan BulbousBow Tanpa BulbousBow Dengan BulbousBow 5 0,5 1,260 1,316 6,171 6,446 6 0,6 1,348 1,444 6,602 7,072 7 0,7 1,444 1,596 7,076 7,817

Sumber: Hasil olahan data

Tabel 3. Hubungan Kecepatan dan Tahanan untuk Model dan Kapal

No

Tanpa BulbousBow BulbousBow

Model Kapal Model Kapal

Kecepatan (knot) Tahanan (Newton) Kecepatan (knot) Tahanan (Newton) Kecepatan (knot) Tahanan (Newton) Kecepatan (knot) Tahanan (Newton) 1 0,711 1,039 3,485 239 0,783 1,052 3,838 233 2 0,839 2,043 4,108 502 0,888 2,053 4,350 497 3 0,983 3,054 4,816 762 1,044 3,068 5,115 756 4 1,141 4,074 5,590 1.019 1,220 4,095 5,977 1.010 5 1,260 5,088 6,171 1.278 1,316 5,104 6,446 1.272 6 1,348 6,095 6,602 1.541 1,444 6,126 7,072 1.529 7 1,444 7,107 7,076 1.802 1,596 7,160 7,817 1.782 Sumber: Hasil analisis data

Tabel 4. Hubungan antara Kecepatan dan Tahanan kapal Kecepatan

(knot)

Tahanan Kapal (N)

Dengan Stimulator Tanpa Stimulator

Tanpa Bow Dengan Bow Tanpa Bow Dengan Bow

4 470 325 110 4.5 640 490 170 93 5 825 705 250 165 5.5 990 850 330 245 6 1200 1020 420 340 6.5 1480 1290 550 455 7 1755 1495 680 555

Sumber: Hasil analisis data

Gambar 5. Kurva Tahanan dan Kecepatan Kapal 0 200 400 600 800 1000 1200 1400 1600 1800 2000 3.5 4 4.5 5 5.5 6 6.5 7 7.5 Stimulator tanpa Bow Stimulator dengan Bow Tanpa Stimulator dan Bow Tanpa stimulator dengan Bow

(9)

PROSIDING 2012©

HASIL PENELITIAN FAKULTAS TEKNIK

Arsitektur

Elektro

Geologi

Mesin

Perkapalan

Sipil

Tabel 5. Hubungan antara Kecepatan dan Daya Efektif Kapal No Kecepatan

(Knot)

Daya Efektif Kapal (HP)

Tanpa Stimulator Dengan Stimulator

Tanpa Bow Dengan Bow Tanpa Bow Dengan Bow

1 4,0 0,25 1,3 0,9 2 4,5 0,53 0,25 1,8 1,4 3 5,0 0,88 0,58 2,8 2,3 4 5,5 1,28 0,97 3,8 3,2 5 6,0 1,85 1,45 5,0 4,3 6 6,5 2,60 2,07 6,7 5,8 7 7,0 3,47 2,73 8,6 7,3

Sumber: Hasil Analisis Data

Gambar 9. Kurva Daya Efektif dan Kecepatan Kapal

Hasil Analisis

Berdasarkan hasil analisis data diperoleh bahwa, Perbedaan kecepatan antara model dengan bulbous bow rata-rata lebih besar 6,6 % dari model tanpa bulbous bow, Sehingga pada kecepatan yang sama, besarnya tahanan kapal untuk model yang menggunakan bulbous Bow rata-rata lebih kecil 18 % dibandingkan dengan model tanpa Bulbous Bow. Perbandingan tahanan pada percobaan model tanpa bulbous bow, untuk model yang menggunakan stimulator rata-rata lebih besar 34% dari model tanpa stimulator, sedang model dengan bulbous bow, untuk percobaan dengan stimulator rata-rata lebih besar 28%. Besar daya efektif kapal pada kecepatan 6 knot untuk model bulbous bow adalah 4,3 HP atau lebih kecil 17 % dari model tanpa bulbous bow yang besarnya 5 HP. Pada penelitian terdahulu (Rosmani, 2010), untuk model yang sama tetapi tidak menggunakan stimulator di haluan kapal, di mana besar tahanan kapal untuk model dengan bulbous bow rata lebih keci 28% dari model yang dilengkapi dengan stimulator dan model tanpa bulbous bow rata-rata lebih kecil 34%. Daya efektif kapal untuk percobaan model bulbous bow dengan stimulator rata-rata lebih besar 34% jika dibandingkan dengan model bow tanpa stimulator, sedangkan daya efektif kapal untuk model tanpa bulbous bow pada percobaan model dengan stimulator lebih besar 37% dari percobaan tanpa stimulator. Hasil analisis diperoleh, bahwa besar daya efektif kapal yang dibutuhkan untuk mencapai kecepatan 6 knot adalah 4,3 HP untuk model dengan bulbous bow dan 5 HP untuk model tanpa bulbous bow

SIMPULAN

1. Besar tahanan kapal melalui percobaan model kapal di towing tank dengan menggunakan stimulator untuk kapal dengan bulbous bow rata-rata lebih kecil 18 % dari model tanpa bulbous bow.

2. Perbandingan tahanan pada percobaan model tanpa bulbous bow, untuk model yang menggunakan stimulator rata-rata lebih besar 34% dari model tanpa stimulator, sedang model dengan bulbous bow, untuk percobaan dengan stimulator rata-rata lebih besar 28%.

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 3.5 4 4.5 5 5.5 6 6.5 7 7.5 EHP TANPA STIMULATOR DAN BOW EHP DGN BOW TANPA STIMULATOR ehp stimulator tanpa bow ehp stimulator dengan bow

(10)

Penggunaan Stimulator dalam Penentuan…

Rosmani & Lukman Bochary

Arsitektur

Elektro

Geologi

Mesin

Perkapalan

Sipil

3. Besar daya efektif kapal yang dibutuhkan untuk mencapai kecepatan 6 knot pada percobaan dengan stimulator untuk model bulbous bow lebih besar 34% dari percobaan model tanpa stimulator, sedang model tanpa bulbous bow lebih besar 37%.

DAFTAR PUSTAKA

Ardianti, (2009), Karakteristik Geometri Kapal Ikan Produksi Desa Rangas, Kecamatan Banggae, Kabupaten Majene, Sulawesi Barat, Skripsi tidak dipublikasikan, Jurusan Perkapalan FT UH. Makassar.

Bagus, (2009), Resistance Test Alternative Design of Traditional Purse - Seine Boat, Prosiding Seminar Nasional Teori dan Aplikasi Teknologi Kelautan (SENTA) ITS Surabaya.

David, G.,M., Watson, (1998), Practical Ship Design.

Van Manen, J.,D., & A.,J.,W., Lap, (1956), Fundamental of Ship Resistance and Propulsion, The Netherland Society of Engineers and Ship Builders.

Guldhamer, H.,E., & Sv.Aa. Harvald., (1974), Ship Resistance, Akademisk Forlag Copenhagen.

Hasbullah, Mansyur, (1987), Studi Pemanfaatan Bulbous Bow untuk mengurangi Tahanan Total Kapal, Marine Science and Technology Faculty, Tokai University, Jepang.

H., Schneekluth, (1987), Ship Design for Efficiency and Economy, Butterworth & Co (Publisher) Ltd.

Jusuf, Sutomo, oleh Sv.Aa. Harvald, (1992), Tahanan dan Propulsi Kapal, Airlangga University Press., Surabaya.

Muhammad, A.,H., dkk., (2010), Pengaruh Bulbous Bow terhadap Pengurangan Tahanan Kapal Kayu Tradisional, Jurusan Teknik Perkapalan, Fakultas Teknik, Universitas Hasanuddin, Makassar.

Rosmani, (2010), Analisis Daya Efektif Kapal KM. Baji Pa’mai melalui Uji Model pada Towing Tank, Makassar.

Traung, Jan-Alof, (1955), Fishing Boats of the World 1, Italy. Traung, Jan-Alof , Fishing Boats of the World 2, England.

Samaluddin, (2010), Pengaruh Penggunaan Bulbous Bow Dalam Studi Tahanan Kapal Layar Motor Tradisional di Kawasan Indonesia Timur, Thesis tidak dipublikasikan, Jurusan Perkapalan FT - UH, Makassar.

Suhardi, (2010), Estimasi Daya Efektif Kapal Ikan KM. Baji Pa’mai Menggunakan Uji Model, Skripsi tidak dipublikasikan, Jurusan Perkapalan FT - UH, Makassar.

Gambar

Gambar 1. Perubahan Aliran Gelombang akibat Penggunaan Bulbous Bow
Gambar 3. Aliran Laminar dan Turbulen
Tabel 1. Ukuran utama kapal sampel dan model kapal
Gambar 5. Kurva Tahanan dan Kecepatan Kapal         0200400600800100012001400160018002000 3.5 4 4.5 5 5.5 6 6.5 7 7.5 Stimulator tanpa BowStimulator dengan BowTanpa Stimulator danBowTanpastimulatordengan Bow
+2

Referensi

Dokumen terkait

Kepala sekolah dapat mengikutsertakan guru-guru dalam pelatihan dan melakukan monitoring evaluasi sebagai tindak lanjut hasil pelatihan, yang khusus dilakukan dengan

Media yang dapat dipilih dan mudah diterapkan kepada anak usia prasekolah sesuai karakteristik tumbuh kembangnya adalah permainan ular tangga, perubahan peningkatan

Sedangkan jenis baut atau skrup pengikatnya yaitu joint connecting bold (JBC). Namun, Mur nanas jarang digunakan pada mebel rotan karena cakram pada mur nanas dapat merusak

Penelitian ini bertujuan untuk meningkatkan hasil belajar siswa melalui metode demostrasi pada pelajaran IPA materi gaya siswa kelas V di SD Negeri Talun 02

Pendapatan Pemerintah Umum (General Government Revenue) atau Pendapatan Negara Konsolidasian di Wilayah Provinsi Jawa Timur sampai dengan triwulan I tahun 2018 sebesar

Sekalipun terdapat beberapa masyarakat yang mengikuti proses tersebut, kehadiran mereka dalam proses Musyawarah Perencanaan Pembangunan (Musrembang) atau Musyawarah Desa

Dalam rangka pengawasan atas realisasi Anggaran Pendapatan dan Belanja Negara dan Anggaran Pendapatan dan Belanja Daerah pada setiap Tahun Anggaran berjalan, dan evaluasi

Hasil Penelitian menunjukkan sistem pertanian padi di Kawasan Hutan Bakau Desa Teluk Nibung adalah sistem Pertanian tradisional dengan pola petani berpindah- pindah, petani padi