BAB II
TINJAUAN PUSTAKA
2.1. Pendahuluan
Bab ini memberikan gambaran umum tentang latar belakang pengertian pembangkitan gaya pada mekanisme sebuah mesin bolak-balik (reciprocating engine).
Gambar 2.1 Reciprocating Engine Dari gambar :
1. Piston 3. Poros engkol 2. Connecting rod
1
2
Gambar 2.2 Diagram benda bebas mekanisme engkol luncur
Dari gambar 2.2 menunjukkan diagram benda bebas sebuah mekanisme engkol luncur. Torak P yang mengalami percepatan akan menghasilkan gaya inersia (Fi), Fi merupakan gaya inersia yang bekerja pada pusat torak P, yang
besarnya adalah Fi = mp . ap, dimana mp massa keseluruhan piston dan ap adalah
percepatan piston. Sehingga gaya yang menekan piston Fpx jumlah gaya inersia
yang bekerja pada piston dan tekanan gas yang dihasilkan pada pembakaran pada permukaan piston. Gaya ini mengakibatkan poros engkol bergerak dengan kecepatan konstan ω1. Dan juga mengakibatkan batang penghubung (connecting
rod) bergerak dengan kecepatan angular ω2 dan mengalami percepatan angular
α2
Motor bakar satu silinder menggunakan mekanisme engkol luncur dalam .
hasil pembakaran bahan bakar dan oksigen berekspansi akan mendorong torak yang dilanjutkan ke batang penghubung yang akan memutar poros engkol, yang kemudian diidealisasikan akan menghasilkan putaran konstan dengan bantuan sebuah roda gila (fly wheel).
Gambar 2.3 memperlihatkan skema dari mekanisme engkol peluncur horizontal. O adalah kerangka tetap, R adalah radius poros engkol yang bergerak rotasi yang terpusat di O dan L adalah batang penghubung dan P adalah peluncur, yang mana pada kasus ini torak meluncur sepanjang silinder atau bergerak translasi. θ adalah sudut gerak poros engkol. η adalah sudut perubahan batang hubung terhadap torak. Dan G adalah titik berat batang hubung.
ω
12.3. Persamaan Posisi, Kecepatan, dan Percepatan Titik C
Gambar 2.4 Geometri engkol peluncur
Gambar 2.5 Posisi vector C
X
TMA
L
R
-L
Sin β = R Sin θ
R + L
O Cθ
RDengan menurunkan persamaan posisi pada titik C dua kali didapatkan persamaan percepatan pada titik C atau a
(2.1)
Untuk mencari persamaan percepatan titik berat pada poros engkol, dan karena jarak titik berat poros engkol adalah R/2, maka percepatan titik berat pada poros engkol adalah.
c
(2.2)
2.4. Analisa Gaya Bearing Pen
Untuk mengetahui gaya-gaya yang bekerja pada peluncur dapat dilihat pada gambar 2.6.
Gambar 2.6 Diagram benda bebas piston
Pada gambar 2.6 dapat dilihat bahwa FPY merupakan gaya yang terjadi pada titik
P untuk komponen vertikal dan FPX merupakan gaya yang terjadi pada titik P
untuk komponen horizontal. Karena HONDA REVO menggunakan mesin untuk tipe horizontal, sehingga gaya yang ditimbulkan akibat pembakaran gas Fg dan
P Fg mpap
Fpy
Fpx
Wp N
gaya inersia yang ditimbulkan mpap
dikategorikan menjadi komponen horisontal.
Sehingga,
(2.3)
Sedangkan pada komponen vertikal terdapat berat piston wp dan N gaya yang
bekerja pada dinding silinder.
Untuk mengetahui gaya-gaya yang bekerja pada batang hubung atau
connecting rod dapat dilihat pada gambar 2.7.
Gambar 2.7 Diagram benda bebas connecting rod
Dari gambar 2.7 dapat dilihat connecting rod CP, yang mengalami percepatan angular yang arahnya searah sumbur-z menimbulkan momen inersia Izz. Pada
connecting rod CP juga terdapat gaya yang terbagi menjadi komponen vertikal
dan horizontal. FCX merupakan gaya pada titik C untuk komponen horizontal,
Fpx Fcx mc.acgx mc.acgy Fpy Wc Fcy
η
C G P -Izz.α2sedangkan pada komponen horizontal terdapat FPX dan mc.acgx yang merupakan
gaya inersia untuk komponen horizontal pada connecting rod. Sedangkan FCY
yang merupakan gaya pada titik C untuk komponen vertikal. Komponen vertikal pada batang hubung ini adalah WC berat batang hubung dan mc.acgy
gaya inersia untuk komponen vertikal.
(2.4) (2.5) Karena FCY dan FPY
belum diketahui, dengan menggunakan momen pada titik G.
Karena U + S = L, maka
Sehingga dapat diketahui FCY
(2.7)
I
,
zz didapat dari hasil pengukuran dengan menggunakan software SOLIDWORKS.
Gambar 2.8 Diagram benda bebas poros engkol
Gambar diatas merupakan diagram benda bebas untuk poros engkol, analisa yang dilakukan pada poros engkol dengan mengganggap titik berat poros engkol R/2, dan poros engkol tanpa beban imbang counter weight. Karena poros engkol dianggap berputar pada kecepatan konstan, sehingga percepatan sudut poros engkol dianggap nol.
(2.6) Fcx Frx Fry Fcy mpe.agpy mpe.agpx Wpe
2.7. Analisa Torsi
Analisa torsi kali ini berdasarkan referensi dari jurnal seperti yang terdapat pada lampiran. Dimana torsi yang terjadi pada mekanisme engkol luncur kali ini adalah gaya-gaya komponen horizontal FCX dan vertikal FCY pada titik C
dikalikan panjang dari poros engkol itu sendiri.
Gambar 2.9 Diagram benda bebas crankshaft T FCX FCY θ C O R (2.8)
Sedangkan untuk memperoleh gaya yang ditimbulkan oleh gas dengan menggunakan tekanan efektif rata-rata pada siklus otto.
2.8. Gaya Tekan Pada Permukaan Piston
Pada siklus Otto, energy yang dihasilkan berasal dari pembakaran antara campuran bahan bakar. Hasil pembakaran akan menghasilkan tekanan gas yang menekan piston, kemudian diteruskan sampai poros engkol untuk menghasilkan tenaga. Gaya tekan pada siklus Otto bergantung pada tekanan gas yang terjadi akibat ledakan dari pembakaran bahan bakar. Karena selama siklus Otto tekanan dan temperatur selalu berubah-ubah tiap perubahan sudut gerak poros engkol maka sebaiknya dicari harga tekanan konstan yaitu tekanan efektif rata-rata.
Gambar 2.10 Siklus OTTO (sumber : Thermodynamic 6th
Untuk menghitung tekanan gas rata-rata yang terjadi pada siklus Otto dapat dihitung dengan menggunakan rumus (Internal Combustion Engine
Fundamentals, Heywood John-B)
Dimana,
, Cengel)
P = Daya efektif (kW)
Peff = mean efektif pressure (kPa) Vd = Volume silinder (dm3
N = Putaran poros engkol (R.P.S) )
nR
(2.10)
Dimana,
A = Luas permukaan kepala piston = (π/4).D
= 2 (Motor 4 tak)
Dan secara matematis gaya yang ditimbulkan hasil pembakaran pada permukaan torak adalah,
• Adams/ Car
2
D = Diameter piston (cm)
2.9 Md ADAM
Berdasarkan Md Adams Help, Md adams adalah software MSC berbasis
Computer Aided Engineering (CAE) yang fungsi utamanya multi disiplin ilmu
yang mengintegrasikan sistem-sistem seperti komponen-komponen mekanik, pneumatik, hidrolik, elektronik dan sistem kontrol teknologi yang memungkinkan para insinyur untuk membangun dan menguji prototipe secara virtual menjelaskan interaksi antara subsistem.
Md adams software yang dapat meningkatkan efisiensi teknik dan dapat mengurangi biaya pengembangan produk dengan melakukan validasi lebih awal. Insinyur dapat mengevaluasi dan mengelola interaksi tiap disiplin ilmu seperti gerakan, aktuasi, dan pengendalian agar produk bekerja lebih optimal seperti kinerja, keamanan, dan kenyamanan. Seiring dengan kemampuan analisis yang luas
• Adams/ Driveline • Adams/ Flex • Adams/ Insight
• Adams/ PostProcessor • Adams/ View
Pada analisa kinematika dan dinamika mekanisme engkol luncur akan menggunakan salah satu produk adams yaitu Adams/ View. Adams/ View adalah produk Adams yang sangat powerful dalam bentuk pemodelan dan simulasi. Pengguna Adams dapat membangun dan mensimulasikan sebuah model yang memiliki part yang bergerak.
Berikut penggunaan Adams/ View :
Start menu, Programs, MSC.Software, MD Adams 2010, AView,
1. Memilih salah satu pilihan yang terdapat pada window seperti pada tabel berikut :
Adams - View
Gambar 2.11 Membuka ADAMS/ View Membuat Model
Saat memulai adams/ View, adams/ View akan menampilkan window berupa
welcome dialogue box yang memberi pilihan pada pengguna apakah membuat
Tabel : Tampilan pilihan pada window ADAMS/ VIEW
Pilihan Pada Tabel Fungsi
Create a New Model Membuat sebuah model yang baru
Open an Existing Database Membuka model yang telah ada
Import File Membuka model dari database adams
yang telah ada.
Exit Keluar dari adams/ View
2. Jika memilih membuat model yang baru, terdapat pilihan penggunaan gravitasi pada model,
• Earth Normal : Gravitasi normal sebesar 1 G • No Gravity : Tidak menggunakan gravitasi • Other
3. Menyeleksi satuan yang akan digunakan. • MMKS : millimeter, kilogram, secon • MKS : meter, kilogram, second • CGS : centimeter, gram, dyne • IGS : inci, slug, pound gaya 4. Pilih OK
Proses Pemodelan
Tahap-tahap pada pengerjan adams/ View adalah :
Gambar 2.12 Proses pemodelan
Tahap pertama yang dilakukan adalah membangun model, melakukan percobaan pada model, peninjauan pada model, dan dilakukan pengembangan terhadap model jika diperlukan.
Adams/ View
Berikut tampilan adams/ View pada jendela utama.
Gambar 2.13 Window pada ADAM/ View
Tool Box Adams/ View
Tabel : Deskripsi Tool
Ikon Deskripsi
Tool seleksi
Pemodelan bentuk-bentuk geometri
Tool pengukuran
Tool sambungan
Tool simulasi
Tool pewarna
Tool motor penggerak
Kontrol animasi
Tool Move
Tool Forces
PostProcessor
Menampilkan model dalam satu window
Menampilkan model saat diseleksi
Menampilkan model pada titik pusat model
Merotasi model
Translate Tool Stack
See Dynamically Zooming the Display
Increment Entering a value lets you more precisely control the view display changes, such as zooming and rotations.
See Orienting the View Using an Object XY
See Orienting the View Using Three Points
Background Color Tool Stack
Toggle Tool Stack
Window Layout
Grid See Working grid
Depth See Setting the View Perspective
Render See Rendering mode