• Tidak ada hasil yang ditemukan

BIOMASS ELECTRICITY GENERATION (USING COCONUT SHELL CHARCOAL) FOR TIGER PRAWN AQUACULTURE AT SARAWAK COASTAL AREA. ABU TALIB B.

N/A
N/A
Protected

Academic year: 2021

Membagikan "BIOMASS ELECTRICITY GENERATION (USING COCONUT SHELL CHARCOAL) FOR TIGER PRAWN AQUACULTURE AT SARAWAK COASTAL AREA. ABU TALIB B."

Copied!
24
0
0

Teks penuh

(1)

BIOMASS ELECTRICITY GENERATION (USING COCONUT

SHELL CHARCOAL) FOR TIGER PRAWN AQUACULTURE

AT SARAWAK COASTAL AREA.

ABU TALIB B. GHAZALI

Universiti Malaysia Sarawak

TJ

2002

146

A165

2002

,

I -;1 I

(2)

BIOMASS ELECTRICITY GENERATION (USING

COCONUT SHELL CHARCOAL) FOR TIGER PRAWN

AQUACULTURE AT SARAWAK COASTAL AREA.

Abu Talib b. Ghazali

This report is submitted in partial fulfillment of the requirement for the degree of Bachelor of Engineering (Hons.) Mechanical Engineering and Manufacturing System from the

Faculty of Engineering

Universiti Malaysia Sarawak

2002

(3)

BIOMASS

ELECTRICITY

GENERATION

(USING

COCONUT SHELL CHARCOAL) FOR TIGER PRAWN

AQUACUL TURE

AT

SARA W AK COASTAL AREA.

Abu Talib b. Ghazali

This report is submitted in partial fulfillment of the requirement for the degree of Bachelor of Engineering (Hons.) Mechanical Engineering and Manufacturing System from the

Faculty of Engineering

Universiti Malaysia Sarawak

2002

(4)

BORANG PENYERAHAN TESIS

ludul: BIOMASS ELECTRICITY GENERATION (USJ G COCONUT SHELL

CHARCOAL) FOR TIGER PRA WN AQUACULTURE AT SARA WAK COASTAL AREA .

SESI PENGAJIAN: 1999/2002 Saya ABU TALIB GHAZALI

mengaku membenarkan tesis ini disimpan di r USa! Khidmat Makllimal Akademik, Universili Malaysia Sarawak dengan syarat·syarat kegunaan seperti berikut:

1. Hakmilik kertas projek adalah di bawah nama pcnulis melainkan penulisan sebagai projek ber-sama dan dibiayai oleh UN IMAS, hakmiliknya adalah kepunyaan UNIMAS.

2. Naskhah salinan di dalam bemuk kertas atau mikro hanya baleh dibuat dengan kcbenaran berlults daripada penulis.

3. Puset Khidmat Maklumat Akademik, UNIMAS dibenarkan membuat salinan untuk pengajian mereka.

4. Kertas projek hanya baleh dilerbilkan dengan kebenaran penulis. Bayaran ro)'alli adalah mengikut kadar yang dipersewj ui kelak.

5. ,. Say a membenarkan/tidak membcnarkan Perpustakaan membuat salinan kertas projek ini sebagai bahan pertukaran di antara inslilusi pengajian linggi.

6. .. Si la tandakan (3)

D

SULIT (Mengandungi maklumal yang berda ljah kesel arnaran atau kepentingall Mala~sia seperti yang lermaktub di dalam AKTA RAHSIA RASM I 1972).

D

TERHAD (tvlengandungi maklumat TERHAD yang telah ditenLukan oleh organisasil hadan di mana penyelidikan dijaJankan).

IT

TID Al<

TERHA

~

Disahkan oleh

~

~D

L2~

A

~N~

G

=

A

=N=

P

=

E

==Y=E

N

~

Lj

-

A

-)-'

(TAN DATA GAN PENULlS)

Alamat tetap: NO. 54 KPG. SAMBJR Nama Penyelia: Nazeri Abdul Rahman

94600 KOTA SAMARAHAN SARAWAK

Tarikh: 12 APRIL 2002 Tarikh: 12 APRIL 2002

CATATAN • Porong ynng tidak berkenaan.

.. Jika Kertas Projek iui SULIT atan TERH A 0 , sila lampirl<an surat daripada pihal< berkuasal organisasi berkentHHl dengan menyertakan sekali tempoh kertas projek. Ini perlu dikelaskan sebagai SULIT :ltau TERHAD.

(5)

Approval Sheet

This project report attached here to, entitled "Biomass Electricity Generation (Using Coconut Shell Charcoal) For The Tiger Prawn Aquaculture at Sarawak Coastal Area" prepared and submitted by ABU TALIB GHAZALI as a partial fulfillment of the requirement for the degree of Bachelor of Engineering with Honours in Mechanical and Manufacturing System is hereby read and approved by:

Date: 12 APRIL 2002 UL RAHMAN

(6)

DEDICATION

Salvi

a Marekan

Gha

za

li Kotop

Maimon Seruji

Sa'adiah

&

H

ap

endi

Dolh

a

n

&

Julia

na

Harun

Siti Sara

a

nd

M

a

re

ka

n

&

Masni

(7)

ACKNOWLEDGEMENT

Bismiliahir-rahmaniHahim. Thanks to God for 'Taufik' and 'Hidayah' for giving the opportunity in completing this thesis. Thank also extended to Encik Nazeri Abd. Rahman, the person who supervise, guide, give valuable assistance and

advice during preparation and completion of this thesis.

Special thanks to MARS ADVANCE Sdn. Bhd. employee, Mr. Yong Chee Man and Penolong Pengarah Jabatan Pertanian, Bahagian Samarahan Encik

Mohamad Mokhtar Hj. Ali for their cooperation and helps.

Also not forgotten to the entire lecturer, tutors, staff, Prof. Madya Dr. Wan Ali, Dr Ha, Encik Abd Rahim, Encik Syed Tarmizi, Cik Rubiyah, Encik Rhyier and

others for their corporation, supports and contributions. Thank to all colleagues

and classmates, who help and support in term of their comments and

recommendations.

The author also wishes to thank his father and mother, En. Ghazali Kotop and Pn. Maimon Seruji, sisters and brothers Saadiah, Siti Sara, Dolhan and Harun for the consistence encouragement, understanding and support during

completion of this thesis. To the most special person, the beloved wife, Salvia

Marekan, thank you for your understanding, kindness and full support. Last but not least, thanks are also the author to the parent in law, En. Marekan and Pn. Masni.

(8)

ABSTRACT

Tiger prawn also scientifically known as penaeus esculentus sp., is one of the

most famous cultivated shrimp. Today, the industry of aquaculture, especially

tiger prawn is becoming profitable and expanding rapidly, including the coastal

areas of Sarawak. The need of energy to power the industry also plays important

role. By considering biomass energy sources available within the farm, such as processed coconut residue (coconut shell charcoal) or other sources, the need of abundant and cheaper energy fuel can possibly be fulfilled. Therefore, the study

is exploring the potential of biomass energy sources - the coconut shell charcoal which might be useful as the future alternative energy sources. The study is designed to identify the quantity of energy usage on the tiger prawn aquaculture activities and the quantity of coconut shell charcoal can be produced within its

surrounding area. As a result, these two factors can be used as guidance for the installation a nd development of biomass energy or electricity generation plant in the future.

(9)

ASSTRAK

Udang harimau, dikenah secara saintifiknya sebagai penaeus esculent us sp.

merupakan udang peliharaan yang sangat terkenal. Pada masa sekarang,

industri pertanian laut atau akuakultur, terutamanya penternakan udang

harimau merupakan industri yang menguntungkan dan berkembang dengan pesat, termasuklah kawasan persisiran pantai Sarawak. Dalam memastikan kerancakan dan kemajuan penternakan udang harimau ini berterusan, kuasa

atau tenaga elektrik memainkan peranan yang sangat penting. Dengan mengambil kira sumber;;umber tenaga yang ada di sekeliling tempat

penternakan, seperti sisa buah kelapa yang telah diproses (seperti arang

tempul'ung) dan juga sumber;;umber tenaga biojisim yang lain, keperluan untuk mendapatkan tenaga biojisim dalam kuantiti yang banyak dan murah mungkin dapat dipenuhi. Oleh kerana itu, kajian ini dijalankan untuk mengenalpasti potensi sumber tenaga biojisim - arang tempurung kelapa yang mungkin juga boleh digunakan sebagai tenaga alternatif pada masa hadapan. Kajian 1m

direka untuk mengenalpasti kuantiti penggunaan tenaga atau elektrik di kawasan penternakan udang harimau, dan kuantiti arang tempurung kelapa yang dapat dihasilkan di kawasan berdekatan. Hasilnya, kajian ini boleh

digunakan sebagai panduan untuk membina dan membangunkan janakuasa

berasaskan sumber tenaga biojisim atau bahanapi biojisim pada masa hadapan.

(10)

CONTENTS

CONTENT

PAGE

ApPROVAL

DEDICATION

II

ACKNOWLEDGEMENT

III

ABSTRACT

IV

ABSTRAK

V

CONTENTS

VI

LIST OF FIGURES

x

LIST OF TABLES

XI

NOMENCLATURE

XII

CHAPTER

1 -

INTRODUCTION

1

1.1

Tiger Prawn Aquaculture Activity

In

Malaysia

1

1.2

Bioma

ss

Energy

3

1.3

Sources Of

Bioma

ss E

n

ergy

5

1.3.1

Forest

R

esidues

5

1.3.2

Energy Corps

7

1.3.3

Agricultural Residues

7

(11)

1.4

Coconut

S

hell

C

h

a

rcoal-

Chosen

Biomass

Fuel

Sources For the

St

udy

8

1.5

Biomass

Conve

rsion

Technologies

9

1.5.1 Combustion

10

1.

5.2

Pyrolysis

1

0

1.5.3 Gasification

10

1.5.4

Anaerobic

Dig

est

i

o

n

12

1.5.5 F

erme

nt

at

i

o

n

1

3

1.6

Scope And Objectives

of

The Study

1

3

1.6.1 Interviewing

t

h

e

respondents

1

3

1.6.2

Estimation of energy

usage in

tiger

prawn

aquacultur

e

and

the

energy can

be

produced from

coconut s

h

ell charcoal

14

1.6

.3 Provi

din

g t

h

e

useful data for future

stu

dy

1

4

1.7

Limitation

Of

The

Study

15

CHAPTER 2 -

LITERATURE REVIEW

16

2.1 Biomass: Energy For The Future 16

2.2

Biomass

For Electricity Generation

1

8

2.3

Biomass

Electricity Generator - Boiler

Efficienc

y

1

9

2.4

Advantages And Disadvantages

Of Biomass Power

2

0

2.4.1

Advantages

20

2.4.2 Di

sadvantages

21

(12)

CHAPTER

3 -

METHODOLOGY

23

3.1

Intr

od

u

ction

23

3.2

The

Location

23

3.3

Thesis Design

24

3.3.

1

En

e

r

gy

Usage

a

t Tig

e

r Pr

aw

n

Aquacu

ltur

e

24

3.3

.2

Biomass

Fu

e

l

So

ur

ce

-

C

oco

nut

S

h

e

ll

Char

coa

l

25

3.3.3

Biomass

El

ec

tri

c

it

y

Gen

e

rat

o

r

o

r B

o

il

e

r Effi

c

i

e

n

cy

26

3.4

Ca

l

cu

l

atio

n

and Formulas

27

3.5

Data

Co

ll

ect

i

o

n

3

0

CHAPTER

4 -

RESULTS AND DISCUSSION

32

4.1

Introduction

32

4.2

Energy

Usage In

Tiger

Prawn

Aq

u

acultut

'

e

33

42.1

Wa

t

e

r Pumping

a

nd

Tra

n

s

fening

Ac

ti

v

i

ty

3S

4.2.2

Wat

e

r Cir

c

ul

a

tion

Activ

it

y

36

4.2.3

Flu

o

r

esce

nt L

a

mp f

o

r

Lighting th

e

P

o

nd

A

r

eas

36

4.2.4

H

o

u

se

El

ec

tri

ca

l

Appliances

37

4.3

Esti

m

ating

Of

Coco

nut

S

h

e

ll

C

h

arcoa

l

Pt

'

od

u

ctivity

in

Samat'a

h

a

n

41

4

.4

Total

Net Power Ge

n

erat

e

d

Fro

m

Cocon

u

t

S

h

e

ll

Charcoal

46

4.5

The Possibility Of

E

l

ectric

it

y Ca

n

Be

Ge

n

erated

47

4.6

Qu

a

ntit

y

Of

Tiger

Prawn

Far

min

g

Ar

e

a Can

Be

S

uppli

e

d

4

8

4

.

7

Summ

a

ry

48

(13)

CHAPTER

5 -

CONCLUSIONS AND

RECOMMENDATIONS

50

5.1

Introduction

50

5.2

Finding and

Analysis

50

5.2.

1

Ene

rgy

Usage at Tig

er Pr

a

w

n Farming

51

5.2.2

En

ergy Supply b

y C

ocon

u

t Sh

e

ll

Char

coa

l

5

1

5.3

Quantit

y

of

Tiger

Prawn Farm Can Be Supplied

5

2

5.4

Recommendations

53

5.4

.1

Improve on Method

o

f

Findin

g

Da

ta

53

5.4.2

Us

ed For Oth

e

r Sector

53

5.4.3

Research

Bas

ed

o

n Oth

er

Part

of

Coconu

t

T

ree

5

4

5

.4.4

U

s

ing

O

ther

Bi

omass

Fuel

Sources

54

5.4

.

5

Estimation

of Ope

ratio

n

al Cost

54

BIBLIOGRAPHY

56

ApPENDIX I

-ApPENDIX

II

-ApPENDIX III·

QUESTIONNAIRE SHEET

59

THE EQUIPMENT NEEDED FOR TIG ER

PRAWN AQUACULTURE ACTIVITY

60

S UMMARY OF COCONUT PLANTATION

AREAS SIZE AT KOTA SAMARAHAN 61

ApPENDIX IV -THE CALORIFIC VALUES OF SOME

COMMON FUELS USED FOR D O MESTIC

AND INDUSTRIAL 66

(14)

LIST

OF

FIGURE

Figure 1.1 Tiger Prawn. penaeus esculentra 1

Figure 1.2 Primary Sources Of Energy From Bioconversion From La nd 3

Figure 1.3 Biomass Gasification System For Transforming Biomass

Particles In Biogas Fuel 11

Figure 1.4 The Three Type OfAnaerobic Digestion Process 12

Figure 3.1 Coconut Shell Charcoal 26

Figure 4.1 Cross Section Diagram Of Set Of Tiger Prawn Pond 34

Figure 4.2 The quantity of power usage in a tiger prawn aquaculture

according to the equipment types 40

Figure 4.3 Percentage of power usage in tiger prawn aquaculture

by type of equipment 40

Figure 4.4 Energy usage within one month 41

Figure 4.5 The percentage of selected coconut plantation areas in Samarahan 42

(15)

LIST OF

TABLE

Table 1.1 Biomass energy in Unite State of America 6 Table 2.1 Cost Of Electricity From Steam Turbine Versus Advanced

Gasification 19

Table 4.1 Electricity Consumption In A Tiger Prawn Aquaculture

38

(16)

NOMENCLATURES

A

Size

of coconut

plantation

area (hectare)

(A)

Power unit

of

item, (kWh

or

Hp)

(B)

Quantity

of

item use

d

C

v

Calorific

value (kWhlkg)

(E)

Total

length

of operation, (hour)

Energy

co

n

te

n

t or

heat e

nergy

(kW

h)

p

Coconut

production

per hectare in

a

year

(per

hectare)

Q

uan

tily

of

coco

nut

needed

in

o

n

e

t

o

nne of

coco

nut

shell

c

h

a

r

coa

l

production

(per

tonne

or

per ki

logram)

Qin

Equal

to

Eo,,,,

the

energy content or

heat

energy (kWh)

Weight

of coconut shell

charcoal

(tonne or

kilogram)

Wn€l,out

Energy or electricity

generated

(kWh)

GREEK LETTER

(17)

CHAPTER

1

INTRODUCTION

1.1

Tiger Prawn Aquaculture Activity in Malaysia

Tig

e

r pr

aw

n

as s

h

o

wn in

Figure

1.1,

i

s s

ci

e

ntifi

ca

lly

k

nown a

s

Pen

ae

us

esc

u

l

e

ntu

s,

which

is

an

e

dibl

e

cru

s

ta

cea

n

s si

mil

a

r to

b

ut

l

a

r

ger t

han

t

h

e

shrimp

s

. It

s s

iz

e is

ar

o

und

3

40mm

in

to

tal l

e

ng

t

h. It i

s

g

e

n

e

rall

y

br

o

wn in

co

l

o

r with d

a

rk b

a

ndi

n

g

;

th

e

ir r

os

trum

and an

te

nn

ae

ar

e a

lso

ba

nd

e

d

.

(18)

CHAPl'ER 1 INTRODUCTION

Nowadays

,

tiger prawn

aquaculture

become

s

a

popular industry in

Malaysia

,

and thi

s

industry is

rapidly

growing lately. B

eg

an

with the

large-scale

of

shrimp

aquaculture

in 1930s,

with

dep

e

nded

entirely on

th

e

wild

se

ed

,

their

productivity wa

s

low. However, for

the

last few

years

this

industry was grow rapidly

[Takla, 1997). With practicing more

intensive

approaches

,

modern

aquaculture methods

and

the

commitment of

several

companies

result

e

d

rapid

growth

of

tiger prawn farms

and their

profitability. In 1987 production giant

tiger

prawn

was

1,260 metric tons

(mt), and it was

almost five times

of

the 1986

production

[Takla, 1997].

The

growing of

this

industry continues,

spurred

by

the

g

ov

ernmental approval

of 36

aquaculture

projects

between 1986

and 1988,

tiger

prawn production

grew to 3,937

metric t

o

nes by 1

993

[T

a

kla, 1997].

Ac

cor

ding to Malaysian Department

of Fisheries

Director-G

e

neral, Datuk

Shahrom Abdul M

a

jid

,

aquaculture

production

of

tiger prawns

is expected

to expand to

220

,0

00 metric ton

es

by 2010

[New Straits Times

,

November

7, 1995].

Followed by

the

incre

as

e

of

tiger pr

a

wn farm

areas,

th

e

en

e

rgy

con

s

umption,

especially

elec

tr

icity

will

also be

increased.

The

e

lectricity

power is

n

ee

ded

a

t th

e

tiger prawn farms,

especially for water pumps, air­

conditions,

lamp

s

,

electric

motors

and other equipments,

which

are the

basi

c

equipm

e

nts in

this

industry. In conjunction to me

et

the

en

erg

y

r

e

quirement

at the

tiger prawn farms, besides

from

dom

es

tic

e

lectricity

supply

or

so

lar

energy, biomass energy

i

s

one of

the highly

potential

energy

which

can

be utilized.

(19)

CHAPTER 1 I NTRODUCTION

Tr

aditionally,

in d

e

veloping

countri

es

, bi

o

m

ass e

n

erg

y

is used to

produce h

eat for cooking, space

heating

and also

ca

n

be

a so

urce of

light.

It

i

s

inefficient u

sage

of energy

where, there i

s only 5

-

1

5

%

of

the energy is

act

u

a

ll

y

utili

zed

[H

a

ll

a

nd

H

o

u

se,

2001

]

. By u

s

ing

t

h

e

n

ew

te

c

hn

o

l

ogy

s

u

c

h

as

d

i

r

ect co

mbu

st

i

o

n

,

or gasification

b

y convert

in

g

it fir

s

t

in

to

combustible

gases; biomass e

nergy

ca

n

be implemented in l

arge sca

le

and

have

an economic

va

lu

e.

According to

Ha

ll

and

House [2001]'

biomass is

t

h

e

fourth

largest

sour

ces of energy in the

world

which

s

uppli

ed about 13% (55

EJ/year;

25

milli

on

b

a

rr

e

l

s of o

il

eq

ui

va

l

e

nt

)

of

199

0

prim

a

r

y e

n

e

rgy. By t

h

e yea

r

2050

,

bioma

ss cou

ld

provide

38 %

of world's

di

rect

fu

e

l u

se,

and

1

7% of t

h

e

wo

rld

's e

l

ec

tri

city.

H

a

ll

and

H

ouse

[2001]

also

stat

e

d th

at

many developi

ng

countri

es

such

as Brazil

already

u

se

d biomass fu

e

l

s

u

c

h

as

pure b

i

oet

hanol to almo

st

5 milli

on of vehicles,

where this

biofu

el

is produced

fro

m sugarcane.

In

Zimbabwe

,

the productio

n

of 40

milli

on

lit

ers

of ethano

l h

as

been

po

ss

ibl

e

s

in

ce

19

83 a

nd

e

n

a

bl

es

t

hi

s

co

un

try to tack

l

e

it

s e

n

ergy

pr

o

blem.

In

China

there

are

abo

ut

822

bi

ogas

bioga

s

po

wer

s

tation

s

or

bi

ogas

e

l

ectric p

ower

stati

ons,

with

a

total

of

7,836 kW have

been

operated.

N

o

t

o

nl

y

in

d

eve

loping countri

es, a

number of

indust

r

iali

zed

count

ries

suc

h

as

the United

State

of

America

(U.S.A)

derive

d about

3% t

o

4%

of

its

tota

l

e

nergy from biomass

(7.5

Mtoe

, 3

.2

EJ)

with

a

biomass

e

l

ectric

generat

in

g ca

p

ac

it

y

o

f

about

7

,000

MW

[

Bioenergy

Inf

or

m

ation

(20)

CHAPTER 1 INTR ODUCTION

Netw

ork,

2001]. In Sweden 16% of its

energy

is

from

biomass

[H

all and

H

ouse,

20

01].

The

mos

t importa

nt fact about the

biomass energy

is,

its

re

newable

characteristic.

Renewable

e

ne

rgy

m

ea

ns

any

energy

source

that

can

be

replenis

hed

continu

ously or

wi

thin a m

oderate

tim

eframe,

as

a

result

of

natural energy

fl

ows.

The so-called "renewa

ble" include solar ener

gy

(hea

t

a

nd electricity)

, wind power, hydropower, and geothermal power.

1.3

Sources of Biomass Energy

Biomass

for

energy

may

be

obtained from three

mall1

types of

sources

­

fore

s

t r

esidues, energy

corps

and agricultural r

esidues. Another so

urces of

biomass energy

are

aquatic pla

nts, but it

is less

import

a

nt.

All these

sources

are conve

rted

into

another

useful

f

orm

for hea

t

and

electricity

generation.

1.3.1 Forest Residues

Forest

,

also

known

as

n

atural

vegeta

tion ca

n be either contributes

logs

or

"me

rchanta

ble

bole" - that have co'mmercial value; or

fore

st

harves

ted

le

ftover or for

est

residue

s.

Logs or

wood in

particular,

is

the

oldest

source

s

of

e

ne

rgy and it

still

constitutes

the

m

ost

important sources in Less D

eveloped Countries.

(21)

CHAPTER 1 INTRODUCTION

Normally logs are used for construction purposes such as to build house, bridge and trains railway; and forest or logging residues such as branches, stumps, roots, and including top are used to generate biomass energy. However, some forest production like mangrove forest is harvested for its charcoal - one of the most important biomass energy sources.

The use of wood (forest product, or forest residue) in the

U.S.A is about 2.2 X 109 GJ per year in 1980 and will be doubled to

4.0 X 109 GJ per year in the year of 2000, [Lowenstein, 1985J. Table

1.1 shows the use of wood compares with other biomass materials and total U.S. energy use in 1980 with that projected for 2000.

Table 1.1 Biomass Energy in the United State of America

[Lowenstein, 1985]

Source of energy Quads (1015 Btu or 109 GJ/yrs)

1980 2000

Wood 2.2 4

Agriculture residue 0.1 0.5

Municipal solid waste 0.2 1

U.S.A total energy US3 75 95

(22)

C HAl'T'ER 1 INTRODUCTION 1.3.2 Energy Corps

A second source of biomass energy is energy corps, the plants grown explicitly for the specific purpose of producing energy (electricity or liquid fuels). The most popular examples of energy corps are sugar cane, switch-grass, willow and poplar. There is many other energy corps that could be potentially used such as the stems or stalks of alfalfa, corn and sorghum. Energy corps can be converted to fuel by doing fermentation process. For example, sugar cane and sweet sorghum can directly fermented to produce ethanol.

Besides grown as biomass energy sources, energy corps speCIes have a special characteristic those advantageous environment qualities such as erosion control, soil orgamc matter build-up and reduced fertilizer and pesticid'e requirements,

1.3.3 Agricultural Residues

Agricultural activities, besides as a sources of foodstuff to the world population, its residues also can be exploited to generate energy and fuels. Agricultural residues include plant parts such as corn fiber, dregs of sugar cane, rice strew and hull, nutshell, palm fiber and shell, and coconut shell; and animal (livestock or farm animal) waste such as wet dried waste [John, 1992].

For example palm fiber, palm shell, and coconut shell can be used in direct combustion

to

generate heat and electricity at power

(23)

CHAPTER 1 ]NTRODIlCTION

plant

s;

a

nd

animal

waste

can

b

e

di

gested

in bioga

s

digester,

to

produc

e bi

ogas (

methane

)

-

the

bi

o

m

ass

fu

e

l

s

.

N

ea

rly

eve

ry part of

the world

h

as

a

biomass resource.

From

for

estry

waste

to agricultural r

esidues, and

fr

o

m million

acres

of

energ

y

co

rp

s

to

thousands of manur

e

(animal

w

aste

) lagoons, they

are all

biomass

resource that

ca

n

b

e

tapped

t

o

make

bi

o

fuels

and

ca

n u

se

d

to

ge

n

e

rate

e

le

ctric

powe

r.

By

u

si

n

g t

he

present or

mod

e

rn

co

n

vers

i

o

n

tec

hnologies

,

a

ll

th

ese

r

eso

ur

ces

can

b

e

u

se

d to meet th

e

futur

e

wo

rld e

n

e

r

gy co

nsumpti

o

n

.

1.4

Coconut Shell

Charcoal -

Chosen Biomass

Fuel

Sources

for The Study

Coconut

i

s

bot

a

nically

kn

ow

n as

Cocos nucifera L.

a

nd belon

gs

to th

e

n

at

ur

a

l

order

Arecaceae

(

Palma

e),

a

n

imp

orta

nt

m

e

mber

o

f

m

o

n

ocoty

l

edo

n

s.

It

i

s o

n

e

of

the most imp

o

rt

a

n

t of a

ll

cultivated

palms in

the

world and accord

in

g

to

Thampan

[199

3

];

this palm

is

grow

ing in more

than

80 co

un

tries

of

the tropical. It h

as

a

pan· tropical

distribution,

occurrin

g

in

coasta

l

a

reas between 20

0

North

a

nd

20

0

South

of the

equator

[Per

sley, 1992].

I

n

Malay

com

munit

y,

coconut

i

s o

ft

en

ref

err

ed as

the

'tree of life'

sin

ce

a

lm

ost

eve

r

y

p

ar

t

i

s

used to mak

e

it

e

m

of va

lue

s

uch

as coo

king

oil,

ca

ndi

es, co

pr

a

c

ake,

n

ata

de

coca,

hut r

oof,

mid

rib

broom

,

mattress

,

rope

,

charcoal

briquette,

d

ye st

uff,

bottle brush

a

nd ot

h

er p

roducts.

(24)

CHAPTER 1 INTR ODUCTION

1.5.1

Combustion

Combustion or

direct combustion is the mo

st straightfor

w

ar

d

.

simplest and cheapest

method of biomass

conv

e

r

s

ion. Thi

s

process

i

s as s

impl

e

as ju

s

t burn

the biomass raw mat

e

ri

a

l

to

ge

n

e

r

ate

h

eat

e

n

ergy for s

pace heating and cooking. For m

ore comple

x

process,

with burni

n

g of

biomass produces heat (a

s

in

any

simple fu

rn

ace)

where this h

ea

t is

ca

ptured b

y

boiling

w

at

e

r

to

ge

n

erate stea

m

.

This

stea

m

will turn t

he

turbines and driv

e

the

ge

n

erators

that will

co

n

ve

rt

the

e

n

e

rg

y

to electrici

ty

[Bioenergy

Information

Netwo

rk

(B

I

N), 2001

)'

Normally air-dried wood

i

s

u

se

d in this pro

cess,

and it

h

as ene

rg

y co

nt

e

nt of some

15 MJ kg" [J

ohn,

1

992

).

1.5.2 Pyrolysis

Pyrolysis

or carbonization

is

the pro

cess of

heating the

plant

m

ateria

l in

the

absence

of oxygen to

give

a

variety

of gaseo

u

s,

liquid

a

nd

so

lid fuels

[John,

1992).

Wood

starts to

decomposition at 300

0

C

a

nd

will

b

e s

topped at

150oC, and oils from this process

ca

n be

exte

nd

e

d

as

fu

e

L Another

product i

s

converting

woo

d int

o c

har

coa

l

t

h

at

i

s

u

se

d

to generate

heat energy f

o

r

e

l

ectr

i

c

it

y ge

ll

e

r

atio

n.

1.5.3 Gasification

Gas

ification is the

process

where combusti

o

n r

e

l

eases

gases.

So

lid biomass

can be

converted

into a fuel gas in

a gasifier

s

u

c

h

as s

h

own

in

Figure

1.3. In

Gambar

Figure 1.1  Tiger Prawn,  Penaeus  es cu.len tus [CSIRO ,  1997)
Table 1.1 	 Biomass Energy in the United State of America  [Lowenstein, 1985]

Referensi

Dokumen terkait

[r]

Memperkenalkan Bahasa Inggris pada usia dini sangatlah penting karena dengan mereka mengerti Bahasa asing tersebut maka akan mendapatkan bekal ilmu untuk dimasa

waktu itu geografi dijadikan menjadi suatu studi tentang respon manusia terhadap..

Sdr- PPK Bagian Pedengkapan Sekretariat Daerah Kota

Diharapkan saudara membawa semua dokumen kualifikasi yang “ASLI” (Untuk diperlihatkan) beserta lampiran – lampirannya untuk ditunjukkan dan diperiksa oleh Pokja

Fakta yang diperoleh selama ini menunjukkan bahwa seorang muslim yang memiliki dasar aqidah yang kuat sehingga melahirkan pribadi yang berakhlak

o Pada kegiatan inti ,kegiatan pembelajaran disesuaikan dengan minat(area)yang akan dilaksanakan .memilih metode yang sesuai dengan kegiatan yang dipilih. o Memilih

KOMPETENSI DASAR KOMPETENSI DASAR ALOKASI WAKTU (JP) kebahasaan pada teks  interpersonal dan teks  transaksional tulis dan lisan kebahasaan pada teks