• Tidak ada hasil yang ditemukan

Paper-6-Acta24.2010. 127KB Jun 04 2011 12:03:14 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper-6-Acta24.2010. 127KB Jun 04 2011 12:03:14 AM"

Copied!
11
0
0

Teks penuh

(1)

ISSN: 1582-5329 pp. 51-61

SOME PROPERTIES OF NEW INTEGRAL OPERATOR

R. M. El-Ashwah and M. K. Aouf

Abstract. Certain integral operator Jm

p (λ, ℓ)(λ≥0;ℓ≥ 0;p ∈ N;m ∈ N0 = N ∪ {0}),where N ={1,2, ...} is introduced for functions of the form f(z) = zp+

X

k=p+1

akzk which are analytic and p-valent in the open unit discU ={z:|z|<1}.

The opject of the present paper is to give an applications of the above operator to the differential inequalities.

2000Mathematics Subject Classification: 30C45. 1.Introduction LetA(p) denote the class of functions of the form:

f(z) =zp+ ∞

X

k=p+1

akzk (p∈N ={1,2, ....}) (1.1)

which are analytic and p-valent in the open unit disc U ={z:|z|<1}.In [3] Catas extended the multiplier transformation and defined the operator Ipm(λ, ℓ)f(z) on

A(p) by the following infinite series

Ipm(λ, ℓ)f(z) =zp+ ∞

X

k=p+1

p+ℓ+λ(k−p)

p+ℓ

m anzn

(λ≥0;ℓ≥0;p∈N, m∈N0;z∈U). (1.2) We note that:

Ip0(1,0)f(z) =f(z) and Ip1(1,0)f(z) = zf ′

(z)

p .

(2)

(i) Ipm(1, ℓ) =Ip(m, ℓ)f(z) (see Kumar et al. [9] and Srivastava et al. [16]); (ii)Ipm(1,0)f(z) =Dpmf(z) (see [2], [8] and [11]);

(iii) Im

1 (1, ℓ)f(z) =Iℓmf(z) (see Cho and Srivastava [4] and Cho and Kim [5]);

(iv)I1m(1,0) =Dmf(z) (m∈N0) (see Salagean [14]); (v) I1m(λ,0) =Dλm (see Al-Aboudi [1]);

(vi)Im

1 (1,1) =Imf(z) (see Uralegaddi and Somanatha [17]); (vii) Ipm(λ,0) =Dλ,pm f(z), where Dλ,pm f(z) is defined by

Dmλ,pf(z) =zp+ ∞

X

k=p+1

p+λ(k−p)

p

m akzk.

Furthermore we define the integral operatorJpm(λ, ℓ)f(z) as follows:

Jp0(λ, ℓ)f(z) =f(z),

Jp1(λ, ℓ)f(z) =

p+ℓ

λ

zp−(p+ℓλ )

z Z

0

t(p+ℓλ )−p−1f(t)dt (f(z)∈A(p);z∈U),

Jp2(λ, ℓ)f(z) =

p+ℓ

λ

zp−(p+ℓλ )

z Z

0

t(p+ℓλ )−p−1J1

p(λ, ℓ)f(t)dt (f(z)∈A(p);z∈U),

and, in general,

Jpm(λ, ℓ)f(z) =

p+ℓ

λ

zp−( p+ℓ

λ ) z Z

0

t( p+ℓ

λ )−p−1Jpm−1(λ, ℓ)f(t)dt

= Jp1(λ, ℓ)

zp

1−z

∗Jp1(λ, ℓ)

zp

1−z

∗....Jp1(λ, ℓ)

zp

1−z

∗f(z)

x m−times y

(f(z)∈A(p);m∈N;z∈U). (1.3) We note that iff(z)∈A(p), then from (1.1) and (1.3), we have

Jpm(λ, ℓ)f(z) =zp+ ∞

X

k=p+1

p+ℓ p+ℓ+λ(k−p)

m

akzk (m∈N0=N∪ {0}). (1.4)

From (1.4), it is easy to verify that

λz(Jpm+1(λ, ℓ)f(z))′ = (ℓ+p)Jpm(λ, ℓ)f(z)−[ℓ+p(1−λ)]Jpm+1(λ, ℓ)f(z) (λ >0).

(3)

We note that:

(i)J1m(λ,0)f(z) =Iλ−mf(z) (see Patel [12])

=

(

f(z)∈A(1) :Iλ−mf(z) =z+ ∞

X

k=2

[1 +λ(k−1)]−makzk, m∈N0

)

;

(ii)J1α(1,1)f(z) =Iαf(z) (see Jung et al. [7]);

=

(

f(z)∈A(1) :Iαf(z) =z+ ∞

X

k=2

2

k+ 1

α

akzk;α >0;z∈U )

;

(iii) Jα

p(1,1)f(z) =Ipαf(z) (see Shams et al. [15]);

=

f(z)∈A(p) :Ipαf(z) =zp+ ∞

X

k=p+1

p+ 1

k+ 1

α

akzk;α >0;z∈U 

;

(iv)Jpm(1,1)f(z) =Dmf(z) (see Patel and Sahoo [13]);

=

f(z)∈A(p) :Dmf(z) =zp+ ∞

X

k=p+1

p+ 1

k+ 1

m

akzk;m is any integer;z∈U 

 .

(v) J1m(1,1)f(z) =Imf(z) (see Flett [6]);

=

(

f(z)∈A(1) :Imf(z) =z+ ∞

X

k=2

2

k+ 1

m

akzk;m∈N0;z∈U )

;

(iv)Jm

1 (1,0)f(z) =Imf(z) (see Salagean [14]) =

(

f(z)∈A(1) :Imf(z) =z+ ∞

X

k=2

k−makzk;m∈N0;z∈U

)

.

Also we note that: (i)Jpm(1,0)f(z) =Jpmf(z)

=

f(z)∈A(p) :Jpmf(z) =zp+ ∞

X

k=p+1

p

k m

akzk;m∈N0;z∈U

(4)

(ii)Jpm(1, ℓ)f(z) =Jpm(ℓ)f(z)

=

 

f(z)∈A(p) :Jpm(ℓ)f(z) =zp+ ∞

X

k=p+1

p+ℓ k+ℓ

m

akzk;m∈N0;ℓ≥0;z∈U  

;

(iii) Jpm(λ,0)f(z) =Jλ,pm f(z)

=

f(z)∈A(p) :Jλ,pmf(z) =zp+ ∞

X

k=p+1

p p+λ(k−p)

m

akzk;m∈N0;λ≥0;z∈U 

 .

By using the operatorJm

p (λ, ℓ),we define the following classes of functions.

Definition 1. Let Φ be the set of complex-valued functions ϕ(r, s, t);

ϕ(r, s, t) :C3 →C (C is complex plane)

such that

(i) ϕ(r, s, t) is continuous in a domain D⊂C3; (ii) (0,0,0)∈D and |ϕ(0,0,0)|<1;

(iii)

ϕeiθ, 1

p+ℓ

λ

ζ+hp(1−λλ)+ℓieiθ, 1

p+ℓ

λ 2

hn

1 + 2hp(1−λλ)+ℓi ζ+

hp

(1−λ)+ℓ λ

i2

eiθ+M !

>1,

whenever eiθ, 1 p+ℓ

λ

ζ+hp(1−λλ)+ℓieiθ, 1 p+ℓ

λ 2

 

1+ 2hp(1−λλ)+ℓiζ+

hp

(1−λ)+ℓ λ

i2

eiθ+M !

∈ D, λ > 0, ℓ ≥ 0, with Re

e−iθM ≥ ζ(ζ −1), for all θ∈R, and for all ζ ≥p≥1.

Definition 2. Let H be a set of complex-valued functions h(r, s, t);

h(r, s, t) :C3 →C

(i) h(r, s, t) is continuous in a domain D⊂C3; (ii) (1,1,1)∈D and |h(1,1,1)|< M (M >1); (iii)

h

M eiθ,

ζ+p+λℓM eiθ

p+ℓ λ

,

1

p+ℓ

λ

"

(5)

ζ−ζ2+p+λℓζM eiθ+L ζ+p+λℓM eiθ

 

≥M,

whenever

M eiθ,

ζ+p+λℓM eiθ

p+ℓ λ

,

1

p+ℓ

λ

"

ζ+p+λℓM eiθ+

+

ζ−ζ2+p+λℓζM eiθ+L ζ+p+λℓM eiθ

 

∈D,

where Re{L} ≥ζ(ζ−1)for all θ∈R and for all ζ ≥ M−1

M+ 1. 2.Main Results

We recall the following lemmas due to Miller and Mocenu [10].

Lemma 1 [10]. Let w(z) =bpzp+bp+1zp+1+....(p∈N) be regular in the unit disc

U with w(0)6= 0 (z∈U).

If z0 =r0eiθ0(0< r0 <1) and |w(z0)|= max |z|≤z0

|w(z)|,then

z0w ′

(z0) =ζw(z0) (2.1)

and

Re

(

1 +z0w ′′

(z0)

w′ (z0)

)

≥ζ (2.2)

and

where ζ is real and ζ ≥p≥1.

Lemma 2 [10]. Let w(z) = a+wνzν +.... be regular in U with w(z) 6= a and

ν ≥1 If z0=r0eiθ0(0< r0 <1)and |w(z0)|= max |z|≤z0

|w(z)|, then

z0w ′

(z0) =ζw(z0)

and

Re

(

1 +z0w ′′

(z0)

w′ (z0)

)

(6)

where ζ is a real number and

ζ≥ν |w(z0)−a|

2

|w(z0)|2− |a|2 ≥ν

|w(z0)| − |a| |w(z0)|+|a|

. (2.3)

Theorem 1. Let ϕ(r, s, t)∈Φ and let f(z) belonging to the class A(p) satisfy

(i) (Jpm(λ, ℓ)f(z), Jpm−1(λ, ℓ)f(z) , Jpm−2(λ, ℓ)f(z))∈D⊂C3

and

(ii) ϕ(Jpm(λ, ℓ)f(z), Ipm−1(λ, ℓ)f(z) , Ipm−2(λ, ℓ)f(z))<1

for m >2, p∈N, λ >0, ℓ≥0 and z∈U.Then we have

Jpm(λ, ℓ)f(z)<1 (z∈U). (2.4)

Proof. We define the analytic function w(z) by

Jpm(λ, ℓ)f(z) =w(z) (m >2;p∈N;λ >0;ℓ≥0) (2.5) for f(z) belonging to the class A(p). Then, it folllows that w(z) ∈ A(p) and

w(z)6= 0 (z∈U).With the aid of the idenlitty (1.5), we have

Jpm−1(λ, ℓ)f(z) = 1 p+ℓ

λ

p(1−λ) +ℓ λ

w(z) +zw′(z)

(2.6)

and

Jpm−2(λ, ℓ)f(z) = 1

p+ℓ λ

2 (

p(1−λ) +ℓ λ

2

w(z) +

1 + 2

p(1−λ) +ℓ λ

zw′(z) +z2w′′(z)

. (2.7) Suppose that z0=r0eiθ0 (0< r0 <1;θ0 ∈R) and

w(z0) = max |z|≤|z0|

|w(z)|= 1. (2.8)

Then, letting w(z0) =eiθ0 and using (2.1) of Lemma 1, we obtain

(7)

Jpm−1(λ, ℓ)f(z0) = 1 (p+λℓ)

p(1−λ) +ℓ λ

w(z0) +z0w ′

(z0)

= 1

(p+λℓ)

ζ+

p(1−λ) +ℓ λ

eiθ0

and

Jpm−2(λ, ℓ)f(z0) = 1 (p+λℓ)2

1 + 2hp(1−λλ)+ℓiζ+hp(1−λλ)+ℓi2

eiθ0 +

z20w′′(z0)

i

= 1

(p+λℓ)2

"(

1 + 2

p(1−λ) +ℓ λ

ζ+

p(1−λ) +ℓ λ

2)

eiθ0 +M

#

, (2.11) where M =z02w′′(z0) and ζ ≥p≥1.

Further, an application of (2.2) in Lemma 1, gives

Re

(

z0w′′(z0)

w′ (z0)

)

= Re

(

z02w′′(z0)

ζeiθ0

)

≥ζ−1, (2.12)

or

Rene−iθ0M

o

≥ζ(ζ−1) (θ0 ∈R;ζ ≥1). (2.13) Since ϕ(r, s, t)∈Φ,we also have

ϕ(Jpm(λ, ℓ)f(z0), Jm−1(λ, ℓ)f(z0), Jm−2(λ, ℓ)f(z0))

=

ϕ eiθ0, 1

(p+λℓ)

ζ+

p(1−λ) +ℓ λ

eiθ0, 1

(p+λℓ)2

1 + 2

p(1−λ) +ℓ λ

ζ

+

p(1−λ) +ℓ λ

2)

eiθ0 +M

#!

>1 (2.14)

which contradicts the condition (ii) of Theorem 1 Therefore, we conclude that |w(z)|=Jpm(λ, ℓ)f(z)<1 (z∈U; m >2).

Corollary 1. Let ϕ1(r, s, t) = s and let f(z) ∈ A(p) satisfy the conditions in Theorem 1 for m >2;p∈N;λ >0;ℓ≥0 and z∈U. Then

(Jpm+i(λ, ℓ)f(z)

(8)

Proof. Note that ϕ1(r, s, t) =s in Φ,with the aid of Theorem 1, we have

Jpm−1(λ, ℓ)f(z)<1⇒

Jpm(λ, ℓ)f(z)<1 (m >2;p∈N;λ >0;ℓ≥0)

⇒Jpm+i(λ, ℓ)f(z)<1 (i= 0,1,2, ...;m >2;p∈N;λ >0;ℓ≥0;z∈U).

Theorem 2. Let h(r, s, t)∈H, and let f(z) belonging to A(p) satisfying

(i) J

m−1

p (λ, ℓ)f(z) Jm

p (λ, ℓ)f(z) ,J

m−2

p (λ, ℓ)f(z) Jpm−1(λ, ℓ)f(z)

,J m−3

p (λ, ℓ)f(z) Jpm−2(λ, ℓ)f(z)

!

∈D⊂C3

and

(ii)

h J m−1

p (λ, ℓ)f(z) Jm

p (λ, ℓ)f(z) ,J

m−2

p (λ, ℓ)f(z) Jpm−1(λ, ℓ)f(z)

,J m−3

p (λ, ℓ)f(z) Jpm−2(λ, ℓ)f(z)

! < M

for some λ, ℓ, m, p, M (λ >0;ℓ≥0;m >3;p∈N;M >1)and for all z∈U. Then

we have

Jm−1

p (λ, ℓ)f(z) Jm

p (λ, ℓ)f(z)

< M (z∈U) (2.16)

Proof. We define the function w(z) by

Jpm−1(λ, ℓ)f(z)

Jm

p (λ, ℓ)f(z)

=w(z) (λ >0, ℓ≥0;m >3;p∈N) (2.17)

for f(z) belonging to the class A(p). Then, it follows that w(z) is either analytic or meromorphic in U,w(0) = 1, and w(z) 6= 1. With the aid of the identity (1.5), we have

Jpm−2(λ, ℓ)f(z)

Jpm−1(λ, ℓ)f(z)

= 1 p+ℓ

λ

"

p+ℓ λ

w(z) +zw ′

(z)

w(z)

# (2.18) and

Jm−3

p (λ, ℓ)f(z) Jpm−2(λ, ℓ)f(z)

= 1 p+ℓ

λ

"

p+ℓ λ

w(z) +zw ′

(z)

w(z)

#

+

p+ℓ

λ

zw′(z) +zw ′

(z)

w(z) +

z2w′′(z)

w(z) −(

zw′(z)

w(z) )2

p+ℓ

λ

w(z) +zww(′(zz))

(9)

Suppose that z0 = r0eiθ0(0 < r0 < 1;θ0 ∈ R) and |w(z0)| = max |z|≤|z0|

|w(z)| = M.

Letting w(z0) =M eiθ0 and applying Lemma 2 witha=ν = 1,we see that

Jpm−2(λ, ℓ)f(z)

Jpm−1(λ, ℓ)f(z)

= 1 p+ℓ

λ

h

ζ+p+λℓM eiθ0

i

(2.20)

and

Jpm−3(λ, ℓ)f(z0)

Jpm−2(λ, ℓ)f(z0)

= 1 p+ℓ

λ

ζ+p+λℓM eiθ0+

ζ−ζ2+p+λℓζM eiθ0+L

ζ+p+λℓM eiθ0

 ,

where L= z02w

′′ (z0)

w(z0) and ζ ≥

M−1

M+1.

Further, an application of (ii) in Lemma 2 gives Re{L} ≥ζ(ζ−1).

Since h(r, s, t)∈H,we have

h J

m−1

p (λ, ℓ)f(z0)

Jm

p (λ, ℓ)f(z0)

,J m−2

p (λ, ℓ)f(z0)

Jpm−1(λ, ℓ)f(z0)

,J m−3

p (λ, ℓ)f(z0)

Jpm−2(λ, ℓ)f(z0)

!

=

h

M eiθ0,

ζ+p+λℓM eiθ0

p+ℓ

λ

,

1

p+ℓ

λ

ζ+p+λℓM eiθ0+

ζ−ζ2+p+λℓζM eiθ0+L

ζ+p+λℓM eiθ0

 

≥M,

which contradicts condition (ii) of Theorem 2. Therefore, we conclude that

|w(z)|=

Jm−1

p (λ, ℓ)f(z) Jm

p (λ, ℓ)f(z)

< M (2.23)

for all λ >0, ℓ≥0, m >3, p∈N and z∈U. This completes the proof of Theorem 2.

Remarks. (i)Puttingλ= 1 in the above results, we obtain the correspording results for the operatr Jm

p (ℓ)f(z);

(10)

(iii)Puttingλ=ℓ= 1 in the above results, we obtain the correspording results for the operatrDmf(z).

Ref erences

[1] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Internat.J. Math. Math. Sci., 27(2004), 1429-1436.

[2] M. K. Aouf and A.O. Mostafa, On a subclass of n-p-valent prestarlike func-tions, Comput. Math. Appl., (2008), no. 55, 851-861.

[3] A. Catas, On certain classes of p-valent functions defined by multiplier trans-formations, in Proc. Book of the International Symposium on Geometric Function Theory and Applications, Istanbul, Turkey, (August 2007), 241-250.

[4] N. E. Cho and H. M. Srivastava, Argument estimates of certain anaytic functions defined by a class of multipier transformations, Math. Comput. Modelling, 37 (1-2)(2003), 39-49.

[5] N. E. Cho and T.H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40(2003), no. 3, 399-410.

[6] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765.

[7] T. B. Jung, Y.C.Kim and H. M. Srivastava, The Hardy space of analytic func-tions associated with certain one-parameter families of integral operator, J. Math. Anal. Appl. 176(1993), 138–147.

[8] M. Kamali and H. Orhan, On a subclass of certian starlike functions with negative coefficients, Bull. Korean Math. Soc. 41 (2004), no. 1, 53-71.

[9] S. S. Kumar, H. C. Taneja and V. Ravichandran, Classes multivalent func-tions defined by Dziok-Srivastava linear operator and multiplier transformafunc-tions, Kyungpook Math. J. (2006), no. 46, 97-109.

[10] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), 289–305.

[11] H. Orhan and H. Kiziltunc, A generalization on subfamily of p-valent func-tions with negative coefficients, Appl. Math. Comput., 155 (2004), 521-530.

[12] J. Patel, Inclusion relations and convolution properties of certain subclasses of analytic functions defined by a generalized Salagean operator, Bull. Belg. Math. Soc. Simon Stevin 15(2008), 33-47.

[13] J. Patel and P. Sahoo, Certain subclasses of multivalent analytic functions, Indian J. Pure Appl. Math. 34(2003), no.3, 487-500.

[14] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. ( Springer-Verlag ) 1013(1983), 362-372.

(11)

[16] H. M. Srivastava, K. Suchithra, B. Adolf Stephen and S. Sivasubramanian, Inclusion and neighborhood properties of certian subclsaaes of multivalent functions of complex order, J. Ineq. Pure Appl. Math. Vol.7 (2006), no. 6, pp. 1-8.

[17] B. A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, In Current Topics in Analytic Function Theory, (Edited by H. M. Srivastava and S. Owa), World Scientfic Publishing Company, Singapore, 1992, 371-374.

R. M. El-Ashwah

Department of Mathematics

Faculty of Science (Damietta Branch) University of Mansoura University New Damietta 34517, Egypt email:r [email protected]

M. K. Aouf

Department of Mathematics Faculty of Science

University of Mansoura University Mansoura 35516, Egypt

Referensi

Dokumen terkait

We define and investigate a new class of harmonic multivalent functions defined by S˘ al˘ agean integral operator.. We obtain coefficient inequalities and distortion bounds for

Keywords and phrases: Analytic functions; Multivalent functions; Starlike func- tions; Subordination; Fractional calculus operators; Majorization

Mocanu, On some classes of first-order differential. subordinations,

Some vector and operator generalized trapezoidal inequalities for continuous func- tions of selfadjoint operators in Hilbert spaces are given.. Applications for power and

In particular, we obtain integral means inequalities for various classes of uniformly β − starlike and uniformly β − convex functions in the unit disc.. 2000 Mathematics

Srivastava, Some subclasses of analytic functions with fixed ar- gument of coefficients associated with the generalized hypergeometric function , Adv.. Srivastava, Certain subclasses

In this paper the author introduce and study a more generalized class of the family of Bazilevic functions by using derivative operator under which we consider coefficient

Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J.. Srivastava, Some