• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:GMJ:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:GMJ:"

Copied!
9
0
0

Teks penuh

(1)

1(1994), No. 5, 495-503

TWO-WEIGHTED ESTIMATES FOR SOME INTEGRAL TRANSFORMS IN THE LEBESGUE SPACES WITH

MIXED NORM AND IMBEDDING THEOREMS

V.KOKILASHVILI

Abstract. Two-weighted inequalities are proved for anisotropic

po-tentials. These estimates are used to obtain the refinements of the well-known imbedding theorems in the scale of weighted Lebesgue spaces.

Two-weighted inequalities are obtained for anisotropic potentials in Le-besgue spaces with mixed norm. These estimates are used to prove imbed-ding theorems for different metrics and different dimensions for weighted spaces of anisotropic Bessel potentials.

Nonweighted cases were previously treated in [1–3]. One-weighted esti-mates for isotropic Bessel potentials can be found in [4].

1. A measurable almost everywhere positive function ̺ : R1 R1 will be called a weight function. Letw= (w1, w2, . . . , wn) be a vector-function wherewi (i= 1,2, . . . , n) is a weight function. By definition a measurable function f(x) = f(x1, x2, . . . , xn) given on the n-dimensional space Rn belongs to Lpw, p= (p1, p2, . . ., pn), 1 < pi < ∞ (1 = 1,2, . . . , n), if the norm

kfkLpw(Rn)=

=

’Z

−∞

wp1 1 (x1)dx1

Z∞

−∞

wp2

2 (x2)dx2. . .

Z∞

−∞

f(x)wpnn (xn)dxn

‘pn−1

pn ‘

. . .

‘p1 p2

!1

p1

is finite.

We shall introduce a class of pairs of weight functions. For a given numberr, 1< r <∞, we write r′= r

r−1.

1991Mathematics Subject Classification. 42B25, 46E30. 495

(2)

Definition 1. A pair of weight functions (̺, σ) given on R1 will be said to belong to the classGs,rβ , 0< β <1, 1< r < s <∞, if the conditions

sup Z I

̺s(t)dt‘ 1

s Z

R1

σ−r′

(t) (|I|+|tI−t|)βr′

dt‘ 1

r′

<∞, (1.1)

sup Z I

σ−r′(t)dt‘ 1

r′ Z

R1

̺s(t) (|I|+|tI−t|)sβ

dt‘ 1

s

<∞, (1.2)

are fulfilled, where the supremum is taken over all bounded one-dimensional intervalsI, with centre and length,tI and|I|respectively.

In the sequel we shall proceed from

Theorem A [5–7]. The fractional integral

Iγ(f)(x) =

∞ Z

−∞

f(τ)

|t−τ|1−γdτ, 0< γ <1,

generates a continuous operator from Lrσ(R1) into Ls̺(R1) if and only if (̺, σ)∈Gs,r1−γ.

Let numbersaj>0 (j= 1,2, . . . , n) be given. Forx=(x1, x2, . . . , xn) we set

|x|a=

Xn

i=1

|x|

2

aj‘

1 2 .

It is obvious that foraj = 1 (j= 1,2, . . . , n) we obtain an usual Euclidian distance.

Theorem 1. Let w = (w1, w2, . . . , wn), v = (v1, v2, . . . , vn), where wi andvi (i= 1,2, . . . , n)are weight functions given on Rn. We set

Kf(x) =

Z

Rn

f(y)

|x−y|µa

dy,

where

µ= n

X

j=1

aj(1−γj), 0< γj <1 (j= 1,2, . . . , n).

If1< pi< qi<∞,(vi, wi)∈Gqi,pi1−γi (i= 1,2, . . . , n), then there exists a positive number c such that the inequality kKfkLq

v ≤ckfkLpw holds for any

f ∈Lpw.

(3)

Lemma 1. Let (̺, σ)∈Gs,r1−γ, 1< r < s <∞, 0< γ <1. Then there exists a constantc >0, such that the inequality

Œ Œ Œ

∞ Z

−∞ ∞ Z

−∞

ϕ(x)ψ(y)

|x−y|1−γdx dy

Œ Œ

Œ≤ckϕkLr

σkψkLs1 (1.3)

holds for any arbitraryϕ∈Lrσ(R1)andψLs′

1/̺(R1). Proof. By virtue of the H¨older inequality we have

Œ Œ Œ

∞ Z

−∞ ∞ Z

−∞

ϕ(x)ψ(y)

|x−y|1−γ|dx dy

ΠΠβ

≤ kϕσkLr

 Z

R1

 Z

R1

|ψ(y)|dy

|x−y|1−γ

‘r′

1

σr′( x)dx

‘1

r′ .

From the condition (̺, σ)∈Gs,r1−γ readily follows that (σ1,

1

̺)∈G r′,s′ 1−γ. Using Theorem A we obtain the estimate

Œ Œ Œ

∞ Z

−∞ ∞ Z

−∞

ϕ(x)ψ(y)

|x−y|1−γdx dy

Œ Œ

Œ≤ckϕkLr

σ· kψkLs′ 1/̺. „

Bellow we shall set̺= (v11,v1 2, . . . ,

1

vn) forv= (v1, v2, . . . , vn).

Lemma 2. Let 1 < pi < qi < ∞, (vi, wi)∈ Gqi,pi1−γi, 0 < γi <1. Then there exists a positive constant csuch that

ΠΠΠZ

Rn

Z

Rn

ϕ(x)ψ(y)

|x−y|µa

dx dy

Œ Œ

Œ≤ckϕkLpw· kψkLq̺′

for arbitraryϕ∈Lpw(Rn)andψ∈Lq

̺(Rn).

Proof. We shall apply the reduction technique to the one-dimensional case. Letx′ = (x1, x2, . . . , x

n−1),y′= (y1, y2, . . . , yn−1) and µ′=

n−1

X

j=1

aj(1−γj), a′ = (a1, a2, . . . , an−1).

It readily follows that

|x−y|µa =|x−y|µ

a |x−y|aan(1−γn)≥ |x′−y′| µ′

(4)

Therefore by Lemma 1 we obtain

ΠΠΠZ

Rn

Z

Rn

ϕ(x)ψ(y)

|x−y|µa

dx dy

ΠΠβ

Z

Rn−1

Z

Rn−1

dx′dy′

|x′y|µ′

a

∞ Z

−∞ ∞ Z

−∞

|ϕ(x)| |ψ(y)| |xn−yn|1−γn

dxndyn≤

≤c

Z

Rn−1

Z

Rn−1

F(x′)H(y) |x′y|µ′

a′

dx′dy′,

where

F(x′) = Z

R1

|ϕ(x)|pnwpn

n (xn)dxn

‘1

pn

,

H(x′) = Z

R1

|ψ(y)|q′

nv−q

n n (yn)dyn

‘ 1

q′

n.

Further reduction leads us to the proof of Lemma 2.

Proof of Theorem1. By the property of the norm and also by Lemma 2 we have

kKfkLqv = sup

ΠΠΠZ

Rn

Kf(x)g(x)dx

Œ Œ Œ,

where the least upper bound is taken over all functionsgfor which

kgkLq′

̺ ≤1, ̺=

€1

v1,

1

v2, . . . ,

1

vn



.

Next, by Lemma 2 we have

ΠΠΠZ

Rn

Z

Rn

f(y)g(x)

|x−y|µa dx dy

Œ Œ

Œ≤ckfkLpw· kgkLq̺′ ≤ckfkL p w. „

Theorem 2. Let 1≤m≤n, v+=(v1, v2, . . . , vm),w+=(w1, w2, . . . , wm),

w = (w1, w2, . . . , wm,1, . . . ,1), 1 < pi < qi <∞ (i = 1,2, . . . , m), q+ = (q1, q2, . . . , qm),p+= (p1, p2, . . . , pm),1< pi<∞(i=m+ 1, . . . , n).

Next we set

µ= m

X

i=1

aj(1−γj) + n

X

j=m+1 aj

p′

j

, (1.4)

whereaj >0,0< γj<1 (j= 1,2, . . . , m)

If (vi, wi)∈Gqi,pi1−γi (i= 1,2, . . . , m), then there exists a constant c > 0 such that for anyf ∈Lpw(Rn)and arbitrary(x0m+1, . . . , x0n)the function

h(x) =

Z

Rn

f(y)

(5)

belongs to the space Lqv++(R

m) and the inequality holds khk Lq+

v+

≤ ckfkLp w, where the constant cis independent of f.

The proof of Theorem 2 is based on the following

Lemma 3. Let the conditions of Theorem2be fulfilled. If̺=(v11,v12, . . . , 1

vn),q′+= (q1′, q2′, . . . , qm′ ), then there exists a constant c >0 such that for allf :RnR1 andg:RmR1 we have

ΠΠΠZ

Rm

Z

Rn

g(x)f(y)

|x−y|µa

Œ Œ

Œ≤ckfkLpw(Rn)· kgk Lq

′ +

̺+(Rm)

. (1.5)

Proof. Lety′=(y1, y2, . . . , ym), y′′=(ym+1, . . . , yn),p+= (p1, p2, . . . , pm),

p−= (pm+1, . . . , pn),p−′ = (p′m+1, . . . , p′n). Obviously

ΠΠΠZ

Rm

Z

Rn

g(x)f(y)

|x−y|µa

dx dy

ΠΠβ

Z

Rm

|g(x)| Z

Rm

 Z

Rn−m

|f(y)|dy′′ |x−y|µa

‘

dy′‘dx.(1.6)

By virtue of the H¨older inequality

Z

Rn−m

|f(y)|dy′′ |x−y|µa ≤ k

fkLp−(Rn−m)· k |x−y|−aµk

Lp′−(Rn−m). (1.7) We introduce some notation:

ϕ(y′) =kf(y′,·)kLp−(Rn−m), ϕ1(x, y′) =k |x−y|−aµk

Lp′−(Rn−m),

T = m

X

j=1

|xj−yj|

2

aj‘

1 2 .

Let us prove that there exists a positive numberc1such that

ϕ1(x, y′)≤c1T

€ Pn j=m+1

aj p′

j

−µ

. (1.8)

We have

ϕ1(x, y′) =T2+ n

X

j=m+1

|xj−yj|

2

aj‘− µ

2



Lp′−(Rn−m)= =T2+

n

X

j=m+1

|yj|

2

aj‘− µ

2



(6)

The change of the variable yj =Tajtj in the latter expression leads to the equality

ϕ(x, y′) =T

Pn j=m+1

aj p′ j −µ   1 + n X

j=m+1

|tj|

2

aj‘− µ

2



Lp′−(Rn−m).

Now it is obvious that



1 + n

X

j=m+1

|tj|

2

aj‘− µ

2

=1 + n

X

j=m+1

|tj|

2

aj‘−

1 2

Pn k=m+1

ak p′

k

+Pm

i=1ai(1−γi)

=

= n

Y

j=m+1



1 + n

X

j=m+1

|tj|

2 aj‘− 1 2( aj p′ j +ε) ≤ n Y

j=m+1

€

1 +|tj|

2

aj−

1 2( aj p′ j +ε) ,

whereε >0. Therefore     1 + n X

j=m+1

|tj|

2

aj‘− µ

2



Lp′−(Rn−m)

≤

n

Y

j=m+1

€

1 +|tj|

2

aj−

1 2( aj p′ j +ε) 

Lp′−(Rn−m).

On the other hand,

Z

R1

dtj

€

1 +|tj|

2 aj 1 2( aj p′ j

+ε)p′

j

≤ Z

R1

dtj

(1 +|tj|)

1+εp ′

j aj

<∞.

Thus we have proved the estimate (1.8). It implies

ϕ(x, y′)≤

m

X

j=1

|xj−yj|

2

aj‘−

1 2

Pm

j=1aj(1−γj)

≤c1

m

Y

j=1

|xj−yj|(γj−1). (1.9)

Using the generalized H¨older inequality and Lemma 1 with (1.6), (1.7), (1.8) and (1.9) we obtain:

ΠΠΠZ Rm dx Z Rn

g(x)f(y)

|x−y|µa dy

ΠΠβc2

Z

Rm

Z

Rm

|g(x)|ϕ(y′) Qm

j=1|xj−yj|1−γj

dx dy≤

≤c3kϕ(y′)kLp+

w+(Rm)kgkL

q′

̺(Rm). This implies that

ΠΠΠZ Rm dx Z Rn

g(x)f(y)

|x−y|µa dy

Œ Œ

βc3kfkLp

(7)

Proof of Theorem 2. Using the standard arguments, the validity of Theo-rem 2 readily follows from Lemma 3.

2. In this paragraph we shall prove the imbedding theorems for different metrics and different dimensions for weighted spaces of anisotropic Bessel potentials.

Definition 2 (see[2]). Letr= (r1, r2, . . . , rn), p= (p1, p2, . . . , pn), rj > 0 (j= 1,2, . . . , n). It will be said thatf ∈Lp,r

w (Rn) if

f(x) =

Z

Rn

Gr(x−y)g(y)dy,

whereGr is the anisotropic Bessel–Macdonald kernel andg∈Lpw(Rn). By the definition,kfkLp,r

w =kgkLpw.

The kernelGris characterized by its Fourier transform as follows (see[2]) (2π)n2G2b (λ) = [1 +σ2(λ)]−r

2 where the functionσ(λ) is determined by the

equation

n

X

j=1 λ2j

σ2aj = 1, aj =

r∗

rj

, 1 r∗ =

1

n

n

X

j=1

1

rj

.

The kernelGrobeys, along eachj– the coordinate direction, the estimates

|Gr(x)| ≤c|xj|−rj

€ Pn i=1

1

ri−1



. (2.1)

Now we shall prove the imbedding theorem of different metrics. Theorem 3. Let 1< pj< qj<∞,(vi, wi)∈Gqi,pi1−γi (i= 1,2, . . . , n). Put

κ= 1 n

X

j=1 γj

rj

and̺=κr,r= (r1, r2, . . . , rn). Then each function f ∈Lp,r

w (Rn)belongs to the space Lq,̺v (Rn) and the inequality kfkLq,̺v ≤ckfkLp,rw holds, where the constant c is independant of

f.

Proof. We have

f(x) =

Z

Rn

G̺(x−y)h(y)dy,

where

h(x) =

Z

Rn

Gr(1−κ)(x−y)g(y)dy

(8)

Now it will be shown thath∈Lqv(Rn). Due to (2.1) we have

|Gr(1−κ)(x)| ≤c|xi|−rj(1−κ)

‚ Pn i=1

1

ri(1−κ)−1

ƒ

,

or

|Gr(1−κ)(x)| ≤c|xi|−rj

Pn i=1

1−γi ri .

Letaj= rj1 and max

1≤j≤n|xj|

1

aj

Pn

i=1ai(1−γi)=|x

j0| 1

aj0

Pn

i=1ai(1−γi).

As can be easily verified,

Xn

i=1

|xj|

2

aj‘

1 2

Pn

i=1ai(1−γi)

≤c1|xj0| 1

aj0

Pn

i=1ai(1−γi).

Therefore

|Gr(1−κ)(x)| ≤c2|x|−aµ, (2.2) where

µ= n

X

j=1

aj(1−γj).

Hence

|h(x)| ≤ Z

Rn

|g(y)| |x−y|−aµdy.

Applying Theorem 1, we obtainkhkLq

v ≤c3kfkLwp,which implieskfkLq,̺v

≤ kfkLp,rw . „

Using Theorem 2 one may prove an imbedding theorem of different di-mensions in a similar manner.

Theorem 4. Let 1 < pi < ∞ (i = 1,2, . . . , n), 1 < pi < qi < ∞ (i = 1,2, . . . , m), 1 ≤ m ≤ n. It is also assumed that (vi, wi) ∈ Gqi,pi1−γi, 0< γi<1 (i= 1,2, . . .).

If

κ= 1 m

X

j=1 γj

rj

n

X

j=m+1

1

rjpj

, (2.3)

then for an arbitrary function f from the space Lp,rw (Rn) the function

F(x1, x2, . . . , xm) = f(x1, x2, . . . , xm, x0m+1, . . . , x0n) belongs to the space

(9)

Proof. In the case under consideration the kernelG(1−κ)r admits the esti-mate|G(1−κ)r(x)| ≤c|x|a−µ,wherea= (a1, a2, . . . , an),ai =rj1 and

µ= m

X

i=1

1−γi

ri +

n

X

j=m+1

1

rjp′j

. (2.4)

Hence we can apply Theorem 2. The rest of the proof is as for the preceding theorem.

References

1. P.I. Lizorkin, Generalized Liouville differentiation and the method of multipliers in the theory of imbedding of classes of differentiable functions. (Russian) Trudy Mat. Inst. Steklov. 105(1969), 87–167; English transl.: Proc. Steklov Inst. Math. 105(1969).

2. —–, Multipliers of Fourier integrals and bounds of convolutions in spaces with mixed norms. Applications. (Russian)Izv. Akad. Nauk SSSR, Ser. Mat. 34(1970), 218-247; English transl.: Math. USSR Izv. 4(1970).

3. I.P. Ilin, Properties of some classes of differentiable functions of several variables. (Russian)Trudy Mat. Inst. Steklov. 66(1962), 227-363; English transl. Proc. Steclov. Inst. Mat. (2)81(1969).

4. V. Kokilashvili, On weighted LizorkTriebel spaces. Singular in-tegrals, multipliers, imbedding theorems. (Russian) Trudy Math. Inst. Steklov. 161(1983), 125-149; English transl.: Proc. Steklov Inst. Mat. 3(1984), 135-162.

5. V. Kokilashvili and M. Krbec, Weighted inequalities in Lorentz and Orlicz spaces. World Scientific, Singapur–New Jersey–London–Hong Kong, 1991.

6. M. Gabidzashvili, I. Genebashvili and V. Kokilashvili, Two weighted inequalities for generalized potentials. (Russian)Trudy Mat. Inst. Steklov. 194(1992), 85-96; English transl.: Proc. Steklov Inst. Mat. (to appear).

7. E. Sawyer and R.L. Wheeden, Weighted inequalities for fractional integrals on euclidian and homogeneous spaces. Amer. J. Math. 114(1992), 813-874.

8. G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities. London, Cambridge University Press, 1951.

(Received 02.08.1993) Author’s address:

Referensi

Dokumen terkait

KONSTRUKSI /KONSULTANSI III (PKK III) UNIT LAYANAN PENGADAAN PEMERINTAH KOTA BATU. PEMERINTAH KOTA

Sehubungan dengan hasil evaluasi Paket Pekerjaan Belanja Jasa Konsultansi Penelitian Kajian Pemetaan Sarana dan Prasarana Pendidikan di Kecamatan di Kota Pontianak Kegiatan

Dengan melihat difinisi dan tujuannya, maka dapat disimpulkan bahwa karakteristik akuntansi sosial meliputi: (1) identifikasi dan pengukuran dampak sosial yang diakibatkan

Peningkatan permintaan domestik terhadap pulp sebesar akan meningkatkan permintaan bahan kayu baku bulat, dan ini mempunyai hubungan positif, seperti yang

Motivasi Para Peserta Senam Aerobik Di Pusat Kebugaran Jasmani Di Tinjau Dari Segi Usia Dan Jenis Kelamin. Universitas Pendidikan Indonesia | repository.upi.edu |

higiene proses penyajian. Skor Sanitasi dan Higiene Bahan Baku Jamu Gendong Kunir Asem di Kelurahan Merbung Tahun 2012.. Sortasi yang tidak benar akan menyebabkan bahan baku

Tujuan dari penelitian ini adalah untuk menganalisis dan menguji pengaruh realisasi belanja modal, nilai buku aset tetap, dan realisasi belanja pemeliharaan

berpengaruh secara simultan dan parsial terhadap kinerja auditor inspektorat sebesar 25 % sedangkan sisanya 75 % dipengaruhi oleh variabel lain yang tidak