• Tidak ada hasil yang ditemukan

Makalah Kimia XRD & XRF - Jeffry Albadri (16137009)

N/A
N/A
Protected

Academic year: 2021

Membagikan "Makalah Kimia XRD & XRF - Jeffry Albadri (16137009)"

Copied!
23
0
0

Teks penuh

(1)

BAB I BAB I

PENDAHULUAN PENDAHULUAN

A.

A. LATAR BELAKANGLATAR BELAKANG

Sinar-X ditemukan pertama kali oleh Wilhelm Conrad Rontgen pada tahun 1895. Karena Sinar-X ditemukan pertama kali oleh Wilhelm Conrad Rontgen pada tahun 1895. Karena asalnya tidak diketahui waktu itu maka disebut sinar-X. Sinar-X digunakan untuk tujuan asalnya tidak diketahui waktu itu maka disebut sinar-X. Sinar-X digunakan untuk tujuan  pemeriksaan

 pemeriksaan yang yang tidak tidak merusak merusak pada pada material material maupun maupun manusia. manusia. Selain Selain itu, itu, sinar-X sinar-X jugajuga digunakan untuk menghasilkan pola difraksi tertentu yang dapat digunakan dalam analisis digunakan untuk menghasilkan pola difraksi tertentu yang dapat digunakan dalam analisis kualitatif dan kuantitatif material.

kualitatif dan kuantitatif material.

Sinar-X merupakan radiasi elektromagnetik yang memiliki energi tinggi sekitar 200 eV Sinar-X merupakan radiasi elektromagnetik yang memiliki energi tinggi sekitar 200 eV sampai 1 MeV. Sinar-X dihasilkan oleh interaksi antara berkas elektron eksternal dengan sampai 1 MeV. Sinar-X dihasilkan oleh interaksi antara berkas elektron eksternal dengan elektron pada kulit atom. Spektrum sinar-X memilki panjang gelombang 10-5

elektron pada kulit atom. Spektrum sinar-X memilki panjang gelombang 10-5

 – 

 – 

  10 nm,  10 nm,  berfrekuensi 1017 -10

 berfrekuensi 1017 -1020 Hz dan memiliki energ20 Hz dan memiliki energi 103 -106 eV.i 103 -106 eV.

Ada berbagai jenis teknik yang dikembangkan untuk analisa sampel, salah satu Ada berbagai jenis teknik yang dikembangkan untuk analisa sampel, salah satu satunya teknik yang menggunakan sinar-X. Teknik yang menggunakan sinar-X

satunya teknik yang menggunakan sinar-X. Teknik yang menggunakan sinar-X antara lainantara lain  X-Ray

 X-Ray Absorption Absorption (XRA)(XRA),, X-Ray  X-Ray Fluorescence(XRFluorescence(XRF)F)  dan  dan X-Ray  X-Ray Diffraction(XRD)Diffraction(XRD). Namun,. Namun,  pembahasan akan

 pembahasan akan difokuskan pada tekdifokuskan pada tekniknik XRD XRD..

Panjang gelombang sinar-X memiliki orde yang sama dengan jarak antar atom sehingga Panjang gelombang sinar-X memiliki orde yang sama dengan jarak antar atom sehingga dapat digunakan sebagai sumber difraksi kristal. Ketika suatu material dikenai sinar-X, maka dapat digunakan sebagai sumber difraksi kristal. Ketika suatu material dikenai sinar-X, maka intensitas sinar yang ditransmisikan lebih rendah dari intensitas sinar datang. Hal ini intensitas sinar yang ditransmisikan lebih rendah dari intensitas sinar datang. Hal ini disebabkan adanya penyerapan oleh material dan juga penghamburan oleh atom-atom dalam disebabkan adanya penyerapan oleh material dan juga penghamburan oleh atom-atom dalam material tersebut. Berkas sinar-X yang dihamburkan tersebut ada yang saling menghilangkan material tersebut. Berkas sinar-X yang dihamburkan tersebut ada yang saling menghilangkan karena fasanya berbeda dan ada juga yang saling menguatkan karena fasanya sama. Berkas karena fasanya berbeda dan ada juga yang saling menguatkan karena fasanya sama. Berkas sinar-X yang saling menguatkan itulah yang disebut sebagai berkas difraksi. Hukum Bragg sinar-X yang saling menguatkan itulah yang disebut sebagai berkas difraksi. Hukum Bragg merupakan perumusan matematika tentang persyaratan yang harus dipenuhi agar berkas merupakan perumusan matematika tentang persyaratan yang harus dipenuhi agar berkas sinar-X yang dihamburkan tersebut merupakan berkas difraksi. Sinar-X dihasilkan dari sinar-X yang dihamburkan tersebut merupakan berkas difraksi. Sinar-X dihasilkan dari tumbukan antara elektron kecepatan tinggi dengan logam

tumbukan antara elektron kecepatan tinggi dengan logam target.target. Dari prinsip dasar ini, maka

Dari prinsip dasar ini, maka dibuatlah berbagai jenis alat yang memanfaatkan prinsip daridibuatlah berbagai jenis alat yang memanfaatkan prinsip dari Hukum Bragg ini. Salah satu jenis alat yang menerapkan prinsip tersebut adalah

Hukum Bragg ini. Salah satu jenis alat yang menerapkan prinsip tersebut adalah X-Ray X-Ray  Diffractometer 

 Diffractometer .. Pada makalah ini akan dijelaskan mengenai pengertianPada makalah ini akan dijelaskan mengenai pengertian X-Ray Diffraction X-Ray Diffraction (Difraksi Sinar-X), komponen-komponen yang terdapat pada

(Difraksi Sinar-X), komponen-komponen yang terdapat pada  X-Ray Diffractometer  X-Ray Diffractometer ,,  prinsip

 prinsip kerjakerja  X-Ray  X-Ray Diffractometer Diffractometer , manfaat serta kelebihan dan kekurangan, manfaat serta kelebihan dan kekurangan  X-Ray X-Ray  Diffractometer 

(2)

B.

B. RUMUSAN MASALAHRUMUSAN MASALAH 1.

1. Apa pengertianApa pengertian X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) dan dan X-Ray X-Ray fluorescence (XRF)

 fluorescence (XRF)

2.

2. Apa saja komponen-komponen yang terdapat padaApa saja komponen-komponen yang terdapat pada X-Ray Diff X-Ray Diffractometer ractometer  dan dan X-Ray X-Ray

 fluorescence

 fluorescence

3.

3. Bagaimana prinsip kerjaBagaimana prinsip kerja X-Ray Diffractometer  X-Ray Diffractometer  dan dan X-Ray X-Ray fluorescence

 fluorescence

4.

4. Apa manfaat yang diperoleh dariApa manfaat yang diperoleh dari X-Ray Diffractometer  X-Ray Diffractometer  dan dan X-Ray X-Ray fluorescence

 fluorescence

5.

5. Apa kelebihan dan kekuranganApa kelebihan dan kekurangan X-Ray Diffraction dan X-Ray Diffraction dan X-Ray X-Ray fluorescence

 fluorescence

C.

C. TUJUANTUJUAN 1.

1. Menjelaskan pengertianMenjelaskan pengertian X-Ray Diffraction X-Ray Diffraction (XRD)(XRD)dan X-Raydan X-Ray fluorescence (XRF).

 fluorescence (XRF).

2.

2. Menjelaskan komponen-komponen yang terdapat padaMenjelaskan komponen-komponen yang terdapat pada X-Ray  X-Ray Diffractometer Diffractometer   dan  dan X-  X- Ray

 Ray fluorescence.

 fluorescence.

3.

3. Menjelaskan prinsip kerjaMenjelaskan prinsip kerja X-Ray Diffractometer  X-Ray Diffractometer  dan dan X-Ray X-Ray fluorescence

 fluorescence.

.

4.

4. Menjelaskan manfaat yang diperoleh dariMenjelaskan manfaat yang diperoleh dari  X-Ray  X-Ray Diffractometer Diffractometer   dan  dan  X-Ray X-Ray

 fluorescence.

 fluorescence.

5.

(3)

BAB II PEMBAHASAN

 X-Ray Diffraction (XR D)

A.

 X-R ay Diffraction (XRD)

 XRD merupakan teknik yang digunakan untuk mengidentifikasi fasa kristalin dalam material dengan cara menentukan parameter struktur kisi serta untuk mendapatkan ukuran partikel. Karakterisasi menggunakan metode difraksi merupakan metode analisa yang penting untuk menganalisa suatu Kristal (Smallman dan Bishop, 1999).

 XRD dapat memberikan data kualitatif dan semi kuantitatif pada padatan atau sampel.  XRD  digunakan untuk beberapa hal yaitu (1) pengukuran jarak rata-rata antara lapisan atau baris atom; (2) penentuan kristal tunggal; (3) penentuan struktur kristal dari material yang tidak diketahui dan (4) mengukur bentuk, ukuran, dan tegangan dalam dari kristal kecil

Kristal terbentuk dari komposisi atom-atom, ion-ion atau molekul-molekul zat  padat yang memiliki susunan berulang dan jarak yang teratur dalam tiga dimensi. Pada hubungan lokal yang teratur, suatu kristal harus memiliki rentang yang panjang  pada koordinasi atom-atom atau ion dalam pola tiga dimensi sehingga menghasilkan

rentang yang panjang sebagai karakteristik dari bentuk kristal tersebut.

Ditinjau dari struktur atom penyusunnya, bahan padat dibedakan menjadi tiga yaitu kristal tunggal (monocrystal ), polikristal ( polycrystal ), dan amorf (Smallman, 2000: 13). Pada kristal tunggal, atom atau penyusunnya mempunyai struktur tetap karena atom-atom atau molekul-molekul penyusunnya tersusun secara teratur dalam  pola tiga dimensi dan pola-pola ini berulang secara periodik dalam rentang yang  panjang tak berhingga. Polikristal dapat didefinisikan sebagai kumpulan dari kristal-kristal tunggal yang memiliki ukuran sangat kecil dan saling menumpuk yang membentuk benda padat. Struktur amorf menyerupai pola hampir sama dengan kristal, akan tetapi pola susunan atom-atom, ion-ion atau molekul-molekul yang dimiliki tidak teratur dengan jangka yang pendek. Amorf terbentuk karena proses  pendinginan yang terlalu cepat sehingga atom-atom tidak dapat dengan tepat

(4)

memiliki struktur yang identik dengan amorf . Susunan dua-dimensional simetris dari dua jenis atom yang berbeda antara kristal dan amorf ditunjukan pada Gambar 1.

Susunan khas atom-atom dalam kristal disebut struktur kristal. Struktur kristal dibangun oleh sel satuan (unit cell ) yang merupakan sekumpulan atom yang tersusun secara khusus, secara periodik berulang dalam tiga dimensi dalam suatu kisi kristal (crystal lattice). Geometri kristal dalam ruang dimensi tiga yang merupakan karakteristik kristal memiliki pola yang berbeda-beda. Suatu kristal yang terdiri dari  jutaan atom dapat dinyatakan dengan ukuran, bentuk, dan susunan sel satuan yang  berulang dengan pola pengulangan yang menjadi ciri khas dari suatu kristal.

Sumbu-sumbu a, b, dan c adalah sumbu-sumbu yang dikaitkan dengan parameter

kisi kristal. Untuk α, β, dan γ merupakan sudut antara sumbu

-sumbu referensi kristal. Menurut anggapan Bravais (1848), berdasarkan kisi bidang dan kisi ruang kristal mempunyai 14 kisi dan berdasarkan perbandingan sumbu-sumbu kristal dan hubungan sudut satu dengan sudut yang lain, kristal dikelompokkan menjadi 7 sistem kristal seperti yang dapat dilihat pada Tabel 1.

(5)
(6)

Dalam sistem tiga dimensi, kisi kristal akan membentuk pasangan bidang- bidang sejajar dan berjarak sama yang disebut bidang-bidang kisi. Bidang-bidang kisi inilah yang akan menentukan arah permukaan dari suatu kristal. Arah suatu bidang dapat dinyatakan dengan parameter numeriknya. Indeks Miller merupakan harga kebaikan dari parameter numerik yang dinyatakan dengan simbol (h k l ). Pada Gambar 4, secara umum perpotongan bidang dengan sumbu dinyatakan dengan 2a, 2b, dan 3c sehingga parameter numeriknya adalah 2, 2, 3 dan indeks Miller dari  bidang di bawah adalah: (hkl ) =h : k: l = ½ : ½ : 1/3. (hkl ) = (1/2 ½ 1/3 ) atau (3 3 2).

Pada Gambar 4, secara umum perpotongan bidang dengan sumbu dinyatakan dengan 2a, 2b, dan 3c sehingga parameter numeriknya adalah 2, 2, 3 dan indeks Miller dari bidang di bawah adalah:

(7)

Berikut ini merupakan jarak antar bidang-bidang kristal (hkl) : (Cullity,2001)

Suatu kristal memiliki susunan atom yang tersusun secara teratur dan  berulang, memiliki jarak antar atom yang ordenya sama dengan panjang gelombang sinar-X. Akibatnya, bila seberkas sinar-X ditembakkan pada suatu material kristalin maka sinar tersebut akan menghasilkan pola difraksi khas. Pola difraksi yang dihasilkan sesuai dengan susunan atom pada kristal tersebut.

(8)

Berkas sinar-x yang dihasilkan oleh sebuah sumber dapat terdiri atas dua jenis spektrum, yaitu spetrum kontinyu dan spektrum diskrit. Spektrum kontinyu dan spektrum diskrit masing-masing sering juga disebut polikromatik dan monokromatik. Spektrum kontinyu sinar-x timbul akibat adanya pengereman elektron-elektron yang  berenergi kinetik tinggi oleh anoda. Pada saat terjadi pengereman tersebut, sebagian

dari energi kinetiknya diubah menjadi sinar-x. Proses pengereman ini dapat  berlangsung baik secara tiba-tiba ataupun secara perlahan-lahan, sehingga energi

sinar-x yang dihasilkannya akan memiliki rentang energi yang sangat lebar. Jika elektron-elektron tersebut direm secara tiba-tiba, maka seluruh energi kinetiknya akan diubah seketika menjadi energi sinar-x dan energi panas yang numpuk pada anoda.

Energi sinar-x ini merupakan energi tertinggi tertinggi yang dapat dihasilkan oleh sebuah sumber sinar-x. Atau dengan kata lain panjang gelombang sinar-x ini

merupakan panjang gelombang terpendek (λmin) yang dapat dihas

ilkan oleh sebuah sumber. Tetapi jika elektron-elektron itu direm secara perlahan, maka energi kinetiknya akan diubah secara perlahan pula menjadi energi sinar-x dan energi panas, sehingga sinar-x yang dihasilkannya akan berenergi yang bervariasi sesuai dengan  besarnya energi kinetik yang diubahnya. Sinar-x ini akan memiliki panjang gelombang (energi) yang berbeda, sehingga karena itulah sinar-x ini sering disebut sinar-x polikromatik. Sinar-x yang dihasilkan oleh adanya pengereman elektron baik secara tiba-tiba atau pun secara perlahan sering disebut sinar-x bremsstrahlung. Spektrum sinar-x bremsstrahlung ini dapat dilihat pada Gambar 5 yang menunjukan spektrum sinar-x bremstrahlung untuk beberapa harga tegangan tinggi yang digunakan.

Gambar 5. Spektrum sinar-x bremstrahlung untuk tegangan tinggi  beberapa harga tegangan tinggi V3> V2> V1.

(9)

Berdasarkan Gambar 5 tersebut dapat disimpulkan bahwa semakin besar

tegangan tinggi yang digunakan maka semakin kecil harga λmin yang dihasilkan.

 Nilai λmin ini secara matematik dapat ditentukan sebagai berikut. Jika elektron yang

 berenergi kinetik tinggi itu direm secara tiba-tiba oleh anoda maka seluruh energi kinetiknya akan secara tiba-tiba pula diubah menjadi energi sinar-x tertinggi (hfmax) dan energi panas (Q). Jadi jika energi kinetik elektron yang bergerak di dalam medan listrik yang ditimbulkan oleh tegangan tinggi dinyatakan oleh eV, maka:

eV = hfmax + Q. atau

eV = hc/λmin + Q, sehingga

λmin = (eV

- Q)/hc,

dimana h adalah konstanta Planck, c adalah cepat rambat cahaya, e adalah muatan listrik elektron, dan V adalah nilai tegangan tinggi yang digunakan. Dalam  prakteknya, spektrum bremstrahlung ini jarang digunakan untuk kegiatan eksperimen dan bahkan sering dihindari karena ia memiliki panjang gelombang yang bermacam-macam. Posisi puncak spektrum bremsstrahlung terletak pada atau pada karena Emax  berbanding terbalik dengan λmin. Untuk menghidari

 penumpukan panas (Q) pada anoda, setiap sumber sinar-x yang berdaya besar  biasanya selalu dilengkapi dengan aliran air dingin untuk membuang panas (Q) yang

timbul.

Sinar-x yang lebih bermanfaat dan sering digunakan dalam setiap kegiatan eksperimen khususnya pada XRD  adalah sinar-x monokromatik dan sering disebut sinar-x karakteristik. Sinar-x monokromatik (sinar-x karakteristik) ini timbul akibat adanya proses transisi eksitasi elektron di dalam anoda. Sinar-x ini timbul secara tumpang tindih dengan spektrum bremstrahlung. Disamping panjang gelombangnya yang monokromatik, inensitas sinar-x monokromatik ini jauh lebih besar dari pada intensitas sinar-x bremstrahlung.

Menurut pendekatan Bragg, kristal dapat dipandang terdiri atas bidang-bidang datar (kisi kristal). Jika sinar-X ditembakkan pada tumpukan bidang datar tersebut, maka beberapa akan didifraksikan oleh bidang tersebut dengan sudut difraksi yang sama dengan sudut datangnya, seperti yang diilustrasikan dalam Gambar 6, se dangkan sisanya akan diteruskan menembus bidang.

(10)

Gambar 6. Difraksi sinar-X berdasarkan hukum Bragg

Penggunaan  XRD  untuk mempelajari kisi kristal adalah berdasarkan  persamaan Bragg berikut ini:

dimana λ adalah panjang gelombang sinar 

-X yang digunakan, d adalah jarak antara

dua bidang kisi, θ adalah sudut antara sinar datang dengan bidang normal, dan n

adalah bilangan bulat yang disebut sebagai orde difraksi. Persamaan Bragg tersebut digunakan untuk menentukan parameter sel kristal. Sedangkan untuk menentukan struktur kristal dengan menggunakan metode komputasi kristalografik, data intensitas digunakan untuk menentukan posisi-posisi atomnya.

B.

 X-R ay Diffractometer

dan komponen-komponennya

 X-Ray Diffractometer  merupakan instrumen yang digunakan untuk mengidentifikasi material kristalit maupun non-kristalit. X-Ray Diffractometer   terdiri dari tiga bagian utama, yaitu tabung sinar-X (sumber monokromatis), tempat obyek yang diteliti (chamber ), dan detektor sinar-X yang dapat dilihat pada Gambar 7.

(11)

Gambar 7. Komponen-Komponen yang terdapat pada X-Ray  Diffractometer (http://up.persian-expert.com).

Skema dasar dari X-Ray Diffractometer  terdiri dari sebuah sumber radiasi monokromatik dan detektor sinar-X yang diletakkan pada keliling lingkaran. Detektor terletak bersebelahan dengan tabung sinar-

X dan dapat digerakkan dengan arah θ dari

nilai 0-90o. Detektor sinar-X dapat bergerak sepanjang keliling lingkaran yang memiliki tanda sebagai ukuran besar sudut. Pusat lingkarannya berupa tempat spesimen (chamber ). Sebuah celah pemencar (divergent slits) ditempatkan di antara sumber sinar-X dengan spesimen, dan sebuah celah pengumpul (receiving slits) ditempatkan spesimen dan detektor. Celah pengumpul ini dapat membatasi radiasi yang terhambur (bukan yang terdifraksi), mengurangi derau latar (background noise) dan membuat arah radiasi menjadi sejajar. Detektor dan tempat spesimen secara mekanis dibuat berpasangan dengan goniometer. Goniometer merupakan alat untuk mengukur sudut atau membuat suatu obyek (dalam hal ini adalah detektor) berotasi dalam posisi sudut yang tepat. Dalam set  X-Ray Diffractometer , rotasi detektor

melalui sudut sebesar 2θ terjadi bersamaan dengan rotasi spesimen sebesar θ, dengan

(12)

Sinar-X dihasilkan di suatu tabung sinar katode de ngan pemanasan kawat pijar untuk menghasilkan elektron-elektron, kemudian elektron-elektron tersebut dipercepat terhadap suatu target dengan memberikan suatu voltase, dan menembak target dengan elektron. Ketika elektron-elektron mempunyai energi yang cukup untuk mengeluarkan elektron-elektron dalam target, karakteristik spektrum sinar-X dihasilkan. Alat untuk menghasilkan sinar-X harus terdiri dari beberapa komponen utama, yaitu :

a. Sumber elektron (katoda)

 b. Tegangan tinggi untuk mempercepat elektron c. Logam target (anoda)

Ketiga komponen tersebut merupakan komponen utama suatu tabung sinar-X. Skema tabung sinar-X dapat dilihat pada Gambar 8.

Gambar 8. Skema Tabung Sinar-X

C. Prinsip Kerja

 X-R ay Diffr actometer 

Sampel yang berbentuk serbuk ditaruh ditempat sampel. Sampel dikenakan sinar-

X dari sudut θ sebesar 0

-90o. Sinar-X dihasilkan di suatu tabung sinar katode dengan pemanasan kawat pijar untuk menghasilkan elektron-elektron, kemudian elektron-elektron tersebut dipercepat terhadap suatu target dengan memberikan suatu voltase, dan menembak target dengan elektron. Ketika elektron-elektron mempunyai energi yang cukup untuk mengeluarkan elektron-elektron dalam target, karakteristik spektrum sinar-X dihasilkan.

Spektrum ini terdiri atas beberapa komponen-komponen, yang paling umum

(13)

Panjang gelombang yang spesifik merupakan karakteristik dari bahan target (Cu, Fe, Mo, Cr) disaring oleh kertas perak atau kristal monochrometers, yang akan menghasilkan sinar-X monokromatik yang diperlukan untuk difraksi.

Tembaga adalah bahan sasaran yang paling umum untuk difraksi kristal

tunggal, dengan radiasi Cu Kα =05418Å. Sinar 

-X ini bersifat collimated dan mengarahkan ke sampel. Ketika geometri dari peristiwa sinar-X tersebut memenuhi  persamaan Bragg, interferensi konstruktif terjadi dan suatu puncak di dalam intensitas terjadi. Semakin banyak bidang kristal yang terdapat dalam sampel, semakin kuat intensitas yang dihasilkan.

Saat sampel dan detektor diputar, intensitas sinar-X direkam seperti yang terlihat pada Gambar 9.

Gambar 9. Proses Analisa Difraksi Sinar-X (Nelson, 2010)

Detektor akan merekam dan memproses isyarat penyinaran ini dan mengkonversi isyarat itu menjadi suatu arus yang akan dikeluarkan pada printer atau layar komputer. Sinar-sinar diubah menjadi hasil dalam bentuk gelombang-gelombang. Intensitas sinar-X dari scan sampel diplotkan dengan sudut 2θ. Tiap  puncak yang muncul pada pola difraktogram mewakili satu bidang kristal yang memiliki orientasi tertentu dalam sumbu tiga dimensi. Puncak-puncak yang didapatkan dari data pengukuran ini kemudian dicocokkan dengan standar difraksi sinar-X untuk semua jenis material (Nelson, 2010). Contoh data yang dihasilkan oleh

(14)

Gambar 10. Data yang dihasilkan oleh X-Ray Diffractometer  (Nelson, 2010). D. Manfaat

 X-R ay Diffractometer 

 X-Ray Diffractometer  memiliki beberapa manfaat yaitu (1) membedakan antara material yang bersifat kristal dengan amorf; (2) mengukur macam-macam keacakan dan  penyimpangan kristal; (3) karakterisasi material kristal; (4) identifikasi mineral-mineral

yang berbutir halus seperti tanah liat; (5) penentuan dimensi-dimensi sel satuan; (6) menentukan struktur kristal dengan menggunakan  Rietveld  refinement ; (7) analisis kuantitatif dari mineral dan (8) karakteristik sampel film.

Selain untuk menunjukkan tingkat kristalitas suatu padatan,  X-ray diffractometer   juga dapat digunakan untuk mengetahui diameter kristal. Ukuran kristal yang mungkin diukur adalah 3-50 nm. Ukuran kristal yang diperoleh merupakan diameter rata-rata volum berat. Ukuran kristal dapat dihitung dengan  persamaan Scherrer berikut ini;

(15)

dimana K=1.000, b adalah lebar peak yang telah dikoreksi oleh faktor pelebaran alat

instrumen, λ adalah panjang gelombang sinar 

-X yang digunakan, Dv adalah ukuran

kristal dan θ adalah sudut antara sinar 

 datang dengan bidang normal.

E. Kelebihan dan Kekurangan

 X-R ay Diffraction(XRD)

Kelebihan penggunaan sinar-X dalam karakterisasi material adalah kemampuan  penetrasinya, sebab sinar-X memiliki energi sangat tinggi akibat panjang gelombangnya

yang pendek.

Sedangkan kekurangannya adalah untuk objek berupa kristal tunggal sangat sulit mendapatkan senyawa dalam bentuk kristalnya. Sedangkan untuk objek berupa bubuk (powder) sulit untuk menentukan strukturnya.

(16)

 X-Ray fluorescence (XR F )

XRF (X-ray fluorescence spectrometry) merupakan teknik analisa non-destruktif yang digunakan untuk identifikasi serta penentuan konsentrasi elemen yang ada pada padatan,  bubuk ataupun sample cair. XRF mampu mengukur elemen dari berilium (Be) hingga Uranium pada level trace element , bahkan dibawah level ppm. Secara umum, XRF spektrometer mengukur panjang gelombang komponen material secara individu dari emisi flourosensi yang dihasilkan sampel saat diradiasi dengan sinar-X (PANalytical, 2009).

Pembagian panjang gelombang Metode XRF secara luas digunakan untuk menentukan komposisi unsur suatu material. Karena metode ini cepat dan tidak merusak sampel, metode ini dipilih untuk aplikasi di lapangan dan industri untuk kontrol material. Tergantung pada penggunaannya, XRF dapat dihasilkan tidak hanya oleh sinar-X tetapi juga sumber eksitasi primer yang lain seperti  partikel alfa, proton atau sumber elektron dengan energi yang tinggi (Viklund,2008).

A. Prinsip kerja XRF

Apabila terjadi eksitasi sinar-X primer yang berasal dari tabung X ray atau sumber radioaktif mengenai sampel, sinar-X dapat diabsorpsi atau dihamburkan oleh material. Proses dimana sinar-X diabsorpsi oleh atom dengan mentransfer energinya pada elektron yang terdapat pada kulit yang lebih dalam disebut efek fotolistrik. Selama proses ini, bila sinar-X primer memiliki cukup energi, elektron pindah dari kulit yang di dalam menimbulkan kekosongan. Kekosongan ini menghasilkan keadaan atom yang tidak stabil. Apabila atom kembali pada keadaan stabil, elektron dari kulit luar pindah ke kulit yang lebih dalam dan proses ini menghasilkan energi sinar-X yang tertentu dan berbeda antara dua energi ikatan pada kulit tersebut. Emisi sinar-X dihasilkan dari proses yang disebut X Ray Fluorescence (XRF). Proses deteksi dan analisa emisi sinar-X disebut analisa XRF. Pada umumnya kulit K dan L terlibat pada deteksi XRF.

Sehingga sering terdapat istilah Kα dan Kβ serta Lα dan Lβ pada

XRF. Jenis spektrum X ray dari sampel yang diradiasi akan menggambarkan puncak-puncak  pada intensitas yang berbeda (Viklund,2008).

(17)

Berikut gambar yang menjelaskan nomenclatureyang terdapat pada XRF (Stephenon,2009) :

~ transisi

elektron ~

Prinsip Kerja XRF

Gambar diatas menggambarkan prinsip pengukuran dengan menggunaan XRF (Gosseau,2009.)

B. Jenis XRF

Jenis XRF yang pertama adalah WDXRF (Wavelength-dispersive X-ray Fluorescence) dimana dispersi sinar-X didapat dari difraksi dengan menggunakan analyzer yang berupa cristal yang berperan sebagai grid. Kisi kristal yang spesifik memilih panjang gelombang yang sesuai dengan hukum bragg (PANalytical, 2009).

(18)

 aplikasinya luas dan beragam.

 Kondisi pengukuran yang optimal dari tiap

 – 

 tiap elemen dapat diprogram.

 Analisa yang sangat bagus untuk elemen berat.

 Sensitivitas yang sangat tinggi dan limit deteksi yang sangat rendah

Gambar berikut menggambarkan prinsip kerja WDXRF(Gosseau,2009.)

Sampel yang terkena radiasi sinar-X akan mengemisikan radiasi ke segala arah. Radiasi dengan dengan arah yang spesifik yang dapat mencapai colimator. Sehingga refleksi sinar

radiasi dari kristal kedetektor akan memberikan sudut θ. Sudut ini akan terbentuk jika,

 panjang gelombang yang diradiasikan sesuai dengan sudut θ dan sudut 2θ dari kisi kristal.

Maka hanya panjang gelombang yang sesuai akan terukur oleh detektor. Karena sudut refleksi spesifik bergantung panjang gelombang, maka untuk pengukuran elemen yang  berbeda, perlu dilakukan pengaturan posisi colimator, kristal serta detektor (Gosseau,2009).

Jenis XRF yang kedua adalah EDXRF. EDXRF ( Energy-dispersive X-ray Fluorescence) spektrometri bekerja tanpa menggunakan kristal, namun menggunakan software yang mengatur seluruh radiasi dari sampel kedetektor (PANalytical, 2009). Radiasi Emisi dari sample yang dikenai sinar-X akan langsung ditangkap oleh detektor. Detektor menangkap foton

 – 

  foton tersebut dan dikonversikan menjadi impuls elektrik. Amplitudo dari impuls elektrik tersebut bersesuaian dengan energi dari foton

 – 

 foton yang diterima detektor. Impuls

(19)

akan memproses impuls tersebut. Sehingga akan terbaca dalam memori komputer sebagai channel. Channel tersebut yang akan memberikan nilai spesifik terhadap sampel yang dianalisa. Pada XRF jenis ini, membutuhkan biaya yang relatif rendah, namun keakuratan  berkurang. (Gosseau,2009).

Gambar berikut mengilustrasikan prinsip kerja EDXRF (Gosseau,2009):

Ilustrasi prinsip kerja EDXRF

C. Kelebihan dan kekurangan XRF

Setiap teknik analisa memiliki kelebihan serta kekurangan, beberapa kelebihan dari XRF :

 Cukup mudah, murah dan analisanya cepat

 Jangkauan elemen Hasil analisa akurat

 Membutuhan sedikit sampel pada tahap preparasinya(untuk Traceelemen)

 Dapat digunakan untuk analisa elemen mayor (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P) maupun tace elemen (>1 ppm; Ba, Ce, Co, Cr, Cu, Ga, La, Nb, Ni, Rb, Sc, Sr, Rh, U, V, Y, Zr, Zn)

Beberapa kekurangan dari XRF :

(20)

 Preparasi sampel biasanya membutuhkan waktu yang cukup lama dan memebutuhkan  perlakuan yang banyak

(21)

BAB III PENUTUP A. KESIMPULAN

1.  X-Ray Diffraction (XRD) merupakan teknik yang digunakan untuk mengidentifikasi fasa kristalin dalam material dengan cara menentukan parameter struktur kisi serta untuk mendapatkan ukuran partikel.

2.  X-Ray Diffractometer merupakan instrumen yang digunakan untuk mengidentifikasi material kristalit maupun non-kristalit. X-Ray Diffractometer   terdiri dari tiga bagian utama, yaitu tabung sinar-X (sumber monokromatis), tempat obyek yang diteliti (chamber ), dan detektor sinar-X.

3. Prinsip kerja X-Ray Diffractometer  yaitu :

a. Sinar-X dihasilkan di suatu tabung sinar katode dengan pemanasan kawat pijar untuk menghasilkan elektron-elektron.

 b. Elektron-elektron tersebut dipercepat terhadap suatu target dengan memberikan suatu voltase, dan menembak target dengan elektron.

c. Ketika elektron-elektron mempunyai energi yang cukup untuk mengeluarkan elektron-elektron dalam target, karakteristik spektrum sinar-X dihasilkan.

d. Panjang gelombang yang spesifik merupakan karakteristik dari bahan target disaring oleh kertas perak atau kristal monochrometers, yang akan menghasilkan sinar-X monokromatik yang diperlukan untuk difraksi.

e. Sinar-X ini bersifat collimated   dan mengarahkan ke sampel. Saat sampel dan detektor diputar, intensitas Sinar-X pantul itu direkam.

f. Ketika geometri dari peristiwa sinar-X tersebut memenuhi persamaan Bragg, interferensi konstruktif terjadi dan suatu puncak di dalam intensitas terjadi.

g. Detektor akan merekam dan memproses isyarat penyinaran ini dan mengkonversi isyarat itu menjadi suatu arus yang akan dikeluarkan pada printer atau layar komputer.

4. Manfaat XRD :

a. Membedakan antara material yang bersifat kristal dengan amorf  b. Mengukur macam-macam keacakan dan penyimpangan kristal.

c. Karakterisasi material Kristal

d. Identifikasi mineral-mineral yang berbutir halus seperti tanah liat Penentuan dimensi-dimensi sel satuan

(22)

f. Dengan teknik-teknik yang khusus, XRD dapat digunakan untuk:

a. Menentukan struktur kristal dengan menggunakan Rietveld refinement  b. Analisis kuantitatif dari mineral

c. Karakteristik sampel film g. Untuk mengukur diameter kristal

5. Kelebihan penggunaan sinar-X dalam karakterisasi material adalah kemampuan  penetrasinya. Sedangkan kekurangannya adalah untuk objek berupa kristal tunggal sangat sulit mendapatkan senyawa dalam bentuk kristalnya dan objek berupa bubuk ( powder ) sulit untuk menentukan strukturnya.

XRF

Setiap teknik analisa memiliki kelebihan serta kekurangan, beberapa kelebihan dari XRF :

 Cukup mudah, murah dan analisanya cepat

 Jangkauan elemen Hasil analisa akurat

 Membutuhan sedikit sampel pada tahap preparasinya(untuk Traceelemen)

 Dapat digunakan untuk analisa elemen mayor (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P)

maupun tace elemen (>1 ppm; Ba, Ce, Co, Cr, Cu, Ga, La, Nb, Ni, Rb, Sc, Sr, Rh, U, V, Y, Zr, Zn)

Beberapa kekurangan dari XRF :

 Tidak cocok untuk analisa element yang ringan seperti H dan He

 Analisa sampel cair membutuhkan Volume gas helium yang cukup besar

Preparasi sampel biasanya membutuhkan waktu yang cukup lama dan memebutuhkan  perlakuan yang banyak 

(23)

DAFTAR PUSTAKA

Cullity. (2001).  Elements Of X-Ray Diffraction. Canada: Addison-Wesley Publishing Company Inc.

Edi Istiyono. (2000).  Fisika Zat Padat 1. Yogyakarta: FMIPA Universitas Negeri Yogyakarta.

http://rolanrusli.com/wp-content/uploads/2011/04/Difraksi-Sinar3.jpg

http://pubs.usgs.gov/of/2001/of01-041/htmldocs/images/ XRDtube.jpg diakses 5 Mei 2015. http://up.persian-expert.com/ diakses 30 April 2015.

 Nelson, Stephen A. 2010. X-ray Crystallography. Tulane University.

Smallman,R.E, Bishop, R.J. 1999. Modern Physical Metallurgy and Materials Engineering.

London : Butterworth-Heinemann.

Smallman, R.E. 2000. Metalurgi Fisik Modern & Rekayasa Material . Jakarta: Erlangga.

Vlack, Lawrence H. Van. 2004.  Elemen-Elemen Ilmu dan Rekayasa  Material . Jakarta: Erlangga.

Gambar

Gambar 5. Spektrum sinar-x bremstrahlung untuk tegangan tinggi  beberapa harga tegangan tinggi V 3 > V 2 > V 1 .
Gambar 6. Difraksi sinar-X berdasarkan hukum Bragg
Gambar 7. Komponen-Komponen yang terdapat pada X-Ray  Diffractometer (http://up.persian-expert.com).
Gambar 8. Skema Tabung Sinar-X
+5

Referensi

Dokumen terkait

Mengamati dari hasil nilai tersebut diatas, peneliti menyimpulkan bahwasanya media youtube merupakan salah satu alternatif yang dapat digunakan untuk

Peserta merupakan mahasiswa aktif S1 atau Diploma perguruan tinggi negeri atau swasta di Indonesia dan masih berstatus mahasiswa (dibuktikan dengan fotokopi KTM yang disertakan

Hasil tersebut telah menjawab hipotesis dalam penelitian ini yang sebelumnya telah disebutkan bahwa pemberian treatment berupa pelatihan komunikasi interpersonal

3.3 Model pembelajaran Direct Intruction atau model pengajaran langsung adalah model pembelajaran yang menggunakan pendekatan mengajar yang dapat membantu siswa

Tidak hanya itu produk Hibikini (swimwear) merupakan produk pakaian renang dengan fungsi ganda selaian dipakai untuk kegiatan olahraga berenang juga memiliki model

Bajidoran merupakan sebuah kesenian yang dalam memainkannya hampir sama Bajidoran merupakan sebuah kesenian yang dalam memainkannya hampir sama dengan permainan

Hal tersebut ditunjukan pada kehidupan sosial dan politik di Kota Pekalongan, terlebih ketika sebuah etnis Arab yang mempunyai pengaruh besar bagi masyarakat

Tubuh bersisik; permukaan sisik bergaris-garis halus; bentuk sisik lonjong; warna tubuh coklat muda; panjang tubuh kurang lebih 3.11 mm; nisbah antena