• Tidak ada hasil yang ditemukan

6 Summary

Dalam dokumen Coal sampling and analysis standards (Halaman 107-112)

Whichever  sampling  method  is  used,  the  sampling  equipment  used  should  meet  the  design  criteria  set  by   the  relevant  Standards  and  correct  procedures  must  be  followed  in  order  for  representative  and  correct   sampling.  

Advances  in  technologies  have  led  to  automated  mechanical  sampling  systems  ranging  from  single  stage   to   multistage   sampling   systems   incorporating   crushing,   discrete   sub-­‐sampling   and   reject   handling.  

Modern  mechanical  sampling  systems  are  more  accurate  and  precise,  and  are  designed  to  accommodate   the  installation  of  an  online  coal  analyser  within  its  subsystem..  

Sample  preparation  and  bias  testing  

The   sample   preparation   process   may   involve   constitution   of   samples,   reduction   (crushing),   division,   mixing   and   drying,   or   all   or   a   combination   of   these.   Issues   such   as   loss   or   gain   of   moisture,   improper   mixing   of   constituents,   improper   crushing   and   grinding,   and   oxidation   of   coal   may   arise   during   the   sampling  and  sample  preparation  processes.  To  minimise  moisture  contamination,  all  standard  methods   include  an  air-­‐drying  stage  in  the  preparation  of  the  analysis  sample  to  provide  a  stabilised  sample  that  is   not  subject  to  further  moisture  change.  The  sample  is  then  reduced  and  divided  to  provide  an  analysis   sample.  Sample  division  can  be  carried  out  mechanically  or  manually.  Various  types  of  mechanical  divider   are  commercially  available  which  meet  the  design  criteria  specified  by  relevant  standards.  The  minimum   mass  of  divided  samples  depends  on  top  size  and  is  specified  in  the  relevant  standards.  In  general,  the   coal   preparation   steps   should   be   done   rapidly,   and   in   as   few   steps   as   possible.   The   sample   should   be   protected  from  moisture  change,  oxidation  and  contamination.  

Testing   for   bias   in   a   coal   sampling   system   is   an   essential   part   of   coal   analysis   and   is   of   significant   importance.  Bias  testing  on  sampling  systems  should  be  carried  out  periodically.  All  bias  testing  is  based   on  a  matched  pairs  experimental  design.  A  minimum  number  of  20  pairs  of  observations  is  recommended   by   international   standards.   Tests   for   bias   can   be   carried   out   for   ash,   moisture   or   any   other   variable   required  but  two  parameters,  moisture  and  ash,  are  thought  to  be  sufficient  for  a  bias  test.  

Standard  laboratory  analysis  of  coal  

Routine  coal  analysis  and  testing  generally  include  proximate  analysis,  ultimate  analysis,  ash  analysis  and   heating  value.  In  addition,  special  coal  analyses  such  as  determination  of  trace  elements,  coal  hardness,   ash  fusion  temperature  may  also  be  executed.  The  proximate  analysis  of  coal  is  an  assay  of  the  moisture,   ash,   volatile   matter,   and   fixed   carbon   as   determined   by   series   of   prescribed   or   standard   test   methods.  

Moisture,  volatile  matter,  and  ash  are  all  determined  by  subjecting  the  coal  to  prescribed  temperature   levels  for  prescribed  time  intervals.  The  losses  in  weight  are,  by  stipulation,  due  to  loss  of  moisture  and,  at   the   higher   temperature,   loss   of   volatile   matter.   The   residue   remaining   after   ignition   at   the   final   temperature  is  called  ash.  Fixed  carbon  is  the  difference  of  these  three  values  summed  and  subtracted   from  100.  

Ultimate  analysis  determines  the  percentage  mass  fraction  of  the  major  constituents  of  coal  like  carbon,   hydrogen,  sulphur,  nitrogen,  and,  usually  by  difference,  oxygen.  Carbon  and  hydrogen  are  determined  by  

combustion   of   weighed   sample   of   coal   in   dry   oxygen   in   a   closed   system   at   specified   temperatures   to   convert   all   the   hydrogen   to   H2O   and   all   the   carbon   to   CO2.   These   products   are   absorbed   by   suitable   reagents  and  determined  gravimetrically.  

The   Kjeldahl   method   for   determining   nitrogen   in   coal   has   been   used   for   many   years.   However,   the   international   standards   that   describe   the   procedures   of   the   Kjeldahl   method   have   recently   been   withdrawn   but   some   national   standard   organisations   still   recognise   this   method   as   a   standard   test   method   for   nitrogen.   International   and   various   national   standards   recommend   that   the   total   carbon,   hydrogen  and  nitrogen  contents  be  determined  by  instrumental  methods.  

The  three  most  widely  used  test  methods  for  sulphur  determination  are  the  Eschka  method,  the  bomb   washing  method,  and  the  high-­‐temperature  combustion  method,  all  based  on  combustion  of  the  sulphur-­‐

containing   coal   to   produce   sulphate,   which   can   be   measured   either   gravimetrically   or   volumetrically.  

Total   sulphur   values   alone   are   not   adequate   in   assessing   a   cleaning   process   for   reducing   the   sulphur   content   of   coal.   Methods   for   determination   of   the   different   forms   of   sulphur   in   coal   are   specified   by   various  standards.  

The  calorific  value  is  determined  in  a  bomb  calorimeter  either  by  a  static  (isothermal)  method  or  by  an   adiabatic  method,  with  a  correction  made  if  net  calorific  value  is  of  interest.  

The  ash  is  prepared  by  heating  the  coal  under  different  prescribed  conditions  depending  on  the  standard   test   methods   selected   for   determination   of   major   and   minor   and/or   trace   elements   in   coal   ash.   The   elemental   composition   of   coal   can   be   determined   by   instrumental   analysis   methods   such   as   AAS/AES,   ICP-­‐AES,  ICP-­‐MS,  AFS,  XRF  or  a  combination  of  these  techniques.  

The  analytical  techniques  used  to  measure  mineral  matter  in  coal  are  virtually  the  same  as  those  used  to   measure  trace  elements  in  coal  and  coal  ash.  

Tests  for  determination  of  chlorine  are  performed  by  burning  a  coal  in  oxygen,  and  the  chlorine  formed  is   collected  and  analysed.  There  are  two  standard  methods  of  determining  chlorine  in  coal,  oxygen  bomb   combustion/ion   selective   electrode   method   and   combustion   methods   with   or   without   Eschka   mixture.  

Several   techniques   can   be   used   for   the   determination   of   Hg   in   coal   and   combustion   residue.   Various   methods  are  selected  by  different  standards  organisations  as  standard  methods.  

The   ash   fusibility   determination   is   an   empirical   test   designed   to   simulate   as   closely   as   possible   the   behaviour  of  coal  ash  when  it  is  heated  in  contact  with  either  a  reducing  or  an  oxidising  atmosphere.  The   free-­‐swelling  index  is  a  measure  of  the  volume  increase  of  a  coal  when  heated  under  specific  conditions   and  is  reported  in  numbers  from  0  to  9,  with  higher  values  considered  superior  from  a  coking  standpoint.  

The   swelling   property   of   hard   coal/bituminous   coal   can   be   measured   using   a   dilatometer.   The   grindability  of  coal  is  determined  using  a  Hardgrove  machine.  

Due   to   the   heterogeneous   nature   of   coal   and   the   fact   that   many   of   the   test   methods   applied   to   coal   analysis   are   empirical   in   nature,   strict   adherence   to   the   standard   procedures   is   necessary   to   obtain   repeatable  and  reproducible  results.  

Instrumental  analytical  techniques  

A  large  number  of  instrumental  analytical  techniques  have  been  shown  to  have  wide  applicability  to  coal   analysis  and  are  now  widely  applied  for  analysis  of  coal  and  coal  products.  These  techniques  are  based  on   a   wide   range   of   technologies   including   x-­‐ray   spectroscopy,   electron   microscopy,   atomic   spectroscopy,   mass   spectrometry,   neutron   activation   analysis,   Fourier   transform   infrared   spectroscopy,   and   laser-­‐

induced  breakdown  spectroscopy.  Many  of  these  techniques  are  fast,  sensitive,  simple  to  operate,  have   low   detection   limits,   and   if   properly   calibrated,   accurate.   In   particular,   many   of   the   instruments   are   capable  of  determining  multi-­‐elements  simultaneously.  Additional  information  such  as  chemical  forms  of   the  elements  may  be  obtained.  Some  instruments  require  minimal  sample  preparation  and  can  be  used   for  in-­‐situ  measurements.  Many  of  such  instrumental  methods  have  been  well  developed  and  adopted  by   national   and   international   standard   organisations   as   standard   test   methods   for   coal   analysis.   Other   instrumental  test  methods  have  been  applied  to  coal  analysis  by  companies  and  in  laboratories  in  may   parts  of  the  world  although  they  have  not  obtained  Standard  status.  

Online   analysers   provide   an   automatic,   fast,   relatively   accurate,   and   instantaneous   method   of   coal   analysis  for  pricing,  quality  or  process  control,  and  SO2  emissions  control.  There  are  three  types  of  online   coal  analysers:  moisture  meters,  ash  gauges  and  elemental  analysers.  Various  technologies  can  be  applied.  

Most  moisture  meters  employ  microwave  technology  but  magnetic  resonance  is  also  used  for  moisture   determination.   Microwave   moisture   meters   are   low   cost,   simple   to   use   and   reliable.   MR   measures   all   (both   free   and   bound)   moisture   but   it   is   large,   sophisticated   and   expensive.   Two   common   techniques   employed   by   ash   gauges   are   dual-­‐energy   γ-­‐ray   transmission   (also   called   dual-­‐gamma   or   low-­‐energy   transmission   LED),   and   natural   gamma   detection.   DUET   is   the   most   widely   used   due   to   its   ability   to   measure  the  ash  content  of  coal  directly  on  a  conveyor  belt  independently  of  the  mass  of  coal  on  the  belt   and  of  the  belt  speed.  However,  it  is  incapable  of  detecting  changes  of  iron  oxide  (Fe2O3)  in  ash  and  its   results  are  affected  by  changes  in  the  percentages  of  Fe  or  Ca  in  the  ash.  Natural  gamma  detection  is  ideal   for  coals  with  highly  variable  compositions  of  Fe  and  Ca  and  is  cheaper.  However,  it  is  less  accurate  than   some  other  technologies  that  requires  significant  shielding.  

Technologies  used  in  online  coal  elemental  analyse  include  PFTNA,  XRF  and  PGNAA  and  more  recently   LIBS.  PGNAA  is  capable  of  measuring  most  of  the  major  elements  (except  for  O,  and  Na  if  its  percentage  in   coal   is   low)   in   coal.   PGNAA   can   be   sensitive   and   accurate   depending   on   the   element   analysed.   Its   calibration  is  independent  of  the  coal  rank.  It  is  the  most  widely  used  technology  for  full  elemental  coal   analysis.  The  biggest  drawback  is  the  requirement  of  maintaining  a  nuclear  isotope  source  to  provide  the   neutrons.   PFTNA   is   capable   of   measuring   the   major   and   minor   elements   contained   in   coal.   The   main   advantages  of  the  PFTNA  include  self  calibration  independent  of  the  coal  rank,  and  better  accuracy  in  the   determination  of  elements  such  as  C,  O,  and  Na,  which  PGNAA  cannot  or  has  difficulty  in  detecting.  XRF  

cannot  match  the  precision  of  PGNAA,  and  is  unable  to  measure  C,  H,  N,  and  O  in  coal.  However,  it  has  low   costs   so   it   can   be   economically   viable   for   selected   applications.   LIBS   is   emerging   as   a   potential   competitive  technology  for  online  coal  elemental  analysers.  LIBS  can  detect  the  major  ash  constituents  in   coal   such   as   Si,   Al,   Fe,   Ca,   K   and   Ti,   as   well   as   Na,   Mg   which   PGNAA   cannot   in   most   coals.   The   main   disadvantage  is  that  a  LIBS  analyser,  like  XRF  analysers,  analyses  surface  chemistry  of  the  coal  particles   and  therefore  requires  finely  ground  homogeneous  samples.  

An  online  analyser  can  be  installed  on  the  coal  conveyor  belt  (cross-­‐belt  online  analyser)  or  on  the  sample   stream  of  the  online  sampling  system  (sample-­‐stream  online  analyser).  The  cross-­‐belt  analysers  are  less   accurate   but   they   have   advantages   such   as   little   or   no   sampling   requirement,   lower   cost   and   quicker   installation.   Also,   the   analyser   can   be   located   where   it   is   needed,   not   where   there   is   a   defined   place.  

However,  they  also  have  some  limitations  like  the  difficulty  in  obtaining  physical  samples  to  calibrate  and   diminished  accuracy  due  to  changes  in  belt  loading  and  cross-­‐sectional  profile.  Careful  consideration  of   size   and   access,   and   application   requirements   is   required   when   determining   the   optimum   location   for   placing  an  analyser.  

The   choice   of   an   analyser   is   mainly   between   an   ash   gauge   and   an   elemental   analyser,   whether   or   not   coupled   with   a   moisture   meter.   Criteria   of   greatest   importance   in   choosing   a   suitable   online   analyser   include  the  purpose  of  the  installation,  coal  complexity  and  coal  quality  variability,  accuracy  requirement   and  costs.  

A   disadvantage   of   most   of   the   instrumental   methods   is   the   small   sample   size   used   which   may   not   be   representative   of   the   quantity   of   coal   being   analysed.   In   addition,   most   instruments   need   careful   calibration  in  order  to  perform  precise,  accurate,  and  bias  free  coal  analysis.  Most  often,  the  accuracy  of   the  results  is  highly  dependent  on  the  quality  and  suitability  of  the  standard  materials  used  to  standardise   the  instruments.  

 

Dalam dokumen Coal sampling and analysis standards (Halaman 107-112)