• Tidak ada hasil yang ditemukan

Electron  microscopy

Dalam dokumen Coal sampling and analysis standards (Halaman 79-83)

5 Instrumental  analytical  techniques

5.2 Electron  microscopy

An  electron  microscope  is  a  type  of  microscope  that  uses  an  electron  beam  to  illuminate  a  specimen  and   produce  a  magnified  image.  There  are  several  types  of  electron  microscope  such  as  transmission  electron   microscope  (TEM),  scanning  electron  microscope  (SEM),  and  reflection  electron  microscope  (REM),  with   SEM  being  most  extensively  used  in  coal  analysis.  

5.2.1 Scanning  electron  microscopy  

The  SEM  produces  images  by  probing  the  specimen  with  a  focussed  electron  beam  that  is  scanned  across   a   rectangular   area   of   the   specimen   (raster   scanning).   When   the   electron   beam   interacts   with   the   specimen,  it  loses  energy  by  various  mechanisms.  The  lost  energy  is  converted  into  alternative  forms  such   as  emission  of  low-­‐energy  secondary  electrons  and  high-­‐energy  backscattered  electrons,  light  emission  or   x-­‐ray  emission,  which  provide  signals  carrying  information  about  the  properties  of  the  specimen  surface,   such   as   its   topography   and   composition.   SEM   has   been   extensively   used   to   study   the   morphology   and   cross  section  of  coal  and  coal  char/ash,  and  analysis  of  the  SEM  image  can  provide  valuable  information   such   as   particle   size,   swelling   of   the   particles   during   conversion,   and   the   structure   of   char/ash.   This   information  can  be  correlated  to  the  fundamental  properties  of  parent  coal  and  the  process  parameters.  

SEM  with  energy  dispersive  x-­‐ray  spectrometer  (EDS)  has  been  widely  used  to  identify  the  composition   and   nature   of   minerals   in   coals   and   to   determine   the   associations   of   the   minerals   with   each   other.  

Examinations   can   be   made   of   samples   resulting   from   ashing   techniques   or   whole   coal.   With   this   technique  it  is  possible  to  identify  the  elemental  components  and  deduce  the  mineral  types  present  in   coal  samples.  Figure  18  shows  an  example  of  the  SEM  image  of  a  cross-­‐section  of  a  bituminous  coal  and  its   x-­‐ray  spectrum  obtained  using  an  SEM-­‐EDS.  Recent  studies  on  iron  sulphide  minerals  in  coals,  minerals  in   coals,  and  transformation  of  minerals  during  coal  conversion  all  used  SEM  as  the  primary  analytical  tool   (Kgabi  and  others,  2009;  Zhu  and  others,  2002;  Manoj,  2013;  Manoj  and  others,  2009;  Oliveira  and  others,   2011;  Ma  and  others,  2013).  

  Figure  18  –  SEM-­‐EDS  characterisation  of  an  Indian  bituminous  coal  (Manoj,  2013)  

Advantages   of   a   SEM   include   its   wide-­‐array   of   applications,   the   detailed   three-­‐dimensional   and   topographical  imaging  and  the  versatile  information  garnered  from  different  detectors.  SEMs  are  easy  to   operate,  work  fast,  and  require  minimal  sample  preparation.  In  addition,  the  technological  advances  in   modern  SEMs  allow  for  the  generation  of  data  in  digital  form.  However,  SEMs  are  expensive,  large  and   must   be   housed   in   an   area   free   of   any   possible   electric,   magnetic   or   vibration   interference.   Special   training  is  required  to  operate  an  SEM  as  well  as  to  prepare  samples  as  the  preparation  of  samples  can   result  in  artifacts.  Also,  SEMs  carry  a  small  risk  of  radiation  exposure  associated  with  the  electrons  that   scatter  from  beneath  the  sample  surface.  

Recently,  computer-­‐controlled  SEM  (CCSEM)  to  evaluate  SEM  images  have  been  developed  to  determine   the   size,   quantity,   distribution,   and   semi-­‐quantitative   composition   and   association   of   mineral   grains   in   coal  mine  dusts,  coals,  coal  ashes  and  in  coal  liquefaction  residues.  With  this  information,  the  impacts  of   coal   properties   on   wear   of   system   components,   slag   flow,   fouling   of   heat   exchangers,   fine-­‐particle   collection,  and  ash  handling  can  be  assessed  and  predicted.  

A   CCSEM   instrument   consists   of   an   SEM   that   is   interfaced   with   a   computer-­‐controlled   acquisition   and   data-­‐collection   system.   The   system   can   measure   several   thousand   different   mineral   particles,   which   appear   randomly   placed   in   a   polished   section   of   the   coal   embedded   in   resin   or   wax.   In   the   SEM,   the   electron  beam  is  under  the  control  of  a  computer  and  is  stepped  across  the  field-­‐of-­‐view  in  a  relatively  

0

0.00 1.00 2.00 3.00 4.00

CK

OKa

ALKaSiKa SKa

SKb CaKa

CaKb

coarse   grid   in   order   to   locate   mineral   particles   in   the   coal/resin   (or   wax)   matrix.   The   back-­‐scattered   electron  intensity  is  used  to  discriminate  between  mineral  particles  and  the  background  of  coal  macerals   and  resin  or  wax  mounting  medium.  Once  a  mineral  particle  is  located,  the  grid  spacing  is  greatly  reduced.  

The  cross-­‐sectional  area  of  the  particle  is  measured  by  extending  eight  diagonals  through  the  centre  of   the  particle  to  the  edge  of  the  particle  and  summing  the  areas  of  the  triangles  so  produced.  After  the  area   is   measured   in   this   manner,   the   electron   beam   is   positioned   at   the   centre   of   the   particle   and   an   EDS   spectrum  is  obtained.  The  chemical  information  contained  in  this  spectrum  is  then  used  to  identify  the   mineral.   By   analysing   several   thousand   particles   in   the   coal   section   in   this   manner,   a   reasonably   quantitative   description   of   the   coal   mineralogy   can   be   obtained   (Gupta,   2007).   A   diagram   of   a   CCSEM   system  is  shown  in  Figure  19.  

  Figure  19  –  A  diagram  of  a  CCSEM  system  (MTI,  2012)  

An  international  co-­‐operative  study  on  the  accuracy  of  a  CCSEM  system  for  analysis  of  minerals  in  coal   found  that  the  main  factors  affecting  the  accuracy  of  CCSEM  analysis  were  the  coal  sample  preparation   technique  and  the  number  of  mineral  grains  analysed.  The  differences  of  the  CCSEM  systems  including   their   operating   conditions   only   played   a   minor   role   to   account   for   the   discrepancy   of   CCSEM   measurements,  as  different  laboratories  gave  similar  CCSEM  results  on  the  same  coal  sample  stub.  The   results  from  this  study  indicated  that  the  sample  preparation  technique  that  mixes  crushed  coal  and  wax   into   a   pressed   pellet   produced   an   optimum   particle   distribution.   If   a   coal   sample   contained   coarse   minerals,   then   a   greater   number   of   grains   comprising   large   size   minerals   would   need   to   be   analysed   (Gupta   and   others,   1999).   Improved   procedures   for   sample   preparation   and   CCSEM   analysis   were   developed  and  described  by  Cieplik  and  others  (2003)  in  which  Carnauba  wax  was  used  as  embedding   material   for   increased   contrast   between   embedding   material   and   the   organics   in   coal   to   distinguish   between   free   mineral   particles   and   those   included   in   the   organic   coal   matrix.   Optimised   particle   distribution   and   mass   fraction   were   also   obtained   using   the   procedures.   Since   CCSEM   was   developed   around  20  years  ago,  it  has  been  refined,  enhanced,  and  continuously  advanced.  One  of  the  improvements   has   been   to   move   from   single   elemental   analysis   at   a   central   point   to   an   average   elemental   analysis  

SEM sample preparation

grinding

mounting wax or resin

polishing 1–µm grit

imaging backscattered electron imaging

particle sizing particle recognition and characterisation chemical analysis

x–ray spectroscopy

raw data size, shape, composition

phase analysis

output

computer models predictive indices, cohesivity,resistivity,

particle size

report

derived  from  several  analyses  obtained  at  a  number  of  points  on  a  grid  imposed  on  each  particle.  This   accounted   for   variation   in   the   mineral   composition   within   a   mineral   grain.   The   mineral   recognition   programme  and  general  data  handling  have  also  been  extensively  developed  over  recent  years  (Gupta,   2007).  Recent  investigations  have  shown  CCSEM  to  be  a  valuable  means  of  identifying  phases  of  minerals   in  coal  and  coal  ashes  (Soundarrjan  and  others,  2013;  Cprek  and  others,  2007).  

5.2.2 Electron  probe  microanalysis  

An  electron  microprobe  (EMP),  also  known  as  an  electron  probe  microanalyser  (EPMA)  or  electron  micro   probe   analyser   (EMPA),   is   an   analytical   tool   used   to   non-­‐destructively   determine   the   chemical   composition   of   small   volumes   of   solid   materials.   It   is   essentially   a   hybrid   instrument   combining   the   capabilities  of  both  the  SEM  and  an  XRF,  with  the  added  features  of  fine-­‐spot  focussing  (approximately   1  micrometer),  optical  microscope  imaging,  and  precision-­‐automated  sample  positioning.  Electron  probe   microanalysis   (EPM)   is   based   on   the   principle   that   a   sample   will   produce   x-­‐rays   characteristic   of   the   elements  present  in  the  sample  when  exposed  to  a  finely  focussed  electron  beam.  The  electron  column   and  basic  instrumentation  for  EPM  are  very  similar  to  those  from  SEM.  The  major  difference  is  that,  while   SEM  describes  the  surface  morphology  by  visual  magnification  of  the  surface,  EPM  is  able  to  describe  the   chemical   composition   of   the   sample.   A   scanning   electron   microscope,   when   equipped   with   an   x-­‐ray   spectrometer,  can  carry  out  the  same  analysis  as  that  of  an  EPM.  Modern  scanning  electron  microscopes   are   commonly   equipped   with   energy   dispersive   x-­‐ray   spectrometers   (EDS)   that   allow   qualitative   and   quantitative  chemical  analysis.  EMP  can  be  used  as  a  powerful  analytical  tool  in  coal  research  if  used  in   conjunction  with  other  analytical  techniques  such  as  SEM,  transmission  electron  microscopy  (TEM)  and   optical  microscopy,  XRD,  and  Mössbauer  spectroscopy  (Gupta,  2007).  

EPMA  equipped  with  an  energy-­‐dispersive  x-­‐ray  detector  can  be  used  to  simultaneously  determine  the   morphology  and  the  constitution  elements  (within  a  microscopic  size  volume)  of  coal.  The  procedures  for   quantitative  analysis  of  coal  and  elemental  contents  of  coal  using  SEM  and  EMPA  have  been  described  in   detail  by  Karner  and  others  (nd).  However,  until  recently  a  major  drawback  of  EPMA  was  its  inability  to   routinely  and  precisely  analyse  samples  for  the  low-­‐energy  (light)  elements  such  as  C,  N,  O,  and  F.  This   was  because  of  1)  the  absorption  of  the  long-­‐wavelength  and  low-­‐energy  X-­‐radiation  in  the  specimen,  the   analyser   crystal   and   the   detector   window;   2)   the   low   cross-­‐sections   for   ionisation;   and   3)   spectral   interference   from   higher-­‐energy   elements.   The   resulting   low   count-­‐rates   and   generally   low   peak-­‐to-­‐background  ratios  place  a  heavy  demand  on  the  detection  process.  Matrix-­‐correction  programs   must   be   substantially   more   robust   than   those   for   higher-­‐energy   (heavier)   elements   (Raudsepp,   1995).  

Over  the  last  decade,  both  the  technology  and  the  data  evaluation  methods  of  x-­‐ray  spectra  analysis  and   quantitative   determination   of   sample   composition   have   been   improved   for   EPM.   One   of   the   major   advances  in  this  field  has  been  the  introduction  of  commercial  silicon-­‐based  spectrometers  equipped  with   thin  polymer  windows  which  improve  the  transmission  of  low-­‐energy  x-­‐rays,  as  well  as  newly  designed   high  resolution  energy  dispersive  detectors  such  as  microcalorimeters.  Another  important  improvement   is   the   development   of   evaluation   models   for   quantitative   analysis,   which   can   handle   various   types   of   target   samples.   Recently,   a   low-­‐energy   EPMA   and   energy-­‐dispersive   x-­‐ray   detector   with   an   ultra-­‐thin  

window   was   developed   allowing   quantitative   determination   of   the   concentrations   of   low-­‐energy   elements,  as  well  as  the  higher-­‐energy  elements  that  can  be  analysed  by  conventional  EPMA.  Furthermore,   by   varying   the   excitation   voltage   (the   so-­‐called   ‘beam   variation’   EPMA),   useful   information   on   the   heterogeneity  with  respect  to  chemical  composition  of  individual  particles  can  be  obtained  (Ro,  2005).  

5.2.3 Transmission  electron  microscopy  

A   transmission   electron   microscopy   (TEM)   utilises   energetic   electrons   to   provide   topographical,   morphologic,  compositional  and  crystallographic  information  on  samples.  TEM  is  a  microscopy  technique   in  which  a  beam  of  electrons  is  transmitted  through  a  specimen  forming  an  image  in  the  process.  The   image   is   magnified   and   focussed   onto   an   imaging   device,   such   as   a   fluorescent   screen,   on   a   layer   of   photographic  film,  or  to  be  detected  by  a  sensor  such  as  a  camera.  High  resolution  TEM  (HR–TEM)  can  be   used   to   deduce   the   structure   of   coal   at   atomic   level.   The   lattice   fringe   image   obtained   from   HR–TEM   provides  direct  coal  or  char  atomic  structural  information.  TEM  with  EDS  is  another  method  that  has  been   used  to  identify  and  characterise  the  phases  of  minerals,  and  to  determine  the  distribution  of  elements  in   coal  and  coal  ash  (in  atomic  or  weight  percentages).  

TEM  offers  the  most  powerful  magnification,  potentially  over  one  million  times  or  more.  Similar  to  SEM,   TEM   has   a   wide   range   of   applications.   It   can   provide   information   on   surface   features,   shape,   size   and   structure  as  well  as  element  and  compound  structure.  It  is  easy  to  operate  with  proper  training.  Like  SEM,   TEM   is   large,   expensive,   and   requires   special   housing   to   prevent   any   possible   electric,   magnetic   or   vibration  interference.  Sample  preparation  in  TEM  can  be  a  complex  procedure.  Glikson  (2001)  reviewed   the  TEM  technique  and  its  applications  including  sample  preparation,  a  topic  also  described  by  Chen  and   others  (2005).  TEM  has  been  extensively  applied  in  studies  in  morphology  and  composition  of  coal  and   coal  ash,  especially  ultra-­‐fine  fly  ash  (Chen  and  others,  2005;  Linak  and  others,  2006;  Silva  and  da  Boit,   2011;   van   der   Merwe   and   others,   2011;   Oliveira   and   others,   2011;   Wu   and   others,   2013;   Damoe   and   others,  2012).  

Dalam dokumen Coal sampling and analysis standards (Halaman 79-83)