• Tidak ada hasil yang ditemukan

X-­‐ray  fluorescence

Dalam dokumen Coal sampling and analysis standards (Halaman 74-78)

5 Instrumental  analytical  techniques

5.1 X-­‐ray  spectroscopy

5.1.2 X-­‐ray  fluorescence

X-­‐ray   fluorescence   (XRF)   is   the   emission   of   characteristic   ‘secondary’   (or   fluorescent)   x-­‐rays   from   a   material   that   has   been   excited   by   bombarding   with   high-­‐energy   ‘primary’   x-­‐rays   or   gamma   rays.   This   phenomenon   has   been   widely   used   for   elemental   analysis   and   chemical   analysis.   XRF   is   a   mature   technology   and   has   the   advantage   of   being   nondestructive,   rapid,   simple,   and   cost-­‐effective,   which   is  

probably  unsurpassed  by  any  other  method  when  used  for  multi-­‐elements  determinations  in  the  same   prepared  coal  sample.  This  technique  has  been  adopted  by  both  ASTM  and  ISO  as  a  standard  test  method   for   determining   major   and   minor   elements   in   coal   ash   (see   Section   4.4.2).   XRF   has   also   been   used   extensively  for  determining  sulphur  in  coal.  

XRF   spectrometry   can   be   undertaken   by   two   distinct   methods,   energy   dispersive   XRF   (ED-­‐XRF)   and   wavelength  dispersive  XRF  (WD-­‐XRF).  The  ED–XRF  is  more  cost  effective  compared  to  WD–XRF.  It  also   allows  for  smaller  units  with  fewer  components  resulting  in  a  cheaper  and  more  reliable  instrument.  Such   instruments   can   be   easily   tailored   to   the   needs   of   different   customers,   integrated   with   industrial   installations,  and  also  miniaturised  for  the  purpose  of  in-­‐situ  analysis.  Detection  precision  and  accuracy  of   an  XRF  instrument  are  driven  by  several  factors  including  x-­‐ray  excitation  source  and  strength,  type  of   detector  used,  time  exposure,  sample  surface  conditions,  physical  and  chemical  matrix  effects,  as  well  as   primary  elements  of  interest  and  inherent  x-­‐ray  spectral  line  interference  from  element  overlap.  Today,   bench-­‐top   or   portable   XRF   elemental   analyser   or   XRF   sulphur   analyser   for   coal/coal   ash   are   widely   available  from  a  number  of  manufacturers.  Figure  16  shows  an  example  of  a  bench-­‐top  ED-­‐XRF  elemental   analyser  by  Applied  Rigaku  Technologies,  Inc  (USA).  In  the  ED–XRF  method,  the  coal  sample  is  air  dried   and  ground  to  required  particles  size.  Approximately  7  or  8  gram  of  homogeneous  coal  powder  is  pressed   into  even,  compact  sample  holder  or  a  pellet.  The  secondary  x-­‐rays  emitted  by  the  sample  are  directed   into  a  solid-­‐state  detector.  Incoming  photons  ionise  the  atoms  within  the  detector,  producing  electrical   pulses   which   are   proportional   to   the   levels   of   energy   being   detected.   These   pulses   are   amplified   and   interpreted   using   a   computer   that   calculates   the   elemental   composition   of   the   sample.   The   resulting   information  is  then  enhanced  by  referencing  an  onboard  database  and/or  user  defined  information  that   provides  additional  data  about  the  sample.  The  spectrum  of  the  sample  are  adjusted  for  a  number  of  other   variables  that  might  distort  the  results  including  (Niton  UK,  2013):  

• geometric  effects  caused  by  the  sample’s  shape,  surface  texture,  thickness  and  density;  

• spectral  interference  such  as  a  variety  of  scattering  effects  originated  within  the  sample;  

• sample  matrix  effects  such  as  absorption  of  the  characteristic  x-­‐rays  of  one  element  by  other  

elements  in  the  sample,  and  secondary  and  tertiary  x-­‐ray  excitation  of  one  or  more  elements  by  other   elements  in  the  sample.  

  Figure  16  –  A  bench-­‐top  ED-­‐XRF  elemental  analyser  (Rigagu,  2013)  

In  an  inter-­‐laboratory  study  carried  out  by  the  US  Electric  Power  Research  Institute  (EPRI),  the  analytical   methods   for   measuring   Hg   and   Cl   in   coal   were   evaluated   and   compared.   The   study   found   that   the   Cl   values  obtained  using  an  XRF  analyser  were  in  excellent  agreement  with  the  consensus  values.  A  lower   quantitative  limit  for  Cl  could  be  achieved  with  XRF  compared  to  standard  test  methods.  However,  the   determination   of   Cl   using   XRF   suffered   interferences   from   sulphur   in   coal.   This   interference   became   significant   for   coals   with   sulphur   content   greater   than   1%   (EPRI,   2000).   Wang   and   others   (2005)   evaluated  the  determination  of  iodine  in  coal  using  XRF  and  found  that  under  optimum  conditions,  coal   samples   with   iodine   concentrations   higher   than   5   ppm   can   be   determined   using   this   ED-­‐XRF   method.  

Song  and  others  (2006)  used  XRF  to  simultaneously  determine  As,  P,  S,  Cl  in  coal.  They  found  that  the   measured  values  of  As,  P,  S,  Cl  in  the  coal  samples  agreed  well  with  the  results  obtained  from  standard   test  methods,  and  the  test  limit  of  the  XRF  were  1.2  μg/g  for  As,  22  μg/g  for  S,  2.1  μg/g  for  P  and  2.0  μg/g   for  Cl.  However,  x-­‐rays  are  unable  to  penetrate  the  coal  particles  beyond  3.175  mm  and  therefore  this   method  requires  finely  ground  homogeneous  samples,  limiting  its  applications  in  online  analysis  as  only   the  material  surface  can  be  analysed,  prohibiting  a  sound  representation  of  the  entire  product  (Willett   and  Corbin,  2011).  

XRF   is   a   rapid,   simple   and   accurate   method   of   determining   the   concentration   of   major   and   minor   elements   in   coal   ash.   The   coal   ashing   procedure   removes   most   of   the   combustible   and   volatile   components.  XRF  analysis  of  whole  coal  is  more  challenging.  One  problem  is  that  calibration  standards  for   XRF  analysis  of  whole  coal  must  themselves  be  whole  coals.  Only  a  few  coal  standards  exist,  and  these  are   certified  for  only  a  few  elements.  Non-­‐metals  like  S,  P,  B  and  C  are  difficult  or  impossible  to  determine   using  XRF.  This  technique  is  also  greatly  affected  by  matrix  effects  and  numerous  standards  are  required   in   order   to   match   the   sample   matrix   (Davidson   and   Clarke,   1996;   Huggin,   2002).   Recent   advances   in   excitation  and  detection  have  made  it  possible  to  determine  light  elements  and  non-­‐metals  such  as  S.  This   has  been  done  by  the  use  of  a  Rh  end  window  tube  as  a  universal  tube  and  light  elements  can  be  excited   effectively  by  Rh  L  radiation  (Khuder  and  others,  2007).  

Instrumentation

model Rigaku NEX QC x–ray tube 4 W Ag-anode detector semiconductor sample type coal (powder)

film Mylar

analysis time 300 seconds 240 seconds for S 60 seconds for Ca, Ti, Fe environment air

options autosampler manual sample press

The   development   of   polarised   ED-­‐XRF   offers   additional   improvement   in   the   technique,   especially   for   extending  the  XRF  technique  to  trace  elements  or  for  carrying  out  the  analysis  on  whole  coal  samples.  The   use   of   polarised   incident   radiation   reduces   background   fluorescence   radiation   thereby   increasing   the   signal/noise   ratio   resulting   in   significantly   lowered   detection   limits   for   determining   trace   elements   in   coal.   Recently,   Moriyama   and   others   (2010)   investigated   the   use   of   an   ED–XRF   spectrometer   with   polarised   optics   and   new   quantification   software   for   trace   elements   determination.   They   claimed   that   accurate   analysis   down   to   ppm   level   could   be   achieved   even   in   complex   sample   composition   with   the   quantification  software  which  estimates  non-­‐measuring  sample  matrices  using  scattering  intensities  and   full   profile   fitting   method   combined   with   the   Fundamental   Parameter   (FP)   method.   The   scattering   FP   method   corrects   for   non-­‐measuring   components   in   samples   such   as   coal   fly   ash,   soils   and   biological   samples   by   using   Compton   and   Thomson   scattering   intensities   from   a   Mo   secondary   target.   The   measured  concentrations  of  the  trace  hazardous  elements  (As,  Cd,  Cr,  Hg,  Pb,  and  Se)  and  major  elements   in  a  coal  fly  ash  sample  using  the  ED-­‐XRF  spectrometer  with  secondary  targets,  polarised  optics,  and  high   speed  detector  with  pile-­‐up  rejection  demonstrated  good  agreements  with  the  certified  values.  

  Figure  17  –  The  integrated  XRF  and  XRD  spectrometer  (Bonvin  and  others,  1998)  

Bonvin   and   others   (1998)   proposed   an   integrated   XRD–XRF   system   for   online   process   control   applications.   The   combined   XRD   and   XRF   instrument,   as   illustrated   in   Figure   17,   has   separate   proportional  counters  to  detect  diffracted  beams  and  fluorescence  radiation.  A  standard  XRD  platform  is   used  with  fixed  geometry  goniometer  and  an  energy  dispersive  x-­‐ray  detector  for  the  XRF  analysis.  This  

electronic module

water cooling

exchangerheat generator

x–ray tube fixed channels vacuum tank

sample in analysis position

sample changer

molecular pump

vacuum pump

approach  has  been  applied  in  industrial  processes  such  as  iron  and  steel,  and  cement  making  but  is  yet  to   be  tested  and  validated  for  coal  analysis.  

Dalam dokumen Coal sampling and analysis standards (Halaman 74-78)