• Tidak ada hasil yang ditemukan

Je nis Biaya

NO

(Sumber : PT. Multibangun Adhiatama Konstruksi,2021)

Contoh perhitungan pekerjaan pembesian pile cap (alternatif Penambahan Jam Kerja) Pekerjaan pemasangan dinding yang memiliki cost slope terendah dari pada pekerjaan lainya sehingga merupakan awal dari perencanaan untuk biaya tidak langsung.

 Normal durasi diambil dari durasi perencanaan 548 hari

 Dari hasil perhitungan crash duration diambil didapat durasi

percepatan 92,31 dari durasi nomal penyelesaian 120 hari , sehingga

durasi penyelesaianya maju 28 hari .

Bab- IV Hasil Dan Analisis

IV-118

 Biaya tidak langsung crashing hari ke-520

= Biaya tak langsung per hari x 520

= Rp.2.080.000 x 520 hari

= Rp. 1.082.240.000,- 2. Biaya Langsung (Direct Cost)

Contoh perhitungan pekerjaan pembesian pile cap (alternatif Penambahan Jam Kerja)

 Biaya langsung normal = Rp 2.464.460.095

 Biaya alat bantu lembur:

Kabel Supreme NYM 3x2,5 mm2 (Panjang 250 m’) Rp. 3,960,000 Lampu Sorot Tembak LED 150watt,(8 buah) Rp.3,080,000 Stop Kontak (2 buah) Rp. 58,600 Steker Listrik Bulat Broco 13310 Putih (3 buah) Rp. 45,000 + Jumlah Rp. 7,143,600

 Normal durasi diambil dari durasi perencanaan 548 hari

 Dari hasil perhitungan crash duration diambil didapat durasi percepatan 92,31 dari durasi nomal penyelesaian 120 hari , sehingga durasi penyelesaianya maju 28 hari .

 Biaya Langsung crashing hari ke-520

= Biaya langsung normal + Biaya crashing (cost clope) + Biaya alat bantu lembur

= Rp 2.464.460.095 + (8 x Rp2.359.338,-) + Rp. 7.143.600

Bab- IV Hasil Dan Analisis

IV-119

= Rp2.532.872.544 3. Biaya total (Total cost)

Biaya total = Biaya langsung (direct cost) + Biaya tidak langsung (inderect cost)

= Rp2.532.872.544 + Rp. 1.082.240.000,-

= Rp 3.615.112.544

Adapun hasil perhitungan analisa waktu dan biaya untuk alternatif penambahan jam kerja

lembur & Penambahan Jumlah tenaga kerja, pada semua aktifitas yang berada pada

lintasan kritis.Perhitungan biaya totalnya terlihat pada tabel 4.9 dan tabel 4.10 dibawah

ini

B a b - I V H a si l D a n A n a lis is

IV -1 2 0 N O . IT E M U R A IA N P E K E R J A A N T o ta l C ra sh D u r a ti o n T o ta l D u r a ti o n C o st S lo p e K o m u la ti f T a m b a h a n B ia y a B ia y a L a n g su n g ( D ir e ct C o st ) B ia y a T id a k L a n g su n g (I n d ir ec t c o st ) T o ta l C o st (D ir ec t C o st ) B ia y a A la t b a n tu le m b u r T o ta l D ir ec t C o st V a ri a b le C o st /H a ri T o ta l I n d ir ec t C o st A R S IT E K T U R L A N T A I 8 5 4 8 R p 2 .4 5 7 .3 1 6 .4 9 5 R p 7 .1 4 3 .6 0 0 R p 2 .4 6 4 .4 6 0 .0 9 5 R p 2 .0 8 0 .0 0 0 R p 1 .1 3 9 .8 4 0 .0 0 0 R p 3 .6 0 4 .3 0 0 .0 9 5 0 1 P e k er ja a n D in d in g

2 8 5 2 0 R p 2 .4 7 0 .4 5 0 R p 6 8 .4 1 2 .4 4 9 R p 2 .5 2 5 .7 2 8 .9 4 4 R p 7 .1 4 3 .6 0 0 R p 2 .5 3 2 .8 7 2 .5 4 4 R p 2 .0 8 0 .0 0 0 R p 1 .0 8 2 .2 4 0 .0 0 0 R p 3 .6 1 5 .1 1 2 .5 4 4 A P a sa n g a n D in d in g B a ta R in g a n 1 P as . B at a R in g an 6 0 x 2 0 x 1 0 c m e x . B ric o n d en g an M U -3 8 2 B P a sa n g a n P le st er a n d a n A ci a n 1 P as . P le st er an te b al 1 5 m m d en g an M U -3 0 2 2 P as . A ci an te b al 1 ,5 m m d en g an M U -2 0 2 3 P as . W at er p ro o fin g C o at in g ( M U 6 0 0 + L 5 0 0 ) ( T o ile t/A re a B as ah ) 4 P as . P le st er an B et o n te b al 1 5 m m d en g an M U -3 0 2

5 P as . A ci an B et o n te b al 1 ,5 m m d en g an M U -2 0 2

C P a sa n g a n D in d in g P a rt is i

1 P as . P ar tis i C u b ic al T o ile t G R F C e x . P h en o lic

2 P as . D in d in g P ar tis i G y p su m 1 2 m m e x . Ja y ab o ar d R an g k a M et al S tu d

B a b - I V H a si l D a n A n a lis is

IV -1 2 1 3 P as . P ar tis i P ly w o o d 6 m m F in . H P L e x . G ra s M er in o

D P a sa n g a n K er a m ik D in d in g 1 P as . D in d in g K er am ik 3 0 x 6 0 C m e x . R o m an (a re a to ile t/a re a b as ah ) 2 P as . D in d in g K er am ik 2 0 x 2 0 C m ( d in d in g d an m ej a b et o n ) E P a sa n g a n B et o n P ra k ti s 1 P as . K o lo m P ra k tis 1 1 x 1 1 C m

2 P as . B al o k L at ai 1 1 x 1 1 C m T er m a su k p a d a s is i a ta s a m b a n g ku se n d a n p er ku a ta n yg d ije la sk a n p a d a g a m b a r. 0 2 P e k er ja a n L a n ta i

1 P as . L an ta i H o m o g en eo u s T ile 8 0 x 8 0 c m e x . I n d o g re ss T ip e U n ic o lo r W h ite O n x y

1 1 5 0 9 R p 2 .5 6 3 .5 1 1 R p 2 8 .3 9 5 .8 1 4 R p 2 .4 8 5 .7 1 2 .3 0 9 R p 7 .1 4 3 .6 0 0 R p 2 .4 9 2 .8 5 5 .9 0 9 R p 2 .0 8 0 .0 0 0 R p 1 .0 5 9 .2 0 0 .0 0 0 R p 3 .5 5 2 .0 5 5 .9 0 9 (m o b ile st a g e, a u la b er sa m a , fr ee -fu n ct io n , ta n g g a u ta m a , l o b b y) 2 P as . L an ta i H o m o g en eo u s T ile 6 0 x 6 0 c m e x . In d o g re ss S T ip e C ry st al W h ite P o lis ed

(r u a n g ri a s, g u d a n g , p a n tr y)

3 P as . L an ta i K er am ik 3 0 x 3 0 c m A n ti S lip e x .

B a b - I V H a si l D a n A n a lis is

IV -1 2 2 R o m an T ip e G 3 3 7 1 0 6 V iv as B ia n co (a re a to ile t)

4 P as . L an ta i K er am ik 2 0 x 3 0 c m A n ti S lip e x . R o m an T ip e G 2 2 0 5 0 1 V en er e D u st (a re a ja n ito r) 5 P as . R ab at B et o n

(ta n g g a d a ru ra t)

6 P as . P lin L an ta i H o m o g en eo u s T ile 1 0 x 8 0 c m e x . I n d o g re ss T ip e U n ic o lo r W h ite O n x y (A re a P a s. H o m o g en eo u s T ile 8 0 x8 0 c m e x. I n d o g re ss T ip e U n ic o lo r W h ite O n xy T er se b u t d i A ta s)

7 P as . P lin L an ta i H o m o g en eo u s T ile 1 0 x 6 0 c m e x . In d o g re ss S T ip e C ry st al W h ite P o lis ed (A re a P a s. H o m o g en eo u s T ile 8 0 x8 0 c m e x. I n d o g re ss S T ip e C ry st a l W h ite P o lis ed T er se b u t d i A ta s)

8 P as . L ev el in g L an ta i d en g an S cr ee d L an ta i te b al 3 C m ( P er at a L an ta i d i b aw ah P as . H o m o g en eo u s T ile )

9 P as . W at er p ro o fin g C o at in g ( M U 6 0 0 + L 5 0 0 ) ( T o ile t/A re a B as ah )

B a b - I V H a si l D a n A n a lis is

IV -1 2 3 0 3 P e k er ja a n P la fo n d

1 P as . P la fo n d G y p su m b o ar d 9 M m E x . Ja y ab o ar d R an g k a M et al F u rin g

8 5 0 1 R p 2 .0 3 8 .1 2 3 R p 1 6 .9 3 2 .1 0 0 R p 2 .4 7 4 .2 4 8 .5 9 5 R p 7 .1 4 3 .6 0 0 R p 2 .4 8 1 .3 9 2 .1 9 5 R p 2 .0 8 0 .0 0 0 R p 1 .0 4 1 .9 2 0 .0 0 0 R p 3 .5 2 3 .3 1 2 .1 9 5 3 P as . P la fo n G y p til e 9 m m ex . J ay aB o ar d C o n d ad o + R an g k a C ro ss T E E /M ai n T E E 4 P as . P la fo n d B et o n E k sp o s

5 P as . L is t P la fo n d S h ad o w L in e 0 4 P e k er ja a n P in tu & J en d el a le n g k a p a cc e ss o ri es a . P in tu d a n J en d el a : 1 P 1 1 0 0 x 2 2 0 C m

6 4 9 5 R p 3 9 2 .5 3 0 R p 2 .1 7 4 .0 1 2 R p 2 .4 5 9 .4 9 0 .5 0 7 R p 7 .1 4 3 .6 0 0 R p 2 .4 6 6 .6 4 3 .1 0 7 R p 2 .0 8 0 .0 0 0 R p 1 .0 3 0 .4 0 0 .0 0 0 R p 3 .4 9 7 .0 3 4 .1 0 7 2 P D 1 1 8 0 x 2 6 0 C m 3 P D 2 1 6 0 x 2 2 0 C m 4 P B 2 9 0 x 2 1 5 C m 5 P B 4 1 2 0 x 2 2 0 C m 6 P T 1 8 5 x 2 2 0 C m 7 J4 3 7 0 x 1 7 0 C m 8 J5 6 8 8 x 2 3 1 C m 9 J6 3 7 0 x 1 7 0 C m 1 0 J1 0 2 x 1 1 0 x 1 7 0 C m

1 1 B V 1 3 0 x 6 0 C m

1 2 B V 2 1 0 5 x 1 4 0 C m

1 3 P S 1 7 0 x 1 0 0 C m

0 5 P e k er ja a n S a n it a ir

B a b - I V H a si l D a n A n a lis is

IV -1 2 4 1 P as . C lo se t D u d u k e x . T O T O C W 4 2 1 J- S W 4 2 0 JP L en g k ap A k se so ris

3 4 9 3 R p 4 8 5 .6 5 4 R p 1 .3 4 4 .8 8 8 R p 2 .4 5 8 .3 5 3 .6 9 1 R p 7 .1 4 3 .6 0 0 R p 2 .4 6 5 .8 0 4 .9 8 3 R p 2 .0 8 0 .0 0 0 R p 1 .0 2 4 .6 4 0 .0 0 0 R p 3 .4 9 0 .4 4 4 .9 8 3 2 P as . S h o w er S p ra y e x . ex . T O T O T H X 2 0 N P IV 3 P as . W as ta fe l M ej a ex . T O T O L W 5 6 5 + T S 1 2 6 A R + T X 1 1 1 L R Y R

4 P as . P ap er H o ld er e x . T O T O T S 1 1 6 R 5 P as . F lo o r D ra in e x . T O T O T X 1 B V 1 6 P as . K itc h en S in k S ta in le ss S te el 1 L o b an g ta n p a P et ir as an 7 P as . K ra n D in d in g e x . T O T O T 2 6 -1 3 8 P as . K ra n K itc h en S in k ex . T O T O T 3 0 A R Q 1 3 N 9 P as . U rin al e x . T O T O U 5 7 M 1 0 P as . K ac a C er m in 5 M m ex . L o k al 1 1 P as . U rin al D iv id er e x . T O T O A W 1 1 5 J 1 2 P as . G ra b B ar e x . T O T O T X 3 A 2 1 3 P as . m ej a b et o n T eb al 1 0 C m 0 6 P e k er ja a n P e n g ec a ta n

1 C at D in d in g L u ar A cr y lic e x . M o w ile x 1 0 4 8 3 R p 3 .8 0 1 .8 5 5 R p 3 6 .8 4 8 .7 4 9 R p 2 .4 9 4 .1 6 5 .2 4 4 R p 7 .1 4 3 .6 0 0 R p 2 .5 0 1 .3 0 8 .8 4 4 R p 2 .0 8 0 .0 0 0 R p 1 .0 0 4 .4 8 0 .0 0 0 R p 3 .5 0 5 .7 8 8 .8 4 4 2 C at D in d in g D al am E m u ls i e x . M o w ile x

B a b - I V H a si l D a n A n a lis is

IV -1 2 5 3 C at D in d in g D al am E m u ls i e x . M o w ile x A cr y lic G lo ss E n am el

4 C at D in d in g P ar tis i G y p su m e x . M o w ile x 5 C at P la fo n d E m u ls i e x . M o w ile x 0 7 P e k er ja a n L a in -l a in

1 P ek er ja an T an g g a D ar u ra t:

a. P as . H an d ra il K ay u Ja ti d i P lit u r d an R ai lli n g P ip a B es i d i C at D u co

4 4 7 9 R p 1 .6 5 4 .0 9 9 R p 6 .8 7 0 .8 7 5 R p 2 .4 6 4 .1 8 7 .3 6 9 R p 7 .1 4 3 .6 0 0 R p 2 .4 7 1 .3 3 0 .9 6 9 R p 2 .0 8 0 .0 0 0 R p 9 9 5 .8 4 0 .0 0 0 R p 3 .4 6 4 .1 7 0 .9 6 9 2 P as . T o p i- T o p i B et o n

a. P as . P la t T o p i- T o p i B et o n te b al 1 0 C m F in is h in g C at E k st er io r

b . C at D in d in g L u ar A cr y lic e x . M o w ile x

3 P as . T al i A ir D in d in g A lu m in iu m

B a b - I V H a si l D a n A n a lis is

IV -1 2 6 T ab el 4 .1 1 H ai l p er h itu n an b ia y a to ta l u n tu k a lte rn at if p en am b ah an ju m la h te n ag a k er ja

N O . IT E M U R A IA N P E K E R J A A N S A T . V O L U M E T o ta l C ra sh D u r a ti o n T o ta l D u r a ti o n C o st S lo p K u m u la ti f T a m b a h a n B ia y a B ia y a L a n g su n g (D ir ec t C o st ) B ia y a T id a k L a n g su n g (I n d er e ct C o st )

T o ta l C o st V a ri a b le C o st /H a ri T o ta l I n d ir ec t C o st A R S IT E K T U R L A N T A I 8 5 4 8 R p 2 .4 6 4 .4 6 0 .0 9 5 R p 2 .0 8 0 .0 0 0 R p 1 .1 3 9 .8 4 0 .0 0 0 R p 3 .6 0 4 .3 0 0 .0 9 5

0 1 P e k er ja a n D in d in g

7 5 4 7 3 R p 1 6 1 .8 2 6 .8 8 8 R p 1 2 .1 3 7 .0 1 6 .5 6 9 R p 3 .7 6 6 .2 1 8 .7 9 5 R p 2 .0 8 0 .0 0 0 R p 9 8 3 .8 4 0 .0 0 0 R p 4 .7 5 0 .0 5 8 .7 9 5 A P a sa n g a n D in d in g B a ta R in g a n 1 P as . B at a R in g an 6 0 x 2 0 x 1 0 c m e x . B ric o n d en g an M U -3 8 2 m 2 1 .2 2 3 ,0 0 B P a sa n g a n P le st er a n d a n A ci a n 1 P as . P le st er an te b al 1 5 m m d en g an M U -3 0 2 m 2 2 .4 4 6 ,0 0 2 P as . A ci an te b al 1 ,5 m m d en g an M U -2 0 2 m 2 2 .2 5 4 ,3 0 3 P as . W at er p ro o fin g C o at in g ( M U 6 0 0 + L 5 0 0 ) ( T o ile t/A re a B as ah ) m 2 4 6 5 ,8 9 4 P as . P le st er an B et o n te b al 1 5 m m d en g an M U -3 0 2 m 2 4 8 7 ,0 0 5 P as . A ci an B et o n te b al 1 ,5 m m d en g an M U -2 0 2 m 2 4 8 7 ,0 0 C P a sa n g a n D in d in g P a rt is i

1 P as . P ar tis i C u b ic al T o ile t G R F C ex . P h en o lic m 2 1 9 ,0 3

2 P as . D in d in g P ar tis i G y p su m 1 2 m m e x . J ay ab o ar d R an g k a M et al S tu d m 2 4 6 ,5 0

3 P as . P ar tis i P ly w o o d 6 m m F in . H P L e x . G ra s M er in o m 2 2 4 ,9 4 D P a sa n g a n K er a m ik D in d in g

B a b - I V H a si l D a n A n a lis is

IV -1 2 7 1 P as . D in d in g K er am ik 3 0 x 6 0 C m ex . R o m an ( ar ea to ile t/a re a b as ah ) m 2 1 7 8 ,4 0

2 P as . D in d in g K er am ik 2 0 x 2 0 C m (d in d in g d an m ej a b et o n ) m 2 - E P a sa n g a n B et o n P ra k ti s 1 P as . K o lo m P ra k tis 1 1 x 1 1 C m m 3 6 ,6 6 2 P as . B al o k L at ai 1 1 x 1 1 C m m 3 4 ,4 4 T er m a su k p a d a s is i a ta s a m b a n g k u se n d a n p er ku a ta n y g d ije la sk a n p a d a g a m b a r.

0 2 P e k er ja a n L a n ta i

1 P as . L an ta i H o m o g en eo u s T ile 8 0 x 8 0 c m e x . I n d o g re ss T ip e U n ic o lo r W h ite O n x y m 2 1 .0 5 0 ,4 8

3 0 4 4 3 R p 1 7 5 .9 6 4 .4 8 4 R p 5 .2 7 8 .9 3 4 .5 1 7 R p 3 .8 7 9 .3 1 9 .5 6 6 R p 2 .0 8 0 .0 0 0 R p 9 2 1 .4 4 0 .0 0 0 R p 4 .8 0 0 .7 5 9 .5 6 6 (m o b ile s ta g e, a u la b er sa m a , f re e- fu n ct io n , t a n g g a u ta m a , lo b b y) 2 P as . L an ta i H o m o g en eo u s T ile 6 0 x 6 0 c m e x . I n d o g re ss S T ip e C ry st al W h ite P o lis ed m 2 1 2 7 ,8 0 (r u a n g r ia s, g u d a n g , p a n tr y) 3 P as . L an ta i K er am ik 3 0 x 3 0 c m A n ti S lip e x . R o m an T ip e G 3 3 7 1 0 6 V iv as B ia n co m 2 6 2 ,3 0 (a re a to ile t) 4 P as . L an ta i K er am ik 2 0 x 3 0 c m A n ti S lip e x . R o m an T ip e G 2 2 0 5 0 1 V en er e D u st m 2 1 5 ,5 6

(a re a ja n ito r)

5 P as . R ab at B et o n m 2 5 1 ,9 0

(ta n g g a d a ru ra t)

6 P as . P lin L an ta i H o m o g en eo u s T ile 1 0 x 8 0 c m e x . I n d o g re ss T ip e U n ic o lo r W h ite O n x y m 1 2 4 6 ,0 0

(A re a P a s. H o m o g en eo u s T ile 8 0 x8 0 c m e x. I n d o g re ss T ip e U n ic o lo r W h ite O n xy T er se b u t d i A ta s)

B a b - I V H a si l D a n A n a lis is

IV -1 2 8 7 P as . P lin L an ta i H o m o g en eo u s T ile 1 0 x 6 0 c m e x . I n d o g re ss S T ip e C ry st al W h ite P o lis ed m 1 1 0 6 ,7 5

(A re a P a s. H o m o g en eo u s T ile 8 0 x8 0 c m e x. I n d o g re ss S T ip e C ry st a l W h ite P o lis ed T er se b u t d i A ta s) 8 P as . L ev el in g L an ta i d en g an S cr ee d L an ta i t eb al 3 C m ( P er at a L an ta i d i b aw ah P as . H o m o g en eo u s T ile ) m 2 1 .2 5 6 ,1 4 9 P as . W at er p ro o fin g C o at in g ( M U 6 0 0 + L 5 0 0 ) ( T o ile t/A re a B as ah ) m 2 2 7 0 ,1 0

0 3 P e k er ja a n P la fo n d

1 P as . P la fo n d G y p su m b o ar d 9 M m E x . J ay ab o ar d R an g k a M et al F u rin g m 2 1 .0 2 0 ,6 0

2 3 4 2 1 R p 1 0 3 .9 1 1 .5 7 9 R p 2 .3 3 8 .0 1 0 .5 2 4 R p 3 .3 0 2 .8 9 6 .3 2 5 R p 2 .0 8 0 .0 0 0 R p 8 7 4 .6 4 0 .0 0 0 R p 4 .1 7 7 .5 3 6 .3 2 5 3 P as . P la fo n G y p til e 9 m m e x . Ja y aB o ar d C o n d ad o + R an g k a C ro ss T E E /M ai n T E E m 2 2 0 2 ,8 5 4 P as . P la fo n d B et o n E k sp o s m 2 1 3 9 ,4 0

5 P as . L is t P la fo n d S h ad o w L in e m 1 4 7 8 ,0 0 0 4 P e k er ja a n P in tu & J en d el a le n g k a p a c ce ss o ri e s a . P in tu d a n J en d el a : 1 P 1 1 0 0 x 2 2 0 C m u n it 3 ,0 0

1 5 4 0 6 R p 3 2 0 .4 0 6 R p 4 .8 0 6 .0 8 9 R p 2 .4 7 4 .1 6 6 .9 4 2 R p 2 .0 8 0 .0 0 0 R p 8 4 3 .4 4 0 .0 0 0 R p 3 .3 1 7 .6 0 6 .9 4 2 2 P D 1 1 8 0 x 2 6 0 C m u n it 3 ,0 0

3 P D 2 1 6 0 x 2 2 0 C m u n it 1 ,0 0

4 P B 2 9 0 x 2 1 5 C m u n it 2 ,0 0

5 P B 4 1 2 0 x 2 2 0 C m u n it 4 ,0 0

6 P T 1 8 5 x 2 2 0 C m u n it 2 ,0 0

B a b - I V H a si l D a n A n a lis is

IV -1 2 9 7 J4 3 7 0 x 1 7 0 C m u n it 6 ,0 0

8 J5 6 8 8 x 2 3 1 C m u n it 1 ,0 0 9 J6 3 7 0 x 1 7 0 C m u n it 2 ,0 0 1 0 J1 0 2 x 1 1 0 x 1 7 0 C m u n it 4 8 ,0 0 1 1 B V 1 3 0 x 6 0 C m u n it 4 ,0 0 1 2 B V 2 1 0 5 x 1 4 0 C m u n it 2 ,0 0 1 3 P S 1 7 0 x 1 0 0 C m u n it 2 ,0 0

0 5 P e k er ja a n S a n it a ir

1 P as . C lo se t D u d u k e x . T O T O C W 4 2 1 J- S W 4 2 0 JP L en g k ap A k se so ris se t 9 ,0 0

7 ,5 3 9 8 R p 1 .2 4 1 .9 8 0 R p 9 .3 1 4 .8 4 7 R p 2 .4 8 1 .5 3 9 .5 3 2 R p 2 .0 8 0 .0 0 0 R p 8 2 7 .8 4 0 .0 0 0 R p 3 .3 0 9 .3 7 9 .5 3 2 2 P as . S h o w er S p ra y e x . e x . T O T O T H X 2 0 N P IV se t 9 ,0 0

3 P as . W as ta fe l M ej a ex . T O T O L W 5 6 5 + T S 1 2 6 A R + T X 1 1 1 L R Y R se t 8 ,0 0

4 P as . P ap er H o ld er e x . T O T O T S 1 1 6 R se t 9 ,0 0

5 P as . F lo o r D ra in e x . T O T O T X 1 B V 1 se t 1 5 ,0 0

6 P as . K itc h en S in k S ta in le ss S te el 1 L o b an g ta n p a P et ir as an se t 1 ,0 0

7 P as . K ra n D in d in g e x . T O T O T 2 6 -1 3 se t 1 ,0 0

8 P as . K ra n K itc h en S in k e x . T O T O T 3 0 A R Q 1 3 N se t 1 ,0 0

9 P as . U rin al e x . T O T O U 5 7 M se t 6 ,0 0

1 0 P as . K ac a C er m in 5 M m e x . L o k al m 2 5 ,7 6

B a b - I V H a si l D a n A n a lis is

IV -1 3 0 1 1 P as . U rin al D iv id er e x . T O T O A W 1 1 5 J se t 5 ,0 0

1 2 P as . G ra b B ar e x . T O T O T X 3 A 2 se t 2 ,0 0 1 3 P as . m ej a b et o n T eb al 1 0 C m m 3 0 ,7 0

0 6 P e k er ja a n P e n g ec a ta n

1 C at D in d in g L u ar A cr y lic e x . M o w ile x m 2 7 4 7 ,2 0

2 6 ,2 5 3 7 2 R p 4 2 0 .4 3 4 .0 8 6 R p 1 1 .0 3 6 .3 9 4 .7 5 3 R p 5 .8 3 5 .0 7 6 .3 8 1 R p 2 .0 8 0 .0 0 0 R p 7 7 3 .2 4 0 .0 0 0 R p 6 .6 0 8 .3 1 6 .3 8 1 2 C at D in d in g D al am E m u ls i e x . M o w ile x m 2 1 .5 3 0 ,7 0 3 C at D in d in g D al am E m u ls i e x . M o w ile x A cr y lic G lo ss E n am el m 2 4 1 4 ,0 2 4 C at D in d in g P ar tis i G y p su m e x . M o w ile x m 2 4 6 ,5 0 5 C at P la fo n d E m u ls i e x . M o w ile x m 2 1 .5 6 1 ,0 3

0 7 P e k er ja a n L a in -l a in 1 P ek er ja an T an g g a D ar u ra t:

a. P as . H an d ra il K ay u J at i d i P lit u r d an R ai lli n g P ip a B es i d i C at D u co m 1 2 1 ,9 0

1 1 .2 5 3 6 1 R p 6 3 .1 8 0 .5 4 2 R p 7 1 0 .7 8 1 .0 9 5 R p 2 .9 7 7 .0 4 8 .0 2 9 R p 2 .0 8 0 .0 0 0 R p 7 4 9 .8 4 0 .0 0 0 R p 3 .7 2 6 .8 8 8 .0 2 9 2 P as . T o p i- T o p i B et o n

a. P as . P la t T o p i- T o p i B et o n te b al 1 0 C m F in is h in g C at E k st er io r m 3 1 7 ,5 6

b . C at D in d in g L u ar A cr y lic e x . M o w ile x m 2 3 5 1 ,1 2 3 P as . T al i A ir D in d in g A lu m m 1 3 2 9 ,0 6 (S u m b er : d a ta o la h a n p en el iti ,2 0 2 1 )

Bab- IV Hasil Dan Analisis

IV-131 4.10.2 Membandingkan Waktu dan Biaya Optimum

Setelah mengetahui besarnya biaya langsung, biaya tidak langsung dan biaya total proyek percepatan, langkah selanjutnya adalah menganalisa setiap alternatif percepatan manakah durasi yang paling mendekati waktu penyelesaian proyek yang diminta pihak owner yang disebut durasi optimum dari setiap alternatif, sehingga dapat mengetahui juga biaya optimum dari durasi tersebut.

Langkah berikutnya adalah membuat grafik hubungan antar biaya dan waktu. Dari grafik

tersebut dapat diketahui berapa besarnya durasi dan biaya optimum untuk penyelesaian

proyek.

B a b - I V H a si l D a n A n a lis is

IV -1 3 2 G am b ar 4 .2 H u b u n g an w ak tu d an b ia y a to ta l a lte rn at if p en am b ah an te n ag a k er ja

(S u m b er : D a ta o le h p en u lis 2 0 2 1 ) R p 9 8 0 .0 0 0 .0 0 0 R p 1 .0 0 0 .0 0 0 .0 0 0 R p 1 .0 2 0 .0 0 0 .0 0 0 R p 1 .0 4 0 .0 0 0 .0 0 0 R p 1 .0 6 0 .0 0 0 .0 0 0 R p 1 .0 8 0 .0 0 0 .0 0 0 R p 1 .1 0 0 .0 0 0 .0 0 0 R p 1 .1 2 0 .0 0 0 .0 0 0 R p 1 .1 4 0 .0 0 0 .0 0 0 R p 1 .1 6 0 .0 0 0 .0 0 0

R p - R p 5 0 0 .0 0 0 .0 0 0 R p 1 .0 0 0 .0 0 0 .0 0 0 R p 1 .5 0 0 .0 0 0 .0 0 0 R p 2 .0 0 0 .0 0 0 .0 0 0 R p 2 .5 0 0 .0 0 0 .0 0 0 R p 3 .0 0 0 .0 0 0 .0 0 0 R p 3 .5 0 0 .0 0 0 .0 0 0 R p 4 .0 0 0 .0 0 0 .0 0 0

4 7 0 4 8 0 4 9 0 5 0 0 5 1 0 5 2 0 5 3 0 5 4 0 5 5 0 5 6 0

B ia y a L a n g su n g B ia y a T o ta l B ia y a T id a k L a n g su n g R p 3 .6 1 5 .1 1 2 .5 4 4

R p 2 .5 3 2 .8 7 2 .5 4 4

R p 1 .0 8 2 .2 4 0 .0 0 0

Bab- IV Hasil Dan Analisis

IV-133 Dari gambar 4.2 Hubungan waktu dan biaya total untuk alternatif penambahan jam kerja lembur (4 jam kerja) diperoleh:

1. Waktu optimum percepatan durasi proyek dari durasi normal 548 HK menjadi 509 HK, karena durasi ini yang paling mendekati dan tidak melebihi durasi penyelesaian waktu yang diminta pihak owner yaitu 510 HK.

2. Tanggal penyelesaian proyek menjadi 30 April 2022 lebih maju dari permintaan pihak owner pada 29 April 2022 dan dari durasi normal yang selesai pada 8 Juni 2022.

3. Kegiatan – kegiatan yang perlu dipercepat agar durasi menjadi 509 HK sesuai Tabel 4.9. Hasil Perhitungan biaya total untuk alternatif penambahan jam kerja lembur yaitu:

 Pemasangan Dinding

4. Total biaya optimum proyek akibat percepatan durasi proyek yaitu dari

Rp 2.484.079.294 ,- menjadi Rp 3.543.279.294,-

B a b - I V H a si l D a n A n a lis is

IV -1 3 4 G am b ar 4 .2 H u b u n g an w ak tu d an b ia y a to ta l a lte rn at if p en am b ah an ja m k er ja ( le m b u r)

(S u m b er : D a ta o le h p en u lis 2 0 2 1 ) R p - R p 2 0 0 .0 0 0 .0 0 0 R p 4 0 0 .0 0 0 .0 0 0 R p 6 0 0 .0 0 0 .0 0 0 R p 8 0 0 .0 0 0 .0 0 0 R p 1 .0 0 0 .0 0 0 .0 0 0 R p 1 .2 0 0 .0 0 0 .0 0 0

R p 2 .0 0 0 .0 0 0 .0 0 0 R p 2 .5 0 0 .0 0 0 .0 0 0 R p 3 .0 0 0 .0 0 0 .0 0 0 R p 3 .5 0 0 .0 0 0 .0 0 0 R p 4 .0 0 0 .0 0 0 .0 0 0 R p 4 .5 0 0 .0 0 0 .0 0 0 R p 5 .0 0 0 .0 0 0 .0 0 0 R p 5 .5 0 0 .0 0 0 .0 0 0 R p 6 .0 0 0 .0 0 0 .0 0 0 R p 6 .5 0 0 .0 0 0 .0 0 0 R p 7 .0 0 0 .0 0 0 .0 0 0

3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 C h a rt T it le

B ia y a L a n g su n g B ia y a T o ta l B ia y a T id a k L a n g su n g R p 5 .8 3 5 .0 7 6 .3 8 1 R p 7 7 3 .2 4 0 .0 0 0 R p 6 .6 0 8 .3 1 6 .3 8 1

Bab- IV Hasil Dan Analisis

IV-135 Dari gambar 4.3 Hubungan waktu dan biaya total untuk alternatif penambahan jumlah tenaga kerja dapat diperoleh:

1. Waktu optimum percepatan durasi proyek dari durasi normal 548 HK menjadi 360 HK, karena durasi ini yang paling mendekati dan tidak melebihi durasi penyelesaian waktu yang diminta pihak owner yaitu 510 HK.

2. Tanggal penyelesaian proyek menjadi 02 Desember 2021 lebih maju dari permintaan pihak owner pada 29 April 2022 dan dari durasi normal yang selesai pada 8 Juni 2022.

3. Kegiatan – kegiatan yang perlu dipercepat agar durasi menjadi 125 HK sesuai Tabel 4.10. Hasil Perhitungan biaya total untuk alternatif penambahan jam kerja lembur yaitu:

 Pekerjaan Dinding

 Pekerjaan Lantai

 Pekerjaan Plafond

 Pekerjaan Pintu & Jendela lengkap accessories

 Pekerjaan Sanitair

4. Total biaya optimum proyek akibat percepatan durasi proyek yaitu dari Rp

4.996.638.717,- menjadi Rp 7.257.785.601.-

B a b - I V H a si l D a n A n a lis is

IV -1 3 6 T ab el 4 .1 2 P er b an d in g an d u ra si p er ce p at an & b ia y a, A k ib at p en am b ah an ja m k e rj a (le m b u r) d en g an p en am b ah an ju m la h te n ag a k er ja

B ia ya L an gs u n g (D ir ec t C o st ) B ia ya T id ak L an gs u n g (I n d ir ec t C o st ) T o ta l C o st

1 P en am ba ha n Ja m K er ja L em bu r 54 8 51 0 50 9 3. 60 4. 30 0.0 95 R p 2. 53 2. 87 2. 54 4 R p 1. 08 2. 24 0. 00 0 R p 3. 61 5. 11 2. 54 4 R p 2 P en am ba ha n T en ag a K er ja 54 8 51 0 36 0 3. 60 4. 30 0.0 95 R p 5. 83 5. 07 6. 38 1 R p 77 3. 24 0. 00 0 R p 6. 60 8. 31 6. 38 1 R p T o ta l B ia ya P er ce p at an

Dokumen terkait