• Tidak ada hasil yang ditemukan

Status and Future Thrusts of Sugarcane Processing Waste to Energy Conversion

14.4 Conclusion

Utilization of sugarcane processing waste to extract the energy is beneficial in terms of economic benefit to industry and farmers. It also reduces the burden on conven- tional and fossil fuel, reduces stress on environment by reducing waste and reusing the waste. It is also beneficial in agriculture as good quality manure in the form of Bio Earth. Thus, the sugarcane waste to energy generation and its technological advance- ment can be the breakthrough solution for the economic as well as environmental concerns.

References

1. N. Gowda, Sugarcane scenario in India: a view. Int. J. Soc. Sci. Econ. Res. (2019). Accessed:

04 Feb 2022. [Online]. Available: www.ijsser.org

2. NITI Aayog, Report of the task force on sugarcane and sugar industry

3. Sugar | WWF India. https://www.wwfindia.org/about_wwf/making_businesses_sustainable/

sugar/. Accessed 04 Feb 2022

4. Niti Aayog panel recommends linking sugarcane prices to sugar rates: the economic times. https://economictimes.indiatimes.com/news/economy/agriculture/niti-aayog-panel-rec ommends-linking-sugarcane-prices-to-sugar-rates/articleshow/77658185.cms

5. India emerges as the world’s largest producer and consumer of sugar and world’s 2nd largest exporter of sugar. https://pib.gov.in/PressReleasePage.aspx?PRID=1865320. Accessed 04 Nov 2022

6. S. Solomon, Sugarcane agriculture and sugar industry in India: at a glance. Sugar Tech. 16(2), 113–124 (2014). https://doi.org/10.1007/S12355-014-0303-8

7. S. Solomon, M. Swapna, Indian sugar industry: towards self-reliance for sustainability. Sugar Tech 24(3), 630–650 (2022). https://doi.org/10.1007/S12355-022-01123-5/TABLES/3 8. A.N. Pathak, Energy conservation in sugar industries. J. Sc. Indus. Res. 58, 76–82 (1999) 9. S.D. Mane, Cogeneration in Indian sugar industry: a review. Int. J. Sci. Eng. Appl. Sci. (IJSEAS)

2 (2016). [Online]. Available: www.ijseas.com

10. Co-generation. http://edugreen.teri.res.in/explore/renew/cogen.htm. Accessed 16 Feb 2022 11. Resource Recovery from Waste: Business Models for Energy, Nutrient and Water ...—Google

Books. https://books.google.co.in/. Accessed 16 Feb 2022

12. Distillery Products. https://vsil.co.in/distillery-products/. Accessed 16 Feb 2022

13. R. Katzen, P.W. Madson, G.D. Moon, Ethanol distillation: the fundamentals of a distilling system

14. B. Ketan et al., Dynamic soil, dynamic plant compost from sugarmill pressmud and distillery spentwash for sustainable agriculture. Accessed: 16 Feb 2022. [Online]. Available: www.cpcb.

nic.in

15. V. Saravanan, R.B. Kumar, Mathematical modelling and controller design using electromag- netic techniques for sugar industry process. 62(2), 155–162 (2019). https://doi.org/10.1080/

00051144.2019.1653667

16. T.R. Brown, M.M. Wright, Y. Román-Leshkov, R.C. Brown, Techno-economic assessment (TEA) of advanced biochemical and thermochemical biorefineries. Adv. Biorefineries: Biomass Waste Supply Chain Exploitation 34–66 (2014). https://doi.org/10.1533/9780857097385.1.34 17. G. Karthiga Devi, K. Vignesh, S. Chozhavendhan, Effective utilization of sugarcane trash for energy production. Refining Biomass Residues for Sustain. Energy Bioprod. Technol. Adv.

Life Cycle Assessment Econ. 259–273 (2020). https://doi.org/10.1016/B978-0-12-818996-2.

00012-0

18. Siddapur distilleries limited project report for capacity enhancement from 60 klpd to 70 klpd by keeping the effluent generation constant (2016)

19. P. Singh, Sugar industry: a hub of useful bio-based chemicals, in Sugar and Sugar Deriva- tives: Changing Consumer Preferences (2020) pp. 171–194. https://doi.org/10.1007/978-981- 15-6663-9_11

20. Sugar mills: Mills exports 26.5 lakh tonnes of sugar till Jan in 2021–22 market year—the economic times. https://economictimes.indiatimes.com/news/economy/agriculture/mills-exp orts-26-5-lakh-tonnes-of-sugar-till-jan-in-2021-22-mkt-year/articleshow/89303750.cms?fro m=mdr. Accessed 16 Feb 2022

21. P. Murali, B. Ram, P. Prathap, K. Hari, V. Venkatasubramanian, Sugarcane based ethanol production for fuel ethanol blending program in India (2021)

22. Implementation of the Ethanol Blended Petrol Programme in India and its Policy Outcomes—

India Foundation. https://indiafoundation.in/articles-and-commentaries/implementation-of- the-ethanol-blended-petrol-programme-in-india-and-its-policy-outcomes/. Accessed 16 Feb 2022

23. G. of I. NITI Aayog, Repot on the task force on sugarcane and sugar industry

24. Cabinet approves National Policy on Biofuels—2018. https://pib.gov.in/Pressreleaseshare.

aspx?PRID=1532265. Accessed 16 Feb 2022

25. Refining. https://mopng.gov.in/en/refining/ethanol-blended-petrol. Accessed 16 Feb 2022 26. A.S. Amarasekara, Handbook of Cellulosic Ethanol. Google Books. https://books.google.co.

in. Accessed 16 Feb 2022

27. S.I. Anwar, Determination of moisture content of bagasse of jaggery unit using microwave oven. J. Eng. Sci. Technol. 5(4), 472–478 (2010)

28. T.J. Rainey, G. Covey, Pulp and paper production from sugarcane bagasse. Sugarcane-Based Biofuels Bioprod. 259–280. https://doi.org/10.1002/9781118719862.CH10

29. Bagasse Moisture. https://www.moisttech.com/applications/bioenergy-moisture/bagasse-moi sture/. Accessed 16 Feb 2022

30. M.C. Detroja, Bagasse ash brick (2018). Accessed: 16 Feb 2022. [Online]. Available: www.ija riie.com

31. F.A. Salehi, Bagasse as a fuel for combined heat and power (CHP): an assessment of options for implementation in Iran. Accessed: 16 Feb 2022. [Online]. Available: https://bradscholars.

brad.ac.uk/handle/10454/5303

32. C. Dinakaran, S. Purushotham, S.M. Harikrishna, Study of a cogeneration plant in sugar mill by using bagasse as a fuel (2016). [Online]. Available: http://www.ieejournal.com/

33. R.G.D. Molin Filho et al., Characterization of different sugarcane bagasse ashes generated for preparation and application as green products in civil construction. Clean Technol. Environ.

Policy 21(8), 1687–1698 (2019). https://doi.org/10.1007/S10098-019-01740-X/FIGURES/1 34. M. do Fernanda Scaranto Amaral, J. Roberto Ribas, S. Carlos, Economic viability study of

an energy cogeneration project from sugarcane bagasse challenges and maturity of production engineering: competitiveness of enterprises, working conditions, environment

35. D. Munde, S. Sutar, Novateur publications international journal of innovations in engineering research and technology [IJIERT] vermicomposting of pressmud from sugar industry 36. M.M. Saleh-e-In, S. Yeasmin, B.K. Paul, M. Ahsan, M.Z. Rahman, S.K. Roy, Chemical studies

on press mud: a sugar industries waste in Bangladesh. Sugar Tech 14(2), 109–118 (2012).

https://doi.org/10.1007/S12355-012-0139-Z

37. N. Gupta, S. Tripathi, C. Balomajumder, Characterization of pressmud: a sugar industry waste.

Fuel 90(1), 389–394 (2011). https://doi.org/10.1016/J.FUEL.2010.08.021

38. M. Ayilara, O. Olanrewaju, O. Babalola, O. Odeyemi, Waste management through composting:

challenges and potentials. Sustainability 12(11), 4456 (2020). https://doi.org/10.3390/su1211 4456

39. Cogeneration. https://sugar.maharashtra.gov.in/1040/1165/COGENERATION. Accessed 16 Feb 2022

40. V. Kumar, A.K. Chopra, Effects of sugarcane pressmud on agronomical characteristics of hybrid cultivar of eggplant (Solanum melongena L.) under field conditions. Int. J. Recyc.

Organic Waste Agric. 5(2), 149–162 (2016). https://doi.org/10.1007/S40093-016-0125-7/FIG URES/15

41. M.S. Khan, G. Mustafa, F.A. Joyia, S.A. Mirza, Sugarcane as future bioenergy crop: potential genetic and genomic approaches. Sugarcane Biotechnol. Biofuels (2021). https://doi.org/10.

5772/INTECHOPEN.97581

42. Sugarcane as Energy Crop—Sugarcane Breeding Institute, Coimbatore, India. https://sug arcane.icar.gov.in/index.php/en/2014-04-28-11-31-50/sugarcane-as-energy-crop. Accessed 22 Feb 2022

43. E. Martinez-Hernandez, M.A. Amezcua-Allieri, J. Sadhukhan, J.A. Anell, Sugarcane bagasse valorization strategies for bioethanol and energy production. Sugarcane Technol. Res. (2017).

https://doi.org/10.5772/INTECHOPEN.72237

44. K. Keruthiga, S.N. Mohamed, N.N. Gandhi, K. Muthukumar, Sugar industry waste-derived anode for enhanced biohydrogen production from rice mill wastewater using artificial photo- assisted microbial electrolysis cell. Int. J. Hydrogen Energy 46(39), 20425–20434 (2021).

https://doi.org/10.1016/J.IJHYDENE.2021.03.181

45. O. Mendieta, L. Castro, J. Rodríguez, H. Escalante, Management and valorization of waste from a non-centrifugal cane sugar mill via anaerobic co-digestion: technical and economic potential.

Bioresour. Technol. 316, 123962 (2020). https://doi.org/10.1016/J.BIORTECH.2020.123962 46. India’s ethanol roadmap: the targets and challenges. https://www.downtoearth.org.in/blog/ene

rgy/india-s-ethanol-roadmap-the-targets-and-challenges-77360. Accessed 22 Feb 2022 47. M.C. Almendrala et al., Codigestion of press mud and distillery waste water with sugarcane

bagasse for enhanced biogas production. https://doi.org/10.5220/0008692000460051 48. P. Purohit, S. Dhar, P. Purohit, S. Dhar, Lignocellulosic biofuels in India: current perspectives,

potential issues and future prospects. AIMS Energy 6(3), 453–486 (2018). https://doi.org/10.

3934/ENERGY.2018.3.453

Assessment of Thermal Behavior