The population in the world is expected to multiply in the years to come eventually increasing the demand for the utilization of fossil fuels in various societal appli- cations. Recently, the utilization of magnetic nanoparticles has increased the effec- tiveness of pre-treatment methods, which help in the development of cost-effective renewable sugars production. These sugars are the building block of biofuels and biochemical production through biotechnological and chemical transformation. To sum up, the use of nanomaterials in the pre-treatment of lignocellulosic biomass for economic 2G sugar production followed by their biotransformation into renewable fuels and chemicals eventually strengthened the renewable economy.
Acknowledgements The authors are grateful to the Director, Indian Institute of Information Tech- nology Una, Himachal Pradesh, India, for providing the necessary facility to pursue the present work. The present work has been supported by a funding agency, and we gratefully acknowledge the financial support from Himachal Pradesh Council for Science, Technology & Environment (HIMCOSTE Sanction No. STC/F(8)-6/2019 (R&D 2019-20)-377).
References
1. N. Muradov, Low to near-zero CO2 production of hydrogen from fossil fuels: Status and perspectives. Int. J. Hydrogen Energy 42(20), 14058–14088 (2017)
2. A. Datta, A. Hossain, S. Roy, An overview on biofuels and their advantages and disadvantages 31, 1851–1858 (2019)
3. Z. Yin, L. Zhu, S. Li, T. Hu, R. Chu, F. Mo, D. Hu, C. Liu, B. Li, A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Biores. Technol. 301, 122804 (2020)
4. P. Murali, K. Hari, D. Puthira Prathap, An economic analysis of biofuel production and food security in India. Sugar Tech 18(5), 447–456 (2016)
5. J. Gao, A. Zhang, S.K. Lam, X. Zhang, A.M. Thomson, E. Lin, K. Jiang, L.E. Clarke, J.A.
Edmonds, P.G. Kyle, S. Yu, An integrated assessment of the potential of agricultural and forestry residues for energy production in China. Gcb Bioenergy 8(5), 880–893 (2016)
6. E. Toklu, Biomass energy potential and utilization in Turkey. Renew. Energy 107, 235–244 (2017)
7. N.S. Hassan, A.A. Jalil, C.N. Hitam, D.V.N. Vo, W. Nabgan, Biofuels and renewable chemicals production by catalytic pyrolysis of cellulose: a review. Environ. Chem. Lett. 18(5), 1625–1648 (2020)
8. E. Ahmad, T.S. Khan, M.I. Alam, K.K. Pant, M.A. Haider, Understanding reaction kinetics, deprotonation and solvation of brønsted acidic protons in heteropolyacid catalyzed synthesis of biorenewable alkyl levulinates. Chem. Eng. J. 400, 125916 (2020)
9. S. Kassaye, K.K. Pant, S. Jain, Hydrolysis of cellulosic bamboo biomass into reducing sugars via a combined alkaline solution and ionic liquid pretreament steps. Renew. Energy 104, 177–
184 (2017)
10. M.L. Verma, M. Puri, C.J. Barrow, Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit. Rev. Biotechnol. 36(1), 108–119 (2016)
11. M.L. Verma (Ed.), Nanobiotechnology for Sustainable Bioenergy and Biofuel Production (CRC Press, 2020)
12. J. Jia, W. Zhang, Z. Yang, X. Yang, N. Wang, X. Yu, Novel magnetic cross-linked cellulase aggregates with a potential application in lignocellulosic biomass bioconversion. Molecules 22(2), 269 (2017)
13. M.L. Verma, N.M. Rao, T. Tsuzuki, C.J. Barrow, M. Puri, Suitability of recombinant lipase immobilised on functionalised magnetic nanoparticles for fish oil hydrolysis. Catalysts 9(5), 420 (2019)
14. M. Hijosa-Valsero, J. Garita-Cambronero, A.I. Paniagua-García, R. Díez-Antolínez, A global approach to obtain biobutanol from corn stover. Renew. Energy 148, 223–233 (2020) 15. M. Dong, S. Wang, F. Xu, J. Wanf, Q. Li, J. Chen, Pretreatment of sweet sorghum straw and its
enzymatic digestion: insight into the structural changes and visualization of hydrolysis process.
Biotechnol. Biofuels 12, 276 (2019)
16. E.A. Omondi, P.K. Ndlba, P.G. Njuru, Characterization of water hyacinth (E. crassipes) from Lake Victoria and ruminal slaughterhouse waste as co-substrates in biogas production. SN Appl. Sci. 1, 848 (2019)
17. L.M.S. Menandro, H. Cantarella, H.C.J. Franco, O.T. Kölln, M.T.B. Pimenta, G.M. Sanches, Comprehensive assessment of sugarcane straw: implications for biomass and bioenergy production. Biofuels Bioprod. Biorefinery 11, 488–504 (2017)
18. B.S. Dhanya, A. Mishra, A.K. Chandel, M.L. Verma, Development of sustainable approaches for converting the organic waste to bioenergy. Sci. Total Environ. 723, 138109 (2020) 19. D. Paul, A. Arora, M.L. Verma, Advances in microbial biofuel production. Front. Microbiol.
2768 (2021)
20. A. Arora, P. Nandal, J. Singh, M.L. Verma, Nanobiotechnological advancements in lignocel- lulosic biomass pretreatment. Mater. Sci. Energy Technol. 3, 308–318 (2020)
21. J.Y. Zhu, X.J. Pan, Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Biores. Technol. 101(13), 4992–5002 (2010)
22. X. Lu, B. Xi, Y. Zhang, I. Angelidaki, Microwave pretreatment of rape straw for bioethanol production: focus on energy efficiency. Biores. Technol. 102(17), 7937–7940 (2011) 23. S.K. Khanal, D. Takara, S. Nitayavardhana, B.P. Lamsal, P. Lamsal, Ultrasound applications
in biorenewables for enhanced bioenergy and biofuel production, in Green Chemistry for Environmental Sustainability (CRC Press, Rajasthan, 2010), pp. 303–313
24. V.K. Garlapati, A.K. Chandel, S.J. Kumar, S. Sharma, S. Sevda, A.P. Ingle, D. Pant, Circular economy aspects of lignin: towards a lignocellulose biorefinery. Renew. Sustain. Energy Rev.
130, 109977 (2020)
25. D. Kumari, R. Singh, Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew. Sustain. Energy Rev. 90, 877–891 (2018)
26. B. Kumar, N. Bhardwaj, K. Agrawal, V. Chaturvedi, P. Verma, Current perspective on pretreat- ment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process. Technol. 199, 106244 (2018)
27. V. Rooni, M. Raud, T. Kikas, Technical solutions used in different pretreatments of lignocel- lulosic biomass: a review. Agron. Res. 15(3), 848–858 (2017)
28. Y. Zheng, J. Zhao, F. Xu, Y. Li, Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. Sci. 42, 35–53 (2014)
29. C. Zhao, Q. Shao, S.P. Chundawat, Recent advances on ammonia-based pretreatments of lignocellulosic biomass. Biores. Technol. 298, 122446 (2020)
30. P. Kumar, D.M. Barrett, M.J. Delwiche, P. Stroeve, Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48(8), 3713–3729 (2009)
31. N. Mosier, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple, M. Ladisch, Features of promising technologies for pretreatment of lignocellulosic biomass. Biores. Technol. 96(6), 673–686 (2005)
32. K.S. Baig, J. Wu, G. Turcotte, Future prospects of delignification pretreatments for the lignocel- lulosic materials to produce second generation bioethanol. Int. J. Energy Res. 43(4), 1411–1427 (2019)
33. Z. Usmani, M. Sharma, P. Gupta, Y. Karpichev, N. Gathergood, R. Bhat, V.K. Gupta, Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion. Biores. Technol.
304, 123003 (2020)
34. R. Millati, R. Wikandari, T. Ariyanto, R.U. Putri, M.J. Taherzadeh, Pretreatment technologies for anaerobic digestion of lignocelluloses and toxic feedstocks. Biores. Technol. 304, 122998 (2020)
35. D. Tian, Y. Guo, J. Hu, G. Yang, J. Zhang, L. Luo, Y. Xiao, S. Deng, O. Deng, W. Zhou, F. Shen, Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity. Int. J. Biol. Macromol. 142, 288–297 (2020)
36. H. Xu, J. Peng, Y. Kong, Y. Liu, Z. Su, B. Li, X. Song, S. Liu, W. Tian, Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: a review. Biores.
Technol. 310, 123416 (2020)
37. A.K. Kumar, S. Sharma, Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour. Bioprocess. 4(1), 1–19 (2017)
38. R.E. Abraham, M.L. Verma, C.J. Barrow, M. Puri, Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass.
Biotechnol. Biofuels 7(1), 1–12 (2014)
39. M.L. Verma, R. Rajkhowa, X. Wang, C.J. Barrow, M. Puri, Exploring novel ultrafine Eri silk bioscaffold for enzyme stabilisation in cellobiose hydrolysis. Biores. Technol. 145, 302–306 (2013)
40. Z. Gou, N.L. Ma, W. Zhang, Z. Lei, Y. Su, S. Chunyu, G. Wang, H. Chen, S. Zhang, G. Chen, Y.
Sun, Innovative hydrolysis of corn stover biowaste by modified magnetite laccase immobilized nanoparticles. Environ. Res. 188, 109829 (2020)
41. N. Srivastava, A. Alhazmi, A. Mohammad, S. Haque, M. Srivastava, D.B. Pal, R. Singh, P.K.
Mishra, N.V. Dai Viet, T. Yoon, V.K. Gupta, Biohydrogen production via integrated sequen- tial fermentation using magnetite nanoparticles treated crude enzyme to hydrolyze sugarcane bagasse. Int. J. Hydrog. Energy (2021). In Press
42. S.G.C. de Almeida, G.F. de Mello, M.G. do Santos, D.D.V. da Silva, E.C. Giese, M. Hassanpour, Z. Zhang, K.J. Dussán, Saccharification of acid–alkali pretreated sugarcane bagasse using immobilized enzymes from Phomopsis stipata. 3. Biotechnology 12(1), 1–13 (2022) 43. P. Samaddar, Y.S. Ok, K.H. Kim, E.E. Kwon, D.C. Tsang, Synthesis of nanomaterials from
various wastes and their new age applications. J. Clean. Prod. 197, 1190–1209 (2018) 44. N. Singh, S. Singh, M. Mathesh, Recent trends in nanobiocatalysis for biofuel production,
in Nanobiotechnology for Sustainable Bioenergy and Biofuel Production (CRC Press, 2020), pp. 150–176
45. M. Puri, C.J. Barrow, M.L. Verma, Enzyme immobilization on nanomaterials for biofuel production. Trends Biotechnol. 31(4), 215–216 (2013)
46. N. Singh, B.S. Dhanya, M.L. Verma, Nano-immobilized biocatalysts and their potential biotechnological applications in bioenergy production. Mater. Sci. Energy Technol. 3, 808–824 (2020)
47. M.L. Verma, M. Naebe, C.J. Barrow, M. Puri, Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation. PLoS ONE 8(9), 73642 (2013)
48. M.L. Verma, R. Chaudhary, T. Tsuzuki, C.J. Barrow, M. Puri, Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis.
Biores. Technol. 135, 2–6 (2013)
49. P. Kaur, M.S. Taggar, A. Kalia, Characterization of magnetic nanoparticle–immobilized cellu- lases for enzymatic saccharification of rice straw. Biomass Convers. Biorefinery 11(3), 955–969 (2021)
50. E. Poorakbar, A. Shafiee, A.A. Saboury, B.L. Rad, K. Khoshnevisan, L. Ma’mani, H.
Derakhshankhah, M.R. Ganjali, M. Hosseini, Synthesis of magnetic gold mesoporous silica nanoparticles core shell for cellulase enzyme immobilization: improvement of enzymatic activity and thermal stability. Process Biochem. 71, 92–100 (2018)
51. K.S. Muthuvelu, R. Rajarathinam, R.N. Selvaraj, V.B. Rajendren, A novel method for improving laccase activity by immobilization onto copper ferrite nanoparticles for lignin degradation. Int. J. Biol. Macromol. 152, 1098–1107 (2020)
52. E. Zanuso, H.A. Ruiz, L. Domingues, Magnetic nanoparticles as support for cellulase immobi- lization strategy for enzymatic hydrolysis using hydrothermally pretreated corn cob. Biomass Bioenergy Reserv. (2020)
53. S. Shanmugam, S. Krishnaswamy, R. Chandrababu, U. Veerabagu, A. Pugazhendhi, T.
Mathimani, Optimal immobilization of Trichoderma asperellum laccase on polymer coated Fe3O4@SiO2 nanoparticles for enhanced biohydrogen production from delignified lignocel- lulosic biomass. Fuel 273, 117777 (2020)
54. S. Sahay, Impact of pretreatment technologies for biomass to biofuel production, in Substrate Analysis for Effective Biofuels Production. Clean Energy Production Technologies, N, Srivastava, M. Srivastava, P. Mishra, V. Gupta (Springer, Singapore, 2020), pp. 173–216 55. W. Wang, S. Ji, I. Lee, Fast and efficient nanoshear hybrid alkaline pretreatment of corn stover
for biofuel and materials production. Biomass Bioenergy 51, 35–42 (2013)