Acknowledgements
5.6 Conclusions and Perspectives
of C2C12 cells, showing the potential to serve as a carrier of functional cells to myocardial infarctions.212
a carbon nanofiber (CnF) was incorporated into pLga in order to improve the conductivity of unmodified pLga for myocardial tissue engineering. the pLga–CnF composites could promote the adhesion and proliferation of human cardiomyocytes and neurons, which are important cells for cardiovas- cular applications.135 shin et al. designed novel conductive cardiac constructs by seeding neonatal rat cardiomyocytes on Cnt-incorporated gelMa hydro- gels with photo-crosslinkage. the Cnt–gelMa scaffolds showed improved cell adhesion and organization as well as cell–cell coupling (Figure 5.12).
in addition, 3d bioactuators were formed by the release of centimeter-scale patches from glass substrates. this work reported a protective cardiac scaf- fold for the first time.137 also, they embedded aligned Cnt microelectrode arrays into biocompatible hydrogels for cell stimulation. Bioactuators were developed by culturing cardiomyocytes on the Cnt–hydrogel constructs, showing spontaneous actuation behavior, homogeneous cell organization as well as enhanced cell–cell coupling and maturation. additionally, the novel constructs can provide an external electrical field for controlling a biohybrid machine.138
Martins et al. synthesized a porous chitosan/CnF scaffold, and neonatal rat cardiomyocytes grew well in the scaffold pores with higher metabolic activity compared to cells in chitosan scaffolds. Furthermore, the incorporation of carbon nanofibers also resulted in the increase of expression level of cardi- ac-specific genes.213 in Kharaziha’s work, hybrid scaffolds were developed by the incorporation of Cnt into aligned electrospun pgs/gelatin nanofibers.
Cardiomyocytes seeded on the Cnt–pgs/gelatin scaffolds showed stronger spontaneous and synchronous beating behavior when compared with those cultured on psg/gelatin scaffolds without Cnt, indicating the great potential for generating cardiac tissue constructs.99
133Applications of Conductive Materials for Tissue Engineering Figure 5.12 phenotype of cardiac cells on Cnt–gelMa hydrogels. immunostaining of sarcomeric α-actinin (green), nuclei (blue), and
Cx-43 (red) revealed that cardiac tissues (eight-day culture) on (a) pristine gelMa and (B) Cnt–gelMa were phenotypically different. partial uniaxial sarcomere alignment and interconnected sarcomeric structure with robust intercellular junctions were observed on Cnt–gelMa. immunostaining of troponin i (green) and nuclei (blue) showed much less and more aggre- gated troponin i presence on (C) pristine gelMa than on (d) Cnt–gelMa. (e) Quantification of α-actinin, Cx-43, troponin i expression by Western blot (*p < 0.05). adapted from ref. 137 with permission from the american Chemical society.
Published on 03 May 2017 on http://pubs.rsc.org | doi:10.1039/9781788010542-00110
conductive materials in vivo still needs to be identified. studies on develop- ing conductive materials without cytotoxicity in vivo are also necessary.
Fortunately, the easy manufacture of conductive materials provides an additional advantage for improving biocompatibility by modification strat- egies. especially, the biocompatibility and biodegradability of conductive materials can be enhanced by the incorporation of bioactive molecules and natural or synthetic biopolymers. Furthermore, the surface properties of bio- materials, such as morphology and topography structure, have been proven to have a crucial influence on cell behaviors. topography modification strat- egies for conductive materials offer an opportunity for the design of suitable nanocomposite scaffolds for tissue engineering.
Conductive materials, especially conductive nanomaterials, with improved performance in biocompatibility and biodegradability prove to be a promis- ing and valuable course for future research and the demand for developing novel nanocomposites, such as hydrogels with 3d porous structures or elec- trospun nanofibers, is also urgent. additionally, the introduction of other kinds of stimuli besides electrical stimulation should broaden the modula- tion cues for much more accurate and effective control on cellular behaviors and biofunctions. therefore, the design for multi-stimuli responsive scaf- folds will be another potential direction for future tissue engineering appli- cations. in summary, conductive materials have shown to be an encouraging area of biofunctional materials and tissue engineering, opening up a rich and interesting field for future research with immense promise.
References
1. r. Langer and J. p. Vacanti, Science, 1993, 260, 920.
2. L. g. griffith and g. naughton, Science, 2002, 295, 1009.
3. M. M. stevens and J. h. george, Science, 2005, 310, 1135.
4. d. e. discher, p. Janmey and Y.-l. Wang, Science, 2005, 310, 1139.
5. a. J. engler, s. sen, h. L. sweeney and d. e. discher, Cell, 2006, 126, 677.
6. C. a. L. Bassett, r. J. pawluk and r. o. Becker, Nature, 1964, 204, 652.
7. a. d. Moore, Med. Instrum., 1975, 9, 274.
8. C. e. pullar, r. rivkah isseroff and r. nuccitelli, Cell Motil. Cytoskeleton, 2001, 50, 207.
9. M. Zhao, a. agius-Fernandez, J. V. Forrester and C. d. McCaig, J. Cell Sci., 1996, 109, 1405.
10. V. a. McBain, J. V. Forrester and C. d. McCaig, Invest. Ophthalmol. Visual Sci., 2003, 44, 540.
11. e. Wang, M. Zhao, J. V. Forrester and C. d. McCaig, Exp. Eye Res., 2003, 76, 29.
12. a. Bouaziz, a. richert and a. Caprani, Biomaterials, 1997, 18, 107.
13. X. Li and J. Kolega, J. Vasc. Res., 2002, 39, 391.
14. r. F. Valentini, t. g. Vargo, J. a. gardella and p. aebischer, Biomaterials, 1992, 13, 183.
Published on 03 May 2017 on http://pubs.rsc.org | doi:10.1039/9781788010542-00110
15. p.-h. g. Chao, h. h. Lu, C. t. hung, s. B. nicoll and J. C. Bulinski, Con- nect. Tissue Res., 2007, 48, 188.
16. n. patel and M. M. poo, J. Neurosci., 1982, 2, 483.
17. p. W. Luther, h. B. peng and J. J.-C. Lin, Nature, 1983, 303, 61.
18. e. K. onuma and s. W. hui, J. Cell Biol., 1988, 106, 2067.
19. C. e. schmidt, V. r. shastri, J. p. Vacanti and r. Langer, Proc. Natl. Acad.
Sci., 1997, 94, 8948.
20. t. n. hieu, W. Claudia, K. C. Jacqueline, n. Lindsey, K. n. hieu and e. s.
Christine, J. Neural Eng., 2013, 10, 046011.
21. g. g. Matthews, Cellular Physiology of Nerve and Muscle, John Wiley &
sons, 2009.
22. L. ghasemi-Mobarakeh, M. p. prabhakaran, M. Morshed, M. h. nasr- esfahani, h. Baharvand, s. Kiani, s. s. al-deyab and s. ramakrishna, J. Tissue Eng. Regener. Med., 2011, 5, e17.
23. h. Kaji, t. ishibashi, K. nagamine, M. Kanzaki and M. nishizawa, Biomaterials, 2010, 31, 6981.
24. M. L. p. Langelaan, K. J. M. Boonen, K. Y. rosaria-Chak, d. W. J. van der schaft, M. J. post and F. p. t. Baaijens, J. Tissue Eng. Regener. Med., 2011, 5, 529.
25. s. J. hwang, Y. M. song, t. h. Cho, r. Y. Kim, t. h. Lee, s. J. Kim, Y.-K. seo and i. s. Kim, Tissue Eng., Part A, 2011, 18, 432.
26. J. s. park, h. n. Yang, d. g. Woo, s. Y. Jeon, h.-J. do, s.-h. huh, n.-h.
Kim, J.-h. Kim and K.-h. park, Biomaterials, 2012, 33, 7300.
27. h. Cui, Y. Wang, L. Cui, p. Zhang, X. Wang, Y. Wei and X. Chen, Biomac- romolecules, 2014, 15, 3146.
28. M. Xie, L. Wang, J. ge, B. guo and p. X. Ma, ACS Appl. Mater. Interfaces, 2015, 7, 6772.
29. J. g. hardy, r. C. sukhavasi, d. aguilar, M. K. Villancio-Wolter, d. J. Mouser, s. a. geissler, L. nguy, J. K. Chow, d. L. Kaplan and C. e.
schmidt, J. Mater. Chem. B, 2015, 3, 8059.
30. C. ning, p. Yu, Y. Zhu, M. Yao, X. Zhu, X. Wang, Z. Lin, W. Li, s. Wang, g.
tan, Y. Zhang, Y. Wang and C. Mao, NPG Asia Mater., 2016, 8, e243.
31. n. gomez, J. Y. Lee, J. d. nickels and C. e. schmidt, Adv. Funct. Mater., 2007, 17, 1645.
32. M. B. runge, M. dadsetan, J. Baltrusaitis, t. ruesink, L. Lu, a. J.
Windebank and M. J. Yaszemski, Biomacromolecules, 2010, 11, 2845.
33. s.-C. Luo, Polym. Rev., 2013, 53, 303.
34. a. h. rajabi, M. Jaffe and t. L. arinzeh, Acta Biomater., 2015, 24, 12.
35. X. Li, t. Zhao, L. sun, K. e. aifantis, Y. Fan, Q. Feng, F. Cui and F. Watari, J. Biomed. Mater. Res., Part A, 2016, 104, 322.
36. i. s. Chronakis, s. grapenson and a. Jakob, Polymer, 2006, 47, 1597.
37. J. Y. Wong, r. Langer and d. e. ingber, Proc. Natl. Acad. Sci., 1994, 91, 3201.
38. d. d. ateh, h. a. navsaria and p. Vadgama, J. R. Soc., Interface, 2006, 3, 741.
Published on 03 May 2017 on http://pubs.rsc.org | doi:10.1039/9781788010542-00110
39. n. K. guimard, n. gomez and C. e. schmidt, Prog. Polym. Sci., 2007, 32, 40. r. a. green, n. h. Lovell, g. g. Wallace and L. a. poole-Warren, Biomate-876.
rials, 2008, 29, 3393.
41. r. ravichandran, s. sundarrajan, J. r. Venugopal, s. Mukherjee and s.
ramakrishna, J. R. Soc., Interface, 2010, 7, s559.
42. J. g. hardy, J. Y. Lee and C. e. schmidt, Curr. Opin. Biotechnol., 2013, 24, 43. X. Zhang and s. K. Manohar, J. Am. Chem. Soc., 2004, 126, 12714.847.
44. r. Baumhardt-neto and M.-a. de paoli, Polym. Degrad. Stab., 1993, 40, 45. W. a. gazotti Jr, V. F. Juliano and M.-a. de paoli, Polym. Degrad. Stab., 59.
1993, 42, 317.
46. Z. Wang, C. roberge, Y. Wan, L. h. dao, r. guidoin and Z. Zhang, J. Biomed. Mater. Res., Part A, 2003, 66A, 738.
47. p. M. george, d. a. LaVan, J. a. Burdick, C. Y. Chen, e. Liang and r.
Langer, Adv. Mater., 2006, 18, 577.
48. d. h. Kim, s. M. richardson-Burns, J. L. hendricks, C. sequera and d. C.
Martin, Adv. Funct. Mater., 2007, 17, 79.
49. s. Meng, M. rouabhia, g. shi and Z. Zhang, J. Biomed. Mater. Res., Part A, 2008, 87A, 332.
50. p. M. george, a. W. Lyckman, d. a. LaVan, a. hegde, Y. Leung, r. avasare, C. testa, p. M. alexander, r. Langer and M. sur, Biomaterials, 2005, 26, 3511.
51. s. Lakard, g. herlem, n. Valles-Villareal, g. Michel, a. propper, t. gharbi and B. Fahys, Biosens. Bioelectron., 2005, 20, 1946.
52. Z. Zhang, M. rouabhia, Z. Wang, C. roberge, g. shi, p. roche, J. Li and L. h. dao, Artif. Organs, 2007, 31, 13.
53. X. Bai, X. Li, n. Li, Y. Zuo, L. Wang, J. Li and s. Qiu, Mater. Sci. Eng., C, 2007, 27, 695.
54. Q. Z. Yu, M. M. shi, M. deng, M. Wang and h. Z. Chen, Mater. Sci. Eng., B, 2008, 150, 70.
55. M. Mattioli-Belmonte, g. giavaresi, g. Biagini, L. Virgili, M. giacomini, M. Fini, F. giantomassi, d. natali, p. torricelli and r. giardino, Int. J.
Artif. Organs, 2003, 26, 1077.
56. p. r. Bidez, s. Li, a. g. Macdiarmid, e. C. Venancio, Y. Wei and p. i.
Lelkes, J. Biomater. Sci., Polym. Ed., 2006, 17, 199.
57. d.-F. Li, W. Wang, h.-J. Wang, X.-s. Jia and J.-Y. Wang, Appl. Surf. Sci., 2008, 255, 581.
58. p. humpolicek, V. Kasparkova, p. saha and J. stejskal, Synth. Met., 2012, 162, 722.
59. d. K. Cullen, a. r. patel, J. F. doorish, d. h. smith and B. J. pfister, J. Neural Eng., 2008, 5, 374.
60. n. V. Blinova, J. stejskal, M. trchová and J. prokeš, Polym. Int., 2008, 57, 66.
Published on 03 May 2017 on http://pubs.rsc.org | doi:10.1039/9781788010542-00110
61. d. d. Zhou, X. t. Cui, a. hines and r. J. greenberg, in Implantable Neural Prostheses 2: Techniques and Engineering Approaches, ed. d. Zhou and e. greenbaum, springer new York, new York, nY, 2010, pp. 217–252.
62. M. p. prabhakaran, L. ghasemi-Mobarakeh, g. Jin and s. ramakrishna, J. Biosci. Bioeng., 2011, 112, 501.
63. a. Borriello, V. guarino, L. schiavo, M. a. alvarez-perez and L. ambrosio, J. Mater. Sci.: Mater. Med., 2011, 22, 1053.
64. t. h. Qazi, r. rai and a. r. Boccaccini, Biomaterials, 2014, 35, 9068.
65. J. Yang and d. C. Martin, Sens. Actuators, B, 2004, 101, 133.
66. X. t. Cui and d. d. Zhou, IEEE Trans. Neural Syst. Rehabil. Eng., 2007, 15, 67. M. M. perez-Madrigal, e. armelin, L. J. del Valle, F. estrany and C. 502.
aleman, Polym. Chem., 2012, 3, 979.
68. e. armelin, a. L. gomes, M. M. perez-Madrigal, J. puiggali, L. Franco, L. J. d. Valle, a. rodriguez-galan, J. s. d. C. Campos, n. Ferrer-anglada and C. aleman, J. Mater. Chem., 2012, 22, 585.
69. L. groenendaal, F. Jonas, d. Freitag, h. pielartzik and J. r. reynolds, Adv. Mater., 2000, 12, 481.
70. a. a. argun, a. Cirpan and J. r. reynolds, Adv. Mater., 2003, 15, 1338.
71. h. C. Ko, s. Kim, h. Lee and B. Moon, Adv. Funct. Mater., 2005, 15, 905.
72. X. Cui and d. C. Martin, Sens. Actuators, B, 2003, 89, 92.
73. r. a. green, n. h. Lovell and L. a. poole-Warren, Biomaterials, 2009, 30, 3637.
74. M. r.-B. sarah, L. h. Jeffrey and C. M. david, J. Neural Eng., 2007, 4, L6.
75. a. peramo, M. g. urbanchek, s. a. spanninga, L. K. povlich, p. Cederna and d. C. Martin, Tissue Eng., Part A, 2008, 14, 423.
76. M. asplund, e. thaning, J. Lundberg, a. C. sandberg-nordqvist, B.
Kostyszyn, o. inganäs and h. v. holst, Biomed. Mater., 2009, 4, 045009.
77. C. Frias, J. reis, F. Capela e silva, J. potes, J. simões and a. t. Marques, J. Biomech., 2010, 43, 1061.
78. C. ribeiro, V. sencadas, d. M. Correia and s. Lanceros-Méndez, Colloids Surf., B, 2015, 136, 46.
79. K. heiji, Jpn. J. Appl. Phys., 1969, 8, 975.
80. F. s. Foster, K. a. harasiewicz and M. d. sherar, IEEE Trans. Ultrason.
Ferroelectr. Freq. Control, 2000, 47, 1363.
81. J. serrado nunes, a. Wu, J. gomes, V. sencadas, p. M. Vilarinho and s.
Lanceros-Méndez, Appl. Phys. A, 2009, 95, 875.
82. n. Weber, Y. s. Lee, s. shanmugasundaram, M. Jaffe and t. L. arinzeh, Acta Biomater., 2010, 6, 3550.
83. C. d. Klink, K. Junge, M. Binnebösel, h. p. alizai, J. otto, u. p. neumann and u. Klinge, J. Invest. Surg., 2011, 24, 292.
84. L. Marques, L. a. holgado, r. d. simões, J. d. a. s. pereira, J. F. Floriano, L. s. L. s. Mota, C. F. o. graeff, C. J. L. Constantino, M. a. rodriguez- perez, M. Matsumoto and a. Kinoshita, J. Biomed. Mater. Res., Part B, 2013, 101, 1284.
Published on 03 May 2017 on http://pubs.rsc.org | doi:10.1039/9781788010542-00110
85. u. Klinge, B. Klosterhalfen, a. p. Öttinger, K. Junge and V. schumpelick, Biomaterials, 2002, 23, 3487.
86. J. Conze, K. Junge, C. Weiß, M. anurov, a. oettinger, u. Klinge and V.
schumpelick, J. Biomed. Mater. Res., Part B, 2008, 87B, 321.
87. h. F. guo, Z. s. Li, s. W. dong, W. J. Chen, L. deng, Y. F. Wang and d. J.
Ying, Colloids Surf., B, 2012, 96, 29.
88. p. L. Jansen, u. Klinge, M. anurov, s. titkova, p. r. Mertens and M.
Jansen, Eur. surg. Res., 2004, 36, 104.
89. M. M. Beloti, p. t. de oliveira, r. gimenes, M. a. Zaghete, M. J. Bertolini and a. L. rosa, J. Biomed. Mater. Res., Part A, 2006, 79A, 282.
90. L. n. teixeira, g. e. Crippa, a. C. trabuco, r. gimenes, M. a. Zaghete, d. B. palioto, p. t. de oliveira, a. L. rosa and M. M. Beloti, Acta Biomater., 2010, 6, 979.
91. t. h. Young, h. h. Chang, d. J. Lin and L. p. Cheng, J. Membr. Sci., 2010, 350, 32.
92. h. delaviz, a. Faghihi, a. a. delshad, M. h. Bahadori, J. Mohamadi and a. roozbehi, Cell J., 2011, 13, 137.
93. X. Liu, X. Wang, h. Zhao and Y. du, J. Phys.: Conf. Ser., 2014, 557, 012057.
94. d. Zhai, B. Liu, Y. shi, L. pan, Y. Wang, W. Li, r. Zhang and g. Yu, ACS Nano, 2013, 7, 3540.
95. W. tang, L. Li and X. Zeng, Talanta, 2015, 131, 417.
96. h.-C. su, C.-M. Lin, s.-J. Yen, Y.-C. Chen, C.-h. Chen, s.-r. Yeh, W. Fang, h. Chen, d.-J. Yao, Y.-C. Chang and t.-r. Yew, Biosens. Bioelectron., 2010, 26, 220.
97. W. M. tsang, a. L. stone, d. otten, Z. n. aldworth, t. L. daniel, J. g.
hildebrand, r. B. Levine and J. Voldman, J. Neurosci. Methods, 2012, 204, 355.
98. s. r. shin, s. M. Jung, M. Zalabany, K. Kim, p. Zorlutuna, s. b. Kim, M.
nikkhah, M. Khabiry, M. azize, J. Kong, K.-t. Wan, t. palacios, M. r.
dokmeci, h. Bae, X. tang and a. Khademhosseini, ACS Nano, 2013, 7, 2369.
99. M. Kharaziha, s. r. shin, M. nikkhah, s. n. topkaya, n. Masoumi, n.
annabi, M. r. dokmeci and a. Khademhosseini, Biomaterials, 2014, 35, 7346.
100. X. Li, X. Liu, J. huang, Y. Fan and F.-z. Cui, Surf. Coat. Technol., 2011, 206, 101. e. Mooney, J. n. Mackle, d. J. p. Blond, e. o'Cearbhaill, g. shaw, W. J. 759.
Blau, F. p. Barry, V. Barron and J. M. Murphy, Biomaterials, 2012, 33, 6132.
102. F. Menaa, a. abdelghani and B. Menaa, J. Tissue Eng. Regener. Med., 2015, 9, 1321.
103. Q. Lu, J. M. Moore, g. huang, a. s. Mount, a. M. rao, L. L. Larcom and p. C. Ke, Nano Lett., 2004, 4, 2473.
104. p. Cherukuri, s. M. Bachilo, s. h. Litovsky and r. B. Weisman, J. Am.
Chem. Soc., 2004, 126, 15638.
Published on 03 May 2017 on http://pubs.rsc.org | doi:10.1039/9781788010542-00110
105. B. s. harrison and a. atala, Biomaterials, 2007, 28, 344.
106. J. Wen, Y. Xu, h. Li, a. Lu and s. sun, Chem. Commun., 2015, 51, 11346.
107. M. Chakrabarti, r. Kiseleva, a. Vertegel and s. K. ray, J. Nanosci. Nano- technol., 2015, 15, 5501.
108. a. Bianco, J. hoebeke, s. godefroy, o. Chaloin, d. pantarotto, J.-p.
Briand, s. Muller, M. prato and C. d. partidos, J. Am. Chem. Soc., 2005, 127, 58.
109. X. Chen, u. C. tam, J. L. Czlapinski, g. s. Lee, d. rabuka, a. Zettl and C. r. Bertozzi, J. Am. Chem. Soc., 2006, 128, 6292.
110. L. p. Zanello, B. Zhao, h. hu and r. C. haddon, Nano Lett., 2006, 6, 562.
111. Y. Wenrong, t. pall, J. J. gooding, p. r. simon and B. Filip, Nanotechnology, 2007, 18, 412001.
112. L. Xiaoming, g. hong, u. Motohiro, s. Yoshinori, a. tsukasa, a. shigeaki, F. Qingling, C. Fuzhai and W. Fumio, Biomed. Mater., 2009, 4, 015005.
113. h. hu, Y. ni, V. Montana, r. C. haddon and V. parpura, Nano Lett., 2004, 4, 507.
114. h. hu, Y. ni, s. K. Mandal, V. Montana, B. Zhao, r. C. haddon and V.
parpura, J. Phys. Chem. B, 2005, 109, 4285.
115. e. hirata, M. uo, h. takita, t. akasaka, F. Watari and a. Yokoyama, J. Biomed. Mater. Res., Part B, 2009, 90B, 629.
116. J. Venkatesan, r. pallela and s. K. Kim, J. Biomed. Nanotechnol., 2014, 10, 3105.
117. V. Khalili, J. Khalil-allafi, W. Xia, a. B. parsa, J. Frenzel, C. somsen and g. eggeler, Appl. Surf. Sci., 2016, 366, 158.
118. Y. Zhu, s. Murali, W. Cai, X. Li, J. W. suk, J. r. potts and r. s. ruoff, Adv. Mater., 2010, 22, 3906.
119. B. song, d. Li, W. Qi, M. elstner, C. Fan and h. Fang, ChemPhysChem, 2010, 11, 585.
120. t. Cohen-Karni, Q. Qing, Q. Li, Y. Fang and C. M. Lieber, Nano Lett., 2010, 10, 1098.
121. K. Yang, s. Zhang, g. Zhang, X. sun, s.-t. Lee and Z. Liu, Nano Lett., 2010, 10, 3318.
122. M. Kalbacova, a. Broz, J. Kong and M. Kalbac, Carbon, 2010, 48, 4323.
123. s. Y. park, J. park, s. h. sim, M. g. sung, K. s. Kim, B. h. hong and s.
hong, Adv. Mater., 2011, 23, h263.
124. t. r. nayak, h. andersen, V. s. Makam, C. Khaw, s. Bae, X. Xu, p.-L. r. ee, J.-h. ahn, B. h. hong, g. pastorin and B. Özyilmaz, ACS Nano, 2011, 5, 4670.
125. Y. Wang, W. C. Lee, K. K. Manga, p. K. ang, J. Lu, Y. p. Liu, C. t. Lim and K. p. Loh, Adv. Mater., 2012, 24, 4285.
126. Z. Chen, W. ren, L. gao, B. Liu, s. pei and h.-M. Cheng, Nat. Mater., 2011, 10, 424.
127. n. Li, Q. Zhang, s. gao, Q. song, r. huang, L. Wang, L. Liu, J. dai, M.
tang and g. Cheng, Sci. Rep., 2013, 3, 1604.
128. a. guiseppi-elie, Biomaterials, 2010, 31, 2701.
Published on 03 May 2017 on http://pubs.rsc.org | doi:10.1039/9781788010542-00110
129. J. p. gong, i. Kawakami, V. g. sergeyev and Y. osada, Macromolecules, 1991, 24, 5246.
130. s. abraham, s. Brahim, K. ishihara and a. guiseppi-elie, Biomaterials, 2005, 26, 4767.
131. s. Brahim, d. narinesingh and a. guiseppi-elie, Biosens. Bioelectron., 2002, 17, 53.
132. s. e. Moulton, M. d. imisides, r. L. shepherd and g. g. Wallace, J. Mater.
Chem., 2008, 18, 3608.
133. L. M. Lira and s. i. Córdoba de torresi, Electrochem. Commun., 2005, 7, 134. e. a. Moschou, M. J. Madou, L. g. Bachas and s. daunert, Sens. Actua-717.
tors, B, 2006, 115, 379.
135. d. a. stout, B. Basu and t. J. Webster, Acta Biomater., 2011, 7, 3101.
136. M. r. abidian, e. d. daneshvar, B. M. egeland, d. r. Kipke, p. s. Cederna and M. g. urbanchek, Adv. Healthcare Mater., 2012, 1, 762.
137. s. r. shin, s. M. Jung, M. Zalabany, K. Kim, p. Zorlutuna, s. b. Kim, M.
nikkhah, M. Khabiry, M. azize, J. Kong, K.-t. Wan, t. palacios, M. r.
dokmeci, h. Bae, X. tang and a. Khademhosseini, ACS Nano, 2013, 7, 2369.
138. s. r. shin, C. shin, a. Memic, s. shadmehr, M. Miscuglio, h. Y. Jung, s.
M. Jung, h. Bae, a. Khademhosseini, X. tang and M. r. dokmeci, Adv.
Funct. Mater., 2015, 25, 4486.
139. J. h. Collier, J. p. Camp, t. W. hudson and C. e. schmidt, J. Biomed.
Mater. Res., 2000, 50, 574.
140. Z. Zhang, r. roy, F. J. dugré, d. tessier and L. h. dao, J. Biomed. Mater.
Res., 2001, 57, 63.
141. h. Castano, e. a. o'rear, p. s. McFetridge and V. i. sikavitsas, Macromol.
Biosci., 2004, 4, 785.
142. X. Wang, X. gu, C. Yuan, s. Chen, p. Zhang, t. Zhang, J. Yao, F. Chen and g. Chen, J. Biomed. Mater. Res., Part A, 2004, 68A, 411.
143. a. ramanaviciene, a. Kausaite, s. tautkus and a. ramanavicius, J. Pharm. Pharmacol., 2007, 59, 311.
144. n. Ferraz, M. strømme, B. Fellström, s. pradhan, L. nyholm and a. Mihranyan, J. Biomed. Mater. Res., Part A, 2012, 100A, 2128.
145. s. Kamalesh, p. tan, J. Wang, t. Lee, e.-t. Kang and C.-h. Wang, J. Biomed. Mater. Res., 2000, 52, 467.
146. s.-C. Luo, e. Mohamed ali, n. C. tansil, h.-h. Yu, s. gao, e. a. B.
Kantchev and J. Y. Ying, Langmuir, 2008, 24, 8071.
147. M. r. abidian, K. a. Ludwig, t. C. Marzullo, d. C. Martin and d. r. Kipke, Adv. Mater., 2009, 21, 3764.
148. M. h. Bolin, K. svennersten, X. Wang, i. s. Chronakis, a. richter-dahlfors, e. W. h. Jager and M. Berggren, Sens. Actuators, B, 2009, 142, 451.
149. V. Karagkiozaki, p. g. Karagiannidis, M. gioti, p. Kavatzikidou, d.
georgiou, e. georgaraki and s. Logothetidis, Biochim. Biophys. Acta, Gen. Subj., 2013, 1830, 4294.
150. h. Zhou, X. Cheng, L. rao, t. Li and Y. Y. duan, Acta Biomater., 2013, 9, 6439.
Published on 03 May 2017 on http://pubs.rsc.org | doi:10.1039/9781788010542-00110
151. g.-M. Qiu, L.-p. Zhu, B.-K. Zhu, Y.-Y. Xu and g.-L. Qiu, J. Supercrit. Fluids, 2008, 45, 374.
152. h.-C. Chen, C.-h. tsai and M.-C. Yang, J. Polym. Res., 2010, 18, 319.
153. Y. Zhu and W. Li, Sci. China, Ser. B: Chem., 2008, 51, 1021.
154. n. Li, X. Zhang, Q. song, r. su, Q. Zhang, t. Kong, L. Liu, g. Jin, M. tang and g. Cheng, Biomaterials, 2011, 32, 9374.
155. L. huang, J. hu, L. Lang, X. Wang, p. Zhang, X. Jing, X. Wang, X. Chen, p.
i. Lelkes, a. g. Macdiarmid and Y. Wei, Biomaterials, 2007, 28, 1741.
156. a. subramanian, u. M. Krishnan and s. sethuraman, J. Biomed. Sci., 2009, 16, 108.
157. Y. Mei, L. Youlong, g. Qingyuan, C. Jun and L. Yong, Mater. Res. Express, 2015, 2, 042001.
158. a. n. Zelikin, d. M. Lynn, J. Farhadi, i. Martin, V. shastri and r. Langer, Angew. Chem., Int. Ed., 2002, 41, 141.
159. B. Lakard, L. ploux, K. anselme, F. Lallemand, s. Lakard, M. nardin and J. Y. hihn, Bioelectrochemistry, 2009, 75, 148.
160. L. Cen, K. g. neoh and e. t. Kang, Langmuir, 2002, 18, 8633.
161. X. Cui, J. Wiler, M. dzaman, r. a. altschuler and d. C. Martin, Biomate- rials, 2003, 24, 777.
162. J.-W. Lee, F. serna, J. nickels and C. e. schmidt, Biomacromolecules, 2006, 7, 1692.
163. W. r. stauffer and X. t. Cui, Biomaterials, 2006, 27, 2405.
164. J. Yang and d. C. Martin, Sens. Actuators, A, 2004, 113, 204.
165. h. K. song, B. toste, K. ahmann, d. hoffman-Kim and g. t. r. palmore, Biomaterials, 2006, 27, 473.
166. M. r. abidian and d. C. Martin, Adv. Funct. Mater., 2009, 19, 573.
167. r. a. green, n. h. Lovell, g. g. Wallace and L. a. poole-Warren, Biomate- rials, 2008, 29, 3393.
168. J. Y. Lee, J.-W. Lee and C. e. schmidt, J. R. Soc., Interface, 2009, 6, 801.
169. a. akkouch, g. shi, Z. Zhang and M. rouabhia, J. Biomed. Mater. Res., Part A, 2010, 92A, 221.
170. d. d. ateh, p. Vadgama and h. a. navsaria, Tissue Eng., 2006, 12, 645.
171. g. M. Xiong, s. Yuan, J. K. Wang, a. t. do, n. s. tan, K. s. Yeo and C.
Choong, Acta Biomater., 2015, 23, 240.
172. a. gelmi, M. J. higgins and g. g. Wallace, Biomaterials, 2010, 31, 1974.
173. K. J. gilmore, M. Kita, Y. han, a. gelmi, M. J. higgins, s. e. Moulton, g. M. Clark, r. Kapsa and g. g. Wallace, Biomaterials, 2009, 30, 5292.
174. J. huang, X. hu, L. Lu, Z. Ye, Q. Zhang and Z. Luo, J. Biomed. Mater. Res., Part A, 2010, 93A, 164.
175. L. ghasemi-Mobarakeh, M. p. prabhakaran, M. Morshed, M. h. nasr- esfahani and s. ramakrishna, Tissue Eng., Part A, 2009, 15, 3605.
176. Y. Liu, X. Liu, J. Chen, K. J. gilmore and g. g. Wallace, Chem. Commun., 2008, 3729.
177. a. Yang, Z. huang, g. Yin and X. pu, Colloids Surf., B, 2015, 134, 469.
178. J. g. hardy, M. K. Villancio-Wolter, r. C. sukhavasi, d. J. Mouser, d.
aguilar, s. a. geissler, d. L. Kaplan and C. e. schmidt, Macromol. Rapid Commun., 2015, 36, 1884.
Published on 03 May 2017 on http://pubs.rsc.org | doi:10.1039/9781788010542-00110
179. r. Borah, a. Kumar, M. K. das and a. ramteke, RSC Adv., 2015, 5, 48971.
180. t. Kmecko, g. hughes, L. Cauller, J.-B. Lee and M. romero-ortega, Mater. Res. Soc. Proc., 2006, 926, 0926-CC04-06.
181. h. Xiao, M. Zhang, Y. Xiao and J. Che, Colloids Surf., B, 2015, 126, 138.
182. M. r. aufan, Y. sumi, s. Kim and J. Y. Lee, ACS Appl. Mater. Interfaces, 2015, 7, 23454.
183. s. park, Y. J. Kang and s. Majd, Adv. Mater., 2015, 27, 7583.
184. J. Xie, M. r. Macewan, s. M. Willerth, X. Li, d. W. Moran, s. e. sakiyama- elbert and Y. Xia, Adv. Funct. Mater., 2009, 19, 2312.
185. J. Y. Lee, C. a. Bashur, a. s. goldstein and C. e. schmidt, Biomaterials, 2009, 30, 4325.
186. J. Y. Lee, C. a. Bashur, C. a. Milroy, L. Forciniti, a. s. goldstein and C. e.
schmidt, IEEE Trans. Nanobioscience, 2012, 11, 15.
187. L. Jin, Z.-Q. Feng, M.-L. Zhu, t. Wang, M. K. Leach and Q. Jiang, J. Biomed.
Nanotechnol., 2012, 8, 779.
188. h. Xu, J. M. holzwarth, Y. Yan, p. Xu, h. Zheng, Y. Yin, s. Li and p. X. Ma, Biomaterials, 2014, 35, 225.
189. L. Yan, B. Zhao, X. Liu, X. Li, C. Zeng, h. shi, X. Xu, t. Lin, L. dai and Y.
Liu, ACS Appl. Mater. Interfaces, 2016, 8, 6834.
190. J. Zhang, K. Qiu, B. sun, J. Fang, K. Zhang, h. ei-hamshary, s. s. al-deyab and X. Mo, J. Mater. Chem. B, 2014, 2, 7945.
191. L. J. Juarez-hernandez, n. Cornella, L. pasquardini, s. Battistoni, L.
Vidalino, L. Vanzetti, s. Caponi, M. d. serra, s. iannotta, C. pederzolli, p. Macchi and C. Musio, Biophys. Chem., 2016, 208, 40.
192. n. royo-gascon, M. Wininger, J. i. scheinbeim, B. L. Firestein and W.
Craelius, Ann. Biomed. Eng., 2013, 41, 112.
193. Y.-s. Lee, g. Collins and t. Livingston arinzeh, Acta Biomater., 2011, 7, 3877.
194. Y.-s. Lee and t. L. arinzeh, Tissue Eng., Part A, 2012, 18, 2063.
195. Y.-J. huang, h.-C. Wu, n.-h. tai and t.-W. Wang, Small, 2012, 8, 2869.
196. s. Meng, M. rouabhia and Z. Zhang, Bioelectromagnetics, 2013, 34, 189.
197. a. shahini, M. Yazdimamaghani, K. J. Walker, M. a. eastman, h.
hatami-Marbini, B. J. smith, J. L. ricci, s. V. Madihally, d. Vashaee and L. tayebi, Int. J. Nanomed., 2014, 9, 167.
198. C. ribeiro, s. Moreira, V. Correia, V. sencadas, J. g. rocha, F. M. gama, J. L. gomez ribelles and s. Lanceros-Mendez, RSC Adv., 2012, 2, 11504.
199. M. d. sita, W. siliang, J. Michael and a. treena Livingston, Biomed.
Mater., 2013, 8, 045007.
200. J. pärssinen, h. hammarén, r. rahikainen, V. sencadas, C. ribeiro, s. Vanhatupa, s. Miettinen, s. Lanceros-Méndez and V. p. hytönen, J. Biomed. Mater. Res., Part A, 2015, 103, 919.
201. C. ribeiro, J. pärssinen, V. sencadas, V. Correia, s. Miettinen, V. p.
hytönen and s. Lanceros-Méndez, J. Biomed. Mater. Res., Part A, 2015, 103, 2172.
202. L. n. teixeira, g. e. Crippa, r. gimenes, M. a. Zaghete, p. t. oliveira, a. L. rosa and M. M. Beloti, J. Mater. Sci.: Mater. Med., 2010, 22, 151.
Published on 03 May 2017 on http://pubs.rsc.org | doi:10.1039/9781788010542-00110
203. L. n. teixeira, g. e. Crippa, a. C. trabuco, r. gimenes, M. a. Zaghete, d.
B. palioto, p. t. de oliveira, a. L. rosa and M. M. Beloti, Acta Biomater., 2010, 6, 979.
204. s. shao, s. Zhou, L. Li, J. Li, C. Luo, J. Wang, X. Li and J. Weng, Biomate- rials, 2011, 32, 2821.
205. s. i. Jeong, i. d. Jun, M. J. Choi, Y. C. nho, Y. M. Lee and h. shin, Macro- mol. Biosci., 2008, 8, 627.
206. K. d. McKeon, a. Lewis and J. W. Freeman, J. Appl. Polym. Sci., 2010, 115, 1566.
207. s. h. Ku, s. h. Lee and C. B. park, Biomaterials, 2012, 33, 6098.
208. M.-C. Chen, Y.-C. sun and Y.-h. Chen, Acta Biomater., 2013, 9, 5562.
209. p. M. Martins, s. ribeiro, C. ribeiro, V. sencadas, a. C. gomes, F. M.
gama and s. Lanceros-Mendez, RSC Adv., 2013, 3, 17938.
210. d. Kai, M. p. prabhakaran, g. Jin and s. ramakrishna, J. Biomed. Mater.
Res., Part A, 2011, 99A, 376.
211. M. Li, Y. guo, Y. Wei, a. g. Macdiarmid and p. i. Lelkes, Biomaterials, 2006, 27, 2705.
212. t. h. Qazi, r. rai, d. dippold, J. e. roether, d. W. schubert, e. rosellini, n. Barbani and a. r. Boccaccini, Acta Biomater., 2014, 10, 2434.
213. a. M. Martins, g. eng, s. g. Caridade, J. F. Mano, r. L. reis and g.
Vunjak-novakovic, Biomacromolecules, 2014, 15, 635.
214. C. andrew, L. Bassett, r. J. pawluk and a. a. pilla, Science, 1974, 184, 215. M. a. darendeliler, a. darendeliler and p. M. sinclair, Int. J. Adult Orthodon. 575.
Orthognath. Surg., 1997, 12, 43.
216. J. t. ryaby, Clin. Orthop. Relat. Res., 1998, 355, s205.
217. p. torricelli, M. Fini, g. giavaresi, r. Botter, d. Beruto and r. giardino, J. Biomed. Mater. Res., Part A, 2003, 64A, 182.
218. C. F. Martino, d. Belchenko, V. Ferguson, s. nielsen-preiss and h. J. Qi, Bioelectromagnetics, 2008, 29, 125.
219. s. Meng, Z. Zhang and M. rouabhia, J. Bone Miner. Metab., 2011, 29, 535.
220. p. aspenberg, Int. Orthop., 2007, 31, 783.
221. M. pecina and s. Vukicevic, Int. Orthop., 2007, 31, 719.
222. d. L. Butler, n. Juncosa-Melvin, g. p. Boivin, M. t. galloway, J. t. shearn, C. gooch and h. awad, J. Orthop. Res., 2008, 26, 1.
223. K. r. Chien, i. J. domian and K. K. parker, Science, 2008, 322, 1494.
224. g. Vunjak-novakovic, n. tandon, a. godier, r. Maidhof, a. Marsano, t. p. Martens and M. radisic, Tissue Eng., Part B, 2009, 16, 169.
Published on 03 May 2017 on http://pubs.rsc.org | doi:10.1039/9781788010542-00110
144 Smart Materials No. 25
Smart Materials for Tissue Engineering: Applications Edited by Qun Wang
© The Royal Society of Chemistry 2017
Published by the Royal Society of Chemistry, www.rsc.org
Smart Biomaterials for Cell Encapsulation
hui Zhu
aand Zhiqiang Cao*
aaWayne State university, department of Chemical engineering and Materials Science, detroit, Michigan, 48202, uSa
*e-mail: [email protected]