• Tidak ada hasil yang ditemukan

Symmetric representations and large 𝑁

Chapter V: Higher rank

5.3 Symmetric representations and large 𝑁

We conjecture the following surgery formula analogous to [GM21, Conjecture 1.7]

relating𝐹𝔀

𝐾 to ˆ𝑍𝔀

𝑆3 𝑝/π‘Ÿ(𝐾),𝑏

(π‘ž):

Conjecture 5.2.4(Higher rank surgery formula). Let𝐾 βŠ‚ 𝑆3be a knot. Then Λ†

𝑍𝔀

𝑆3

𝑝/π‘Ÿ(𝐾),𝑏(π‘ž) L(𝑝/π‘Ÿπ‘)

"

Γ–

π›ΌβˆˆΞ”+

(π‘₯

𝛼 2π‘Ÿ βˆ’π‘₯βˆ’

𝛼 2π‘Ÿ)𝐹𝔀

𝐾(x, π‘ž)

#

(5.29) wheneverβˆ’π‘Ÿ

𝑝 is big enough so that the right-hand side converges.

This is a theorem for knots and 3-manifolds represented by negative-definite plumb- ings, as a straightforward generalization of Theorem 1.2 of [GM21]. For instance, surgery on3π‘Ÿ

1gives us the following ˆ𝑍𝔰𝔩3’s:

π‘Ÿ 𝑆3

βˆ’1/π‘Ÿ(3π‘Ÿ

1) 𝑍ˆ𝔰𝔩3

𝑆3

βˆ’1/π‘Ÿ(3π‘Ÿ

1)(π‘ž)

1 Ξ£(2,3,7) 1βˆ’2π‘ž+2π‘ž3+π‘ž4βˆ’2π‘ž5βˆ’2π‘ž8+4π‘ž9+2π‘ž10βˆ’4π‘ž11+2π‘ž13βˆ’6π‘ž14+ Β· Β· Β· 2 Ξ£(2,3,13) 1βˆ’2π‘ž+2π‘ž3βˆ’π‘ž4+2π‘ž10βˆ’2π‘ž11βˆ’2π‘ž14+2π‘ž16+2π‘ž19βˆ’2π‘ž20+4π‘ž21βˆ’ Β· Β· Β· 3 Ξ£(2,3,19) 1βˆ’2π‘ž+2π‘ž3βˆ’π‘ž4+2π‘ž16βˆ’2π‘ž17βˆ’2π‘ž20+2π‘ž22+2π‘ž25βˆ’2π‘ž26+4π‘ž33βˆ’ Β· Β· Β· 4 Ξ£(2,3,25) 1βˆ’2π‘ž+2π‘ž3βˆ’π‘ž4+2π‘ž22βˆ’2π‘ž23βˆ’2π‘ž26+2π‘ž28+2π‘ž31βˆ’2π‘ž32+4π‘ž45βˆ’ Β· Β· Β· 5 Ξ£(2,3,31) 1βˆ’2π‘ž+2π‘ž3βˆ’π‘ž4+2π‘ž28βˆ’2π‘ž29βˆ’2π‘ž32+2π‘ž34+2π‘ž37βˆ’2π‘ž38+4π‘ž57βˆ’ Β· Β· Β· π‘Ÿ Ξ£(2,3,6π‘Ÿ+1) Í

(𝑀

1,𝑀

2)βˆˆπ‘Š2(βˆ’1)𝑙(𝑀1𝑀2)πœ’

36π‘Ÿ+6,3(6π‘Ÿ+1)𝑀

1(𝜌)+2(6π‘Ÿ+1)𝑀

2(𝜌)+6𝜌

In fact it is easy to check that for𝐾 =𝑇𝑠,𝑑, Lβˆ’1/π‘Ÿ

"

Γ–

π›ΌβˆˆΞ”+

(π‘₯

𝛼 2π‘Ÿ βˆ’π‘₯βˆ’

𝛼

2π‘Ÿ)𝐹𝐾(x, π‘ž)

#

βˆ‘οΈ

(𝑀

1,𝑀

2)βˆˆπ‘Š2

(βˆ’1)𝑙(𝑀1𝑀2)πœ’π‘ π‘‘(π‘Ÿ 𝑠𝑑+

1),𝑑(π‘Ÿ 𝑠𝑑+1)𝑀1(𝜌)+𝑠(π‘Ÿ 𝑠𝑑+1)𝑀2(𝜌)+𝑠𝑑 𝜌(π‘ž) 𝑍ˆ𝔀

Ξ£(𝑠,𝑑 ,π‘Ÿ 𝑠𝑑+1)(π‘ž),

which is consistent with what we have seen in Proposition5.1.6.

5.3 Symmetric representations and large𝑁

Then the (reduced) symmetrically colored𝐹𝐾 corresponds to the following special- ization:

𝐹sym

𝐾 (π‘₯ , π‘ž) :=𝐹red

𝐾 ( (π‘₯ , π‘ž,Β· Β· Β· , π‘ž), π‘ž). (5.31) That is, we set π‘₯

1 = π‘₯ and π‘₯

2 = Β· Β· Β· = π‘₯π‘βˆ’

1 = π‘ž. A version of quantum volume conjecture [FGS13] states that this should be annihilated by the symmetrically colored quantum A-polynomial:

Λ†

𝐴𝐾(π‘₯ ,Λ† 𝑦, π‘ŽΛ† =π‘žπ‘, π‘ž)𝐹𝔰𝔩𝑁

,sym

𝐾 (π‘₯ , π‘ž) =0. (5.32) Example 5.3.1. Right-handed trefoil. For the right-handed trefoil,𝐹𝔰𝔩𝑁

,sym 3π‘Ÿ

1

(π‘₯ , π‘ž) for the first few values of𝑁 look like the following:

β€’ For𝔰𝔩2, 𝐹𝔰𝔩2

,sym 3π‘Ÿ

1

(π‘₯ , π‘ž) 1 2

(βˆ’π‘ž+π‘ž2+π‘ž3βˆ’π‘ž6βˆ’π‘ž8+π‘ž13+π‘ž16βˆ’ Β· Β· Β· ) + (π‘₯+π‘₯βˆ’1) (π‘ž2+π‘ž3βˆ’π‘ž6βˆ’π‘ž8+π‘ž13+π‘ž16βˆ’ Β· Β· Β· ) + (π‘₯2+π‘₯βˆ’2) (π‘ž2+π‘ž3βˆ’π‘ž6βˆ’π‘ž8+π‘ž13+π‘ž16βˆ’ Β· Β· Β· ) + (π‘₯3+π‘₯βˆ’3) (π‘ž3βˆ’π‘ž6βˆ’π‘ž8+π‘ž13+π‘ž16βˆ’ Β· Β· Β· ) + (π‘₯4+π‘₯βˆ’4) (βˆ’π‘ž6βˆ’π‘ž8+π‘ž13+π‘ž16βˆ’ Β· Β· Β· ) + Β· Β· Β· ];

β€’ For𝔰𝔩3, 𝐹𝔰𝔩3

,sym 3π‘Ÿ

1

(π‘₯ , π‘ž) 1 2

(βˆ’2π‘žβˆ’2π‘ž2+2π‘ž4+4π‘ž5+4π‘ž6+4π‘ž7+2π‘ž8βˆ’2π‘ž10βˆ’4π‘ž11βˆ’ Β· Β· Β· ) + (π‘ž1/2π‘₯+π‘žβˆ’1/2π‘₯βˆ’1)π‘ž1/2(βˆ’1βˆ’2π‘žβˆ’π‘ž2+π‘ž3+3π‘ž4+4π‘ž5+4π‘ž6+ Β· Β· Β· ) + (π‘žπ‘₯2+π‘žβˆ’1π‘₯βˆ’2) (βˆ’π‘žβˆ’π‘ž2+2π‘ž4+3π‘ž5+4π‘ž6+3π‘ž7+2π‘ž8βˆ’2π‘ž10+ Β· Β· Β· ) + (π‘ž3/2π‘₯3+π‘žβˆ’3/2π‘₯βˆ’3)π‘ž1/2(π‘ž3+2π‘ž4+3π‘ž5+3π‘ž6+2π‘ž7+π‘ž8+ Β· Β· Β· ) + (π‘ž2π‘₯4+π‘žβˆ’2π‘₯βˆ’4) (π‘ž3+π‘ž4+2π‘ž5+2π‘ž6+2π‘ž7+π‘ž8+ Β· Β· Β· )

+ Β· Β· Β· ];

β€’ For𝔰𝔩4, 𝐹𝔰𝔩4

,sym 3π‘Ÿ

1

(π‘₯ , π‘ž) 1 2

(π‘žβˆ’2+π‘žβˆ’1βˆ’2βˆ’4π‘žβˆ’8π‘ž2βˆ’7π‘ž3βˆ’7π‘ž4+ Β· Β· Β· )

+ (π‘žπ‘₯+π‘žβˆ’1π‘₯βˆ’1) (π‘žβˆ’2βˆ’1βˆ’5π‘žβˆ’6π‘ž2βˆ’8π‘ž3βˆ’5π‘ž4βˆ’2π‘ž5+ Β· Β· Β· ) + (π‘ž2π‘₯2+π‘žβˆ’2π‘₯βˆ’2) (βˆ’2βˆ’3π‘žβˆ’6π‘ž2βˆ’5π‘ž3βˆ’5π‘ž4+4π‘ž6+ Β· Β· Β· )

+ (π‘ž3π‘₯3+π‘žβˆ’3π‘₯βˆ’3) (βˆ’π‘žβˆ’1βˆ’1βˆ’3π‘žβˆ’3π‘ž2βˆ’4π‘ž3βˆ’2π‘ž4+5π‘ž6+9π‘ž7+ Β· Β· Β· ) + (π‘ž4π‘₯4+π‘žβˆ’4π‘₯βˆ’4) (βˆ’1βˆ’π‘žβˆ’2π‘ž2βˆ’π‘ž3βˆ’π‘ž4+2π‘ž5+4π‘ž6+8π‘ž7+ Β· Β· Β· ) + Β· Β· Β· ].

Note that the overall factor is 12 instead of 𝑁1!. This is due to reduction of the Weyl symmetry toZ2as we specialize to symmetric representations.

It is easy to experimentally check (5.32) term by term in this case, using the π‘Ž-deformed quantum 𝐴-polynomial for the right-handed trefoil

Λ† 𝐴3π‘Ÿ

1

(π‘₯ ,Λ† 𝑦, π‘Ž, π‘žΛ† ) =π‘Ž

0+π‘Ž

1𝑦ˆ+π‘Ž

2𝑦ˆ2, where

π‘Ž0=βˆ’ (βˆ’1+π‘₯Λ†) (βˆ’1+π‘Ž π‘žπ‘₯Λ†2) π‘Žπ‘₯Λ†3(βˆ’1+π‘Žπ‘₯Λ†) (βˆ’π‘ž+π‘Žπ‘₯Λ†2),

π‘Ž1= (βˆ’1+π‘Žπ‘₯Λ†2) (βˆ’π‘Ž2π‘₯Λ†2+π‘Ž π‘ž3π‘₯Λ†2+π‘Ž π‘žπ‘₯Λ†(1+π‘₯Λ†+π‘Ž(βˆ’1+π‘₯Λ†)π‘₯Λ†) βˆ’π‘ž2(1+π‘Ž2π‘₯Λ†4)) π‘Ž2π‘žπ‘₯Λ†3(βˆ’1+π‘Žπ‘₯Λ†) (βˆ’π‘ž+π‘Žπ‘₯Λ†2) , π‘Ž2=1

withπ‘Žspecialized toπ‘žπ‘. Large-𝑁

From (5.32), we are naturally led to the following conjecture:

Conjecture 5.3.2([Par20a]). For each knot𝐾, there exists a function 𝐹𝐾(π‘₯ , π‘Ž, π‘ž) such that

Λ†

𝐴𝐾(π‘₯ ,Λ† 𝑦, π‘Ž, π‘žΛ† )𝐹𝐾(π‘₯ , π‘Ž, π‘ž)=0 (5.33) and

𝐹𝐾(π‘₯ , π‘žπ‘, π‘ž) =𝐹𝔰𝔩𝑁

,sym

𝐾 (π‘₯ , π‘ž) (5.34)

for any𝑁. Moreover, this function should have the following Weyl symmetry:

𝐹𝐾(π‘₯βˆ’1, π‘Ž, π‘ž) =𝐹𝐾(π‘Žβˆ’1π‘ž2π‘₯ , π‘Ž, π‘ž). (5.35)

In particular, (5.34) implies

π‘žβ†’lim1

𝐹𝐾(π‘₯ , π‘žπ‘, π‘ž) = Δ𝐾(π‘₯)1βˆ’π‘. (5.36) The study of this HOMFLY-PT analogue (i.e.,π‘Ž-deformation) of𝐹𝐾 is the subject of next chapter.

Remark 5.3.3. This conjecture has been checked for various knots [Ekh+;Ekh+22], by either solving the quantum𝐴-polynomial equation, or by using the𝑅-matrix state sum and then using the knots-quivers correspondence to find theπ‘Ž-deformation.

C h a p t e r 6

TOPOLOGICAL STRINGS

At the end of the previous chapter, we presented a conjecture on the existence of a three- variable series𝐹𝐾(π‘₯ , π‘Ž, π‘ž) that interpolates𝐹𝐾’s for𝔰𝔩𝑁. In this chapter, following [Ekh+;Ekh+22], we explain how this three-variable series can be interpreted as a topological string partition function. As we will see, this will lead to several concrete mathematical predictions.

6.1 Topological strings and𝐹𝐾 HOMFLY-PT polynomials

For a knot𝐾 βŠ‚ 𝑆3, itsHOMFLY-PT polynomialis a topological invariant [Hos+85;

PT87] which can be defined by the skein relation

π‘Ž1/2𝑃 (π‘Ž, π‘ž) βˆ’π‘Žβˆ’1/2𝑃 (π‘Ž, π‘ž) = (π‘ž1/2βˆ’π‘žβˆ’1/2)𝑃 (π‘Ž, π‘ž) with a normalization condition 𝑃

01(π‘Ž, π‘ž) = 1 for the unknot. The HOMFLY-PT polynomial interpolates all the𝔰𝔩𝑁 Jones polynomials𝐽𝔰𝔩𝑁

𝐾 (π‘ž)in the sense that 𝑃𝐾(π‘Ž=π‘žπ‘, π‘ž) = 𝐽𝔰𝔩𝑁

𝐾 (π‘ž).

More generally, thecolored HOMFLY-PT polynomials𝑃𝐾 , 𝑅(π‘Ž, π‘ž)are polynomial knot invariants generalizing the HOMFLY-PT polynomial, which also depends on a representation (a Young diagram)𝑅. The colored HOMFLY-PT polynomial 𝑃𝐾 , 𝑅(π‘Ž, π‘ž)interpolates the colored𝔰𝔩𝑁 Jones polynomials in the sense that

𝑃𝐾 , 𝑅(π‘Ž=π‘žπ‘, π‘ž) = 𝐽𝔰𝔩𝑁

𝐾 , 𝑅(π‘ž).

The original HOMFLY-PT polynomial corresponds to the case of defining represen- tation𝑅 =β–‘. We will be interested mainly in the HOMFLY-PT polynomials colored by the totally symmetric representations

𝑅 =π‘†π‘Ÿ =β–‘| {z Β· Β· Β·β–‘}

π‘Ÿ

withπ‘Ÿ boxes in a row in the Young diagram. In order to simplify the notation, we will denote them by 𝑃𝐾 ,π‘Ÿ(π‘Ž, π‘ž)and call them simply the HOMFLY-PT polynomials.

There is also a 𝑑-deformation of the HOMFLY-PT polynomials [DGR06;GS12a].

The superpolynomial P𝐾 ,π‘Ÿ(π‘Ž, π‘ž, 𝑑) is defined as the PoincarΓ© polynomial of the triply-graded homology that categorifies the HOMFLY-PT polynomial:

𝑃𝐾 ,π‘Ÿ(π‘Ž, π‘ž) =βˆ‘οΈ

𝑖, 𝑗 , π‘˜

(βˆ’1)π‘˜π‘Žπ‘–π‘žπ‘—dimH𝑖, 𝑗 , π‘˜π‘†π‘Ÿ (𝐾), P𝐾 ,π‘Ÿ(π‘Ž, π‘ž, 𝑑) =βˆ‘οΈ

𝑖, 𝑗 , π‘˜

π‘Žπ‘–π‘žπ‘—π‘‘π‘˜dimHπ‘†π‘Ÿ

𝑖, 𝑗 , π‘˜(𝐾).

(6.1)

The superpolynomial reduces to the HOMFLY-PT polynomial when𝑑 =βˆ’1:

P𝐾 ,π‘Ÿ(π‘Ž, π‘ž, 𝑑 =βˆ’1) = 𝑃𝐾 ,π‘Ÿ(π‘Ž, π‘ž). 𝐴-polynomials

The 𝐴-polynomial 𝐴𝐾(π‘₯ , 𝑦) is a polynomial knot invariant defining the algebraic curve {(π‘₯ , 𝑦) ∈ (Cβˆ—)2 | 𝐴𝐾(π‘₯ , 𝑦) = 0}, which is the projection of the character variety of the the knot complement to the boundary torus [Coo+94]. According to the volume conjecture, it also captures the asymptotics of the colored Jones polynomials 𝐽𝐾 ,π‘Ÿ(π‘ž)for large colorsπ‘Ÿ. The quantization of the 𝐴-polynomial encodes information about all colors, not only large ones. Namely, it gives the recurrence relations satisfied by the colored Jones polynomialsπ½π‘Ÿ(𝐾;π‘ž):

Λ†

𝐴𝐾(π‘₯ ,Λ† 𝑦, π‘žΛ† )𝐽𝐾 ,π‘Ÿ(π‘ž) =0, where Λ†π‘₯and ˆ𝑦act by

Λ†

π‘₯ 𝐽𝐾 ,π‘Ÿ(π‘ž) =π‘žπ‘Ÿπ½πΎ ,π‘Ÿ(π‘ž), 𝑦 𝐽ˆ 𝐾 ,π‘Ÿ(π‘ž) =𝐽𝐾 ,π‘Ÿ+

1(π‘ž),

and satisfy the π‘ž-commutation relation ˆ𝑦π‘₯Λ† = π‘žπ‘₯ˆ𝑦ˆ. The π‘ž-difference operator Λ†

𝐴𝐾(π‘₯ ,Λ† 𝑦, π‘žΛ† ), which we have already seen many times in previous chapters, is called the quantum 𝐴-polynomial; in the classical limit π‘ž = 1 it becomes the usual 𝐴- polynomial 𝐴𝐾(π‘₯ , 𝑦). The existence of the quantum 𝐴-polynomial was conjectured independently in the context of quantization of the Chern-Simons theory [Guk05]

and in parallel mathematics developments [Gar04].

The 𝐴-polynomial can be generalized further for the colored HOMFLY-PT polyno- mials [AV12] and colored superpolynomials [Awa+12;FGS13], which we briefly introduced in (6.1). In these cases the objects mentioned in the previous paragraph becomeπ‘Ž- and𝑑-dependent. In particular, the asymptotics of colored superpolyno- mialsPπ‘Ÿ(𝐾;π‘Ž, π‘ž, 𝑑)for largeπ‘Ÿ is captured by an algebraic curve 𝐴𝐾(π‘₯ , 𝑦, π‘Ž, 𝑑) =0 defined by the super-𝐴-polynomial. When 𝑑 = βˆ’1 it becomes the π‘Ž-deformed

𝐴-polynomial, and upon setting in additionπ‘Ž = 1, it gets reduced further to the original𝐴-polynomial (as a factor). For brevity, all these objects are often referred to as𝐴-polynomials. The quantization of the super-𝐴-polynomial gives rise to quantum super-𝐴-polynomial ˆ𝐴𝐾(π‘₯ ,Λ† 𝑦, π‘Ž, π‘ž, 𝑑ˆ ), which is aπ‘ž-difference operator that encodes the recurrence relations for the colored superpolynomials:

Λ†

𝐴𝐾(π‘₯ ,Λ† 𝑦, π‘Ž, π‘ž, 𝑑ˆ )Pβˆ—(𝐾;π‘Ž, π‘ž, 𝑑) =0.

A universal framework that enables us to determine a quantum 𝐴-polynomial from an underlying classical curve 𝐴(π‘₯ , 𝑦) =0 was proposed in [GS12b] (irrespective of extra parameters these curves depend on, and also beyond examples related to knots).

Large-𝑁 transition

In this subsection we explain the physical background in order to motivate the conjectures that we will present in later sections. The mathematically inclined readers may skip this subsection.

The physical system we are interested in1 can be represented by the system of 𝑁 fivebranes supported onR2×𝑆1Γ—π‘Œ, whereπ‘Œ is embedded as the zero-section inside the Calabi-Yau 3-foldπ‘‡βˆ—π‘Œ andR2×𝑆1 βŠ‚ R4×𝑆1:

spacetime : R4×𝑆1Γ—π‘‡βˆ—π‘Œ

βˆͺ βˆͺ

𝑁 M5-branes : R2×𝑆1Γ—π‘Œ .

(6.2)

Finding the large-𝑁 limit of this system for general 3-manifoldπ‘Œ is highly nontrivial (see [GPV17, sec.7] and [ES19, Remark 2.4]). However, whenπ‘Œis a knot complement 𝑀𝐾 := 𝑆3\𝐾, there is an equivalent description for which the study of large-𝑁 behavior can be reduced to the celebrated β€œlarge-𝑁 transition” [GV98;OV00].

We consider first a description without transition. From the viewpoint of 3d/3d correspondence,𝑁 fivebranes onπ‘Œ = 𝑀𝐾 produce a 4dN =4 theory β€” which is a close cousin of (but isnot) 4dN =4 super-Yang-Mills β€” on a half-spaceR3Γ—R+

coupled to 3dN =2 theory𝑇[𝑀𝐾] on the boundary. Indeed, near the boundary 𝑇2= Λ𝐾 =πœ• 𝑀𝐾, the compactification of𝑁 fivebranes produces a 4dN =4 theory which has moduli space of vacua Sym𝑁(C2Γ—Cβˆ—) [Chu+20]. (The moduli space of vacua in 4dN =4 SYM is Sym𝑁(C3).) The π‘†π‘ˆ(𝑁) gauge symmetry of this theory appears as a global symmetry of the 3d boundary theory𝑇[𝑀𝐾]. In particular, the

1We have already reviewed this briefly in Section2.2.

variablesπ‘₯𝑖 ∈Cβˆ—are complexified fugacities for this global (β€œflavor”) symmetry. For 𝐺 = π‘†π‘ˆ(2), the moduli space of vacua of the knot complement theory𝑇𝔰𝔩

2[𝑀𝐾] gives precisely the 𝐴-polynomial of𝐾. Similarly, for𝐺 = π‘†π‘ˆ(𝑁), 𝐺

C character varieties of𝑀𝐾 are realized as spaces of vacua in𝑇𝔰𝔩

𝑁[𝑀𝐾][FGS13;Fuj+13].

We next give another equivalent description of the physical system (6.2) withπ‘Œ =𝑀𝐾, where the large-𝑁 behavior is easier to analyze:

spacetime : R4×𝑆1Γ—π‘‡βˆ—π‘†3

βˆͺ βˆͺ

𝑁 M5-branes : R2×𝑆1×𝑆3 𝜌M5β€²-branes : R2×𝑆1×𝐿𝐾.

(6.3)

This brane configuration is basically a variant of (6.2) withπ‘Œ = 𝑆3 and 𝜌 extra M5-branes supported onR2×𝑆1×𝐿𝐾, where𝐿𝐾 βŠ‚ π‘‡βˆ—π‘†3is the conormal bundle of the knot𝐾 βŠ‚ 𝑆3(often called theknot conormal Lagrangian). There is, however, a crucial difference between fivebranes on𝑆3and𝐿𝐾. Since the latter are non-compact in two directions orthogonal to 𝐾, they carry no dynamical degrees of freedom away from 𝐾. One can path integrate those degrees of freedom along 𝐾, which effectively removes𝐾 from𝑆3and puts the corresponding boundary conditions on the boundary𝑇2 = πœ• 𝑀𝐾. The resulting system is precisely (6.2) withπ‘Œ = 𝑀𝐾. Equivalently, one can use the topological invariance along𝑆3to move the tubular neighbourhood of 𝐾 βŠ‚ 𝑆3 to β€œinfinity.” This creates a long neck isomorphic to R×𝑇2, as in the above discussion. Either way, we end up with a system of 𝑁 fivebranes on the knot complement and no extra branes on 𝐿𝐾, so that the choice of𝐺 𝐿(𝜌,C) flat connection on𝐿𝐾 is now encoded in the boundary condition for 𝑆 𝐿(𝑁 ,C)connection2on𝑇2=πœ• 𝑀𝐾. In particular, the latter has at most𝜌nontrivial parametersπ‘₯𝑖 ∈Cβˆ—,𝑖 =1, . . . , 𝜌.

We will consider the simplest case of𝜌 =1. Then we can use the geometric transition of [GV98], upon which there is one brane on𝐿𝐾and𝑁fivebranes on the zero-section of π‘‡βˆ—π‘†3 disappear. The Calabi-Yau space π‘‡βˆ—π‘†3 undergoes a topology changing transition to a new Calabi-Yau space 𝑋, the so-called β€œresolved conifold”, which is the total space ofO (βˆ’1) βŠ• O (βˆ’1) β†’CP1, and only the Ooguri-Vafa fivebranes

2To be more precise, it is a𝐺 𝐿(𝑁 ,C)connection, but the dynamics of the𝐺 𝐿(1,C)sector is different from that of the𝑆 𝐿(𝑁 ,C)sector and can be decoupled.

supported on the conormal bundle𝐿𝐾 remain:

spacetime : R4×𝑆1Γ— 𝑋

βˆͺ βˆͺ

𝜌M5β€²-branes : R2×𝑆1Γ— 𝐿𝐾.

(6.4)

Note that on the resolved conifold side, i.e., after the geometric transition, logπ‘Ž= Vol(CP1) + 𝑖

∫

𝐡 = 𝑁ℏ is the complexified KΓ€hler parameter which enters the generating function of enumerative invariants.

To summarize, a system of 𝑁 fivebranes on a knot complement (6.2) is equivalent to a brane configuration (6.4), with a suitable map that relates the boundary conditions in the two cases. There is another system closely related to (6.4) that one can obtain from (6.3) by first reconnecting𝜌 branes on𝐿𝐾 with𝜌branes on𝑆3. This give 𝜌 branes on 𝑀𝐾 (that go off to infinity just like 𝐿𝐾 does) plus𝑁 βˆ’ 𝜌 branes on 𝑆3. Assuming that 𝜌 βˆΌπ‘‚(1)as 𝑁 β†’ ∞(e.g. 𝜌=1 in the context of this paper), after the geometric transition we end up with a system like (6.4), except 𝐿𝐾is replaced by 𝑀𝐾 and Vol(CP1) +𝑖

∫

𝐡 =(π‘βˆ’ 𝜌)ℏ. Both of these systems on the resolved side compute the HOMFLY-PT polynomials of𝐾 colored by Young diagrams with at most𝜌rows.

𝐹𝐾 as the count of open holomorphic curves

From the mathematical point of view, what the above physical picture tells us is that 𝐹𝐾(π‘₯ , π‘Ž, π‘ž)is the count of open topological strings in the resolved conifold 𝑋, with the knot complement Lagrangian𝑀𝐾 βŠ‚ 𝑋.

Mathematically, the large-𝑁 transition (going fromπ‘‡βˆ—π‘†3to the resolved conifold) corresponds to theSymplectic Field Theory (SFT)-stretching[ES19]. With enough stretching, all the curves leave a neighborhood of𝑆3, so one can effectively replace π‘‡βˆ—π‘†3with the resolved conifold. In order for the SFT-stretching to work nicely, we should be able to shift the Lagrangian completely off of the zero section𝑆3. With 𝑀𝐾, that would be exactly when𝐾 is fibered. When𝑀𝐾 is non-fibered, it cannot be completely shifted off of the zero section. Instead, there will be finitely many intersection points where𝑀𝐾 looks like the cotangent fiber. In this case, even after SFT-stretching, the curves can end on Reeb chords ending on those intersection points, which complicates the story.

Before moving onto the next topic, let us point out one implication of this interpretation.

Write

𝐹𝐾(π‘₯ , π‘Ž, π‘ž =𝑒𝑔𝑠) =𝑒

1

π‘”π‘ π‘ˆπΎ(π‘₯ ,π‘Ž)+π‘ˆ0

𝐾(π‘₯ ,π‘Ž)+π‘”π‘ π‘ˆ1

𝐾(π‘₯ ,π‘Ž)+𝑔𝑠2π‘ˆ2

𝐾(π‘₯ ,π‘Ž)+Β·Β·Β·

.

Theπ‘ˆπΎβ€™s are the open Gromov-Witten invariants in our setup (with knot complement Lagrangian𝑀𝐾). Then, if ˆ𝑏 is the operator such that

Λ†

𝑏 :𝑁 ↦→ 𝑁+1 (i.e.,π‘Ž β†¦β†’π‘ž π‘Ž), then its expectation value is

βŸ¨π‘Λ†βŸ©|(𝑦,π‘Ž)=(1,1) = lim

π‘žβ†’1

𝐹𝐾(π‘₯ , π‘ž π‘Ž, π‘ž) 𝐹𝐾(π‘₯ , π‘Ž, π‘ž)

(𝑦,π‘Ž)=(

1,1)

= Δ𝐾(π‘₯)βˆ’1 (6.5) since, according to Conjecture5.3.2,

π‘žβ†’lim1

𝐹𝔰𝔩𝑁

,𝑠 𝑦 π‘š

𝐾 (π‘₯ , π‘ž) = Δ𝐾(π‘₯)1βˆ’π‘. But also,

βŸ¨π‘Λ†βŸ©|(𝑦,π‘Ž)=(1,1) =exp

πœ•π‘ˆπΎ(π‘₯ , π‘Ž)

πœ•logπ‘Ž (𝑦,π‘Ž)=(

1,1)

!

=exp

∫ πœ•log𝑦(π‘₯ , π‘Ž)

πœ•logπ‘Ž (𝑦,π‘Ž)=(

1,1)

𝑑logπ‘₯

!

=exp

∫

βˆ’

πœ•logπ‘Žπ΄πΎ

πœ•log𝑦𝐴𝐾 (𝑦,π‘Ž)=(

1,1)

𝑑logπ‘₯

! .

So we have a formula forΔ𝐾(π‘₯)in terms of theπ‘Ž-deformed𝐴-polynomial𝐴𝐾(π‘₯ , 𝑦, π‘Ž). This was confirmed recently by Diogo and Ekholm.

Theorem 6.1.1 ([DE20]). The Alexander polynomial can be computed from the augmentation polynomial3Aug𝐾(π‘₯ , 𝑦, π‘Ž)near the abelian branch:

Δ𝐾(π‘₯)= (1βˆ’π‘₯)exp

∫ πœ•

logπ‘ŽAug𝐾

πœ•log𝑦Aug𝐾

(𝑦,π‘Ž)=(

1,1)

𝑑logπ‘₯

! . 6.2 Branches

The variablesπ‘₯ and𝑦 of the 𝐴-polynomial correspond to the holonomy eigenvalues of the meridian and longitude of the knot. Since there are always abelian𝑆 𝐿

2(C) connections regardless of the choice of knot, the 𝐴-polynomial 𝐴𝐾(π‘₯ , 𝑦) always have a factor of (π‘¦βˆ’1). Bybranches, we mean the solutions𝑦of 𝐴𝐾(π‘₯ , 𝑦) =0 as a function ofπ‘₯. So, there are as many branches as deg𝑦 𝐴𝐾(π‘₯ , 𝑦). The canonical

3The augmentation polynomial in knot contact homology is essentially the same as theπ‘Ž-deformed 𝐴-polynomial (also known as the𝑄-deformed𝐴-polynomial). See [Aga+14;AV12].

solution𝑦=1 is called theabelian branch. Similarly in theπ‘Ž-deformed setting, we call the branch 𝑦(𝛼)(π‘₯ , π‘Ž)abelian branch if𝑦(𝛼)(π‘₯ , π‘Ž =1) =1.

All of our discussions so far have been on the abelian branch. This is because for 𝐹𝐾(π‘₯ , π‘ž), the expectation value of the ˆ𝑦operator is always 1:

βŸ¨π‘¦Λ†βŸ©= lim

π‘žβ†’1

𝐹𝐾(π‘žπ‘₯ , π‘ž) 𝐹𝐾(π‘₯ , π‘ž) =1.

As briefly mentioned in the previous section, a choice of branch corresponds to a choice of vacuum in the 3d theory𝑇[𝑀𝐾]. Therefore, it is natural to expect that there are invariants analogous to 𝐹𝐾(π‘₯ , π‘Ž, π‘ž) associated to other branches of the 𝐴-polynomial.

Conjecture 6.2.1([Ekh+22]). Given a knot𝐾, let𝑦(𝛼)(π‘₯ , π‘Ž)be a branch of𝑦near π‘₯ =0 (orπ‘₯ =∞) of theπ‘Ž-deformed 𝐴-polynomial of𝐾, 𝐴𝐾(π‘₯ , 𝑦, π‘Ž). Then, there exists a wave function𝐹(𝛼)

𝐾 (π‘₯ , π‘Ž, π‘ž)associated to this branch in a sense that

βŸ¨π‘¦Λ†βŸ©:= lim

π‘žβ†’1

𝐹(𝛼)

𝐾 (π‘žπ‘₯ , π‘Ž, π‘ž) 𝐹(

𝛼)

𝐾 (π‘₯ , π‘Ž, π‘ž)

= 𝑦(𝛼)(π‘₯ , π‘Ž),

and this wave function is annihilated by the quantum π‘Ž-deformed 𝐴-polynomial Λ†

𝐴𝐾(π‘₯ ,Λ† 𝑦, π‘Ž, π‘žΛ† )(which is the same for all branches𝑦(𝛼)(π‘₯ , π‘Ž)):

Λ†

𝐴𝐾(π‘₯ ,Λ† 𝑦, π‘Ž, π‘žΛ† )𝐹(𝛼)

𝐾 (π‘₯ , π‘Ž, π‘ž) =0.

This conjecture has been checked in numerous examples in [Ekh+22]. In fact, in many cases, we can obtain𝐹(

𝛼)

𝐾 (π‘₯ , π‘Ž, π‘ž)by solving theπ‘ž-difference equation given by the quantum 𝐴-polynomial. If 𝑦(𝛼)(π‘₯) ∼π‘₯𝑑asymptotically nearπ‘₯ =0, for some 𝑑 ∈Q, then we can use it as the initial condition and find a solution of the form

𝐹(

𝛼)

𝐾 (π‘₯ , π‘Ž, π‘ž) =𝑒

𝑑(log

π‘₯)2

2 logπ‘ž Β· (some Puiseux series inπ‘₯),

up to an overall factor independent ofπ‘₯. Possible values of𝑑 correspond exactly to the boundary slopes of the 𝐴-polynomial Newton polygon. More precisely,βˆ’1

𝑑

should be a boundary slope of the Newton polygon, withπ‘₯- and𝑦-axis representing theπ‘₯- and𝑦-degree of the monomials. The abelian branch always corresponds to the slope∞(or equivalently𝑑 =0), and that’s why the two-variable series𝐹𝐾(π‘₯ , π‘ž) we considered in previous chapters do not have the exponential prefactor𝑒𝑑

(logπ‘₯)2 2 logπ‘ž

. For non-abelian branches, however,𝐹(

𝛼)

𝐾 (π‘₯ , π‘ž)in general involve such a prefactor.

Example 6.2.2 (Figure-eight knot41). For simplicity, let’s consider the𝔰𝔩2 case (i.e., π‘Ž = π‘ž2). The 𝐴-polynomial of the figure-eight knot is of 𝑦-degree 3, so it has 3 branches. One of them is the abelian branch, and there are two non-abelian branches of boundary slopeΒ±1

2 which are conjugate to each other. Let’s denote the non-abelian branches by𝛼±

1/2, according to their boundary slopes.

Using the quantum 𝐴-polynomial, we can solve for 𝐹

(𝛼±

1/2)

41 (π‘₯ , π‘ž)term by term. It turns out, they have nice expressions similar to the inverted Habiro series! Explicitly, they are given by

𝐹

(π›Όβˆ’

1/2)

41 (π‘₯ , π‘ž) =𝑒

(logπ‘₯)2 logπ‘ž

βˆ‘οΈ

𝑛β‰₯0

(βˆ’1)π‘›π‘žβˆ’

𝑛(π‘›βˆ’1) 2

(π‘ž)𝑛

Î

0≀𝑗≀𝑛(π‘₯+π‘₯βˆ’1βˆ’π‘žπ‘— βˆ’π‘žβˆ’π‘—) , and

𝐹

(𝛼1/2)

41 (π‘₯ , π‘ž) =π‘’βˆ’

(logπ‘₯)2 logπ‘ž

βˆ‘οΈ

𝑛β‰₯0

π‘žπ‘›2 (π‘ž)𝑛

Î

0≀𝑗≀𝑛(π‘₯+π‘₯βˆ’1βˆ’π‘žπ‘— βˆ’π‘žβˆ’π‘—).

Remark 6.2.3. The abelian branch 𝐹𝐾(π‘₯ , π‘ž), as we have reviewed extensively in previous chapters, was part of a bigger story that involves closed 3-manifolds. On the other hand, it is not clear at the moment if the non-abelian branch𝐹(𝛼)

𝐾 (π‘₯ , π‘ž)’s can be extended to closed 3-manifolds. Given that there seems to be some correlation between the window of good surgery coefficients (Remark4.0.2) and the boundary slope of the 𝐴-polynomial Newton polygon, it is not too far-fetched to speculate that perhaps these non-abelian branch 𝐹𝐾’s might play some role to get a full understanding of ˆ𝑍.

6.3 Holomorphic Lagrangian subvarieties

Consider the ˆ𝑏operator that we introduced earlier. It is the operator that substitutesπ‘Ž byπ‘ž π‘Ž. We have seen that in the abelian branch the expectation value of the ˆ𝑏operator provides anπ‘Ž-deformation of the inverse Alexander polynomial. On other branches 𝑦(𝛼)(π‘₯ , π‘Ž), the expectation value of the ˆ𝑏 operator will be some other functions; let’s define

𝑏(𝛼)(π‘₯ , π‘Ž) := lim

π‘žβ†’1

𝐹(𝛼)

𝐾 (π‘₯ , π‘ž π‘Ž, π‘ž) 𝐹(

𝛼)

𝐾 (π‘₯ , π‘Ž, π‘ž) .

It turns out, the functions𝑏(𝛼)(π‘₯ , π‘Ž)describe branches of the equation𝐡𝐾(π‘Ž, 𝑏, π‘₯) =0 defined by a polynomial𝐡𝐾(π‘Ž, 𝑏, π‘₯)that we call the𝐡-polynomialin [Ekh+22]. The 𝐡-polynomial is uniquely determined by the 𝐴-polynomial, thanks to the equation

πœ•log𝑏(𝛼)(π‘₯ , π‘Ž)

πœ•logπ‘₯

= πœ•log𝑦(𝛼)(π‘₯ , π‘Ž)

πœ•logπ‘Ž .

We summarize the𝐡-polynomials for some simple knots in Table6.1.

𝐾 𝐡𝐾(π‘Ž, 𝑏, π‘₯)

01 1βˆ’π‘

31 1βˆ’π‘₯βˆ’1(2βˆ’ (1+π‘₯)π‘Ž+π‘₯2π‘Ž2)𝑏+π‘₯βˆ’2(1βˆ’π‘Ž) (1βˆ’π‘₯ π‘Ž)𝑏2 41

1+π‘Žβˆ’1π‘₯βˆ’1(2βˆ’ (1+3π‘₯+π‘₯2)π‘Ž+2π‘₯2π‘Ž2)𝑏

+π‘Žβˆ’2π‘₯βˆ’2(1βˆ’π‘Ž) (1βˆ’π‘₯ π‘Ž) (1βˆ’2π‘₯(1+π‘₯)π‘Ž+π‘₯3π‘Ž2)𝑏2

βˆ’π‘Žβˆ’2π‘₯βˆ’1(1βˆ’π‘Ž) (1βˆ’π‘Ž) (1βˆ’π‘₯ π‘Ž) (1βˆ’π‘₯ π‘Ž)𝑏3 51

1βˆ’π‘₯βˆ’2 3βˆ’2(1+π‘₯)π‘Ž+π‘₯(1+2π‘₯)π‘Ž2βˆ’π‘₯2(1+π‘₯)π‘Ž3+π‘₯4π‘Ž4 𝑏 +π‘₯βˆ’4(1βˆ’π‘Ž) (1βˆ’π‘₯ π‘Ž) (3βˆ’ (1+π‘₯)π‘Ž+2π‘₯2π‘Ž2)𝑏2

βˆ’π‘₯βˆ’6(1βˆ’π‘Ž) (1βˆ’π‘Ž) (1βˆ’π‘₯ π‘Ž) (1βˆ’π‘₯ π‘Ž)𝑏3

52

1βˆ’π‘₯βˆ’2

2π‘Ž2π‘₯3+π‘Ž2π‘₯2βˆ’4π‘Žπ‘₯2βˆ’π‘Žπ‘₯βˆ’π‘Ž+3π‘₯+1

𝑏

βˆ’π‘₯βˆ’3(π‘Žβˆ’1) (π‘Žπ‘₯βˆ’1)

π‘Ž3π‘₯4βˆ’3π‘Ž2π‘₯3βˆ’2π‘Ž2π‘₯2+5π‘Žπ‘₯2+π‘Žπ‘₯+π‘Žβˆ’3π‘₯βˆ’3

𝑏2

βˆ’π‘₯βˆ’4(π‘Žβˆ’1)2(π‘Žπ‘₯βˆ’1)2

π‘Ž2π‘₯3βˆ’2π‘Žπ‘₯2βˆ’π‘Žπ‘₯+π‘₯+3

𝑏3 +π‘₯βˆ’5(π‘Žβˆ’1)3(π‘Žπ‘₯βˆ’1)3𝑏4

Table 6.1: Classical𝐡-polynomials for some simple knots.

One important feature of the 𝐡-polynomial is that it takes the following simple form in theπ‘Ž =1 limit, which can be seen from equation (6.5):

𝐡𝐾(π‘Ž =1, 𝑏, π‘₯) =1βˆ’Ξ”πΎ(π‘₯)𝑏 .

The𝐡-polynomial shares many features similar to the𝐴-polynomial. For instance, the 𝑏-degree of the 𝐡-polynomial equals the 𝑦-degree of the 𝐴-polynomial (since there is a one-to-one correspondence between the branches). Moreover,𝐡𝐾(π‘Ž, 𝑏, π‘₯=1) always has a factor ofπ‘βˆ’1, just like 𝐴𝐾(π‘₯ , 𝑦, π‘Ž =1)always has a factor of π‘¦βˆ’1.

Just like 𝐴-polynomials can be quantized to π‘ž-difference equations, so do 𝐡- polynomials. We summarize the quantum𝐡-polynomials for some simple knots in Table6.2.

In fact, there is a better way to think of𝐴- and𝐡-polynomials. This is by lifting them to the same holomorphic Lagrangian in(Cβˆ—)4parametrized byπ‘₯ , 𝑦, π‘Ž, 𝑏. Physically, this holomorphic Lagrangian corresponds to the Coulomb branch of a 3d-5d coupled system, which should have a quantization. Therefore, we propose the following conjecture.

𝐾 𝐡ˆ𝐾(π‘Ž,Λ† 𝑏, π‘₯ , π‘žΛ† )

01 1βˆ’π‘Λ†

31 1βˆ’π‘žβˆ’1π‘₯βˆ’1(1+π‘žβˆ’ (1+π‘žπ‘₯)π‘ŽΛ†+π‘žπ‘₯2π‘ŽΛ†2)𝑏ˆ+π‘žβˆ’1π‘₯βˆ’2(1βˆ’π‘ŽΛ†) (1βˆ’π‘žπ‘₯π‘ŽΛ†)𝑏ˆ2 41

1+π‘žβˆ’1π‘₯βˆ’1π‘ŽΛ†βˆ’1(1+π‘žβˆ’ (1+3π‘žπ‘₯+π‘ž2π‘₯2)π‘ŽΛ†+π‘žπ‘₯2(1+π‘ž)π‘ŽΛ†2)𝑏ˆ +π‘žβˆ’2π‘₯βˆ’2π‘ŽΛ†βˆ’2(1βˆ’π‘ŽΛ†) (1βˆ’π‘žπ‘₯π‘ŽΛ†) (1βˆ’2π‘žπ‘₯(1+π‘žπ‘₯)π‘ŽΛ†+π‘ž3π‘₯3π‘ŽΛ†2)𝑏ˆ2

βˆ’π‘žβˆ’2π‘₯βˆ’1π‘ŽΛ†βˆ’2(1βˆ’π‘ŽΛ†) (1βˆ’π‘žπ‘ŽΛ†) (1βˆ’π‘žπ‘₯π‘ŽΛ†) (1βˆ’π‘ž2π‘₯π‘ŽΛ†)𝑏ˆ3 51

1βˆ’π‘žβˆ’2π‘₯βˆ’2 1+π‘ž+π‘ž2βˆ’ (1+π‘ž) (1+π‘žπ‘₯)π‘ŽΛ†+π‘žπ‘₯(1+π‘₯+π‘žπ‘₯)π‘ŽΛ†2βˆ’π‘žπ‘₯2(1+π‘žπ‘₯)π‘ŽΛ†3+π‘ž2π‘₯4π‘ŽΛ†4 Λ† 𝑏 +π‘žβˆ’3π‘₯βˆ’4(1βˆ’π‘ŽΛ†) (1βˆ’π‘žπ‘₯π‘ŽΛ†) (1+π‘ž+π‘ž2βˆ’π‘ž(1+π‘žπ‘₯)π‘ŽΛ†+π‘ž2π‘₯2(1+π‘ž)π‘ŽΛ†2)𝑏ˆ2

βˆ’π‘žβˆ’3π‘₯βˆ’6(1βˆ’π‘ŽΛ†) (1βˆ’π‘žπ‘ŽΛ†) (1βˆ’π‘žπ‘₯π‘ŽΛ†) (1βˆ’π‘ž2π‘₯π‘ŽΛ†)𝑏ˆ3

Table 6.2: Quantum𝐡-polynomials for some simple knots.

Conjecture 6.3.1([Ekh+22]). Let us endow(Cβˆ—)4with the holomorphic symplectic form

Ξ©:=𝑑logπ‘₯βˆ§π‘‘log𝑦+𝑑logπ‘Žβˆ§π‘‘log𝑏, π‘₯ , 𝑦, π‘Ž, 𝑏 ∈Cβˆ—.

For every knot𝐾, there is a holomorphic Lagrangian subvarietyΓ𝐾 βŠ‚ (Cβˆ—)4with the following properties:

1. This holomorphic Lagrangian is preserved under the Weyl symmetry π‘₯ ↦→ π‘Žβˆ’1π‘₯βˆ’1, 𝑦↦→ π‘¦βˆ’1, π‘Žβ†¦β†’ π‘Ž, 𝑏↦→ π‘¦βˆ’1𝑏 .

2. The projection ofΓ𝐾on(Cβˆ—)π‘₯ , 𝑦,π‘Ž3 is the zero set of theπ‘Ž-deformed𝐴-polynomial of𝐾.

3. Moreover, ifπ‘₯ ,Λ† 𝑦,Λ† π‘Ž,Λ† 𝑏ˆ are operators such that Λ†

𝑦π‘₯Λ†=π‘žπ‘₯ˆ𝑦,Λ† π‘Λ†π‘ŽΛ† =π‘žπ‘ŽΛ†π‘,Λ†

and all the other pairs commute, then the ideal definingΓ𝐾 can be quantized to a left idealΓˆ𝐾 βŠ‚ C[π‘₯Λ†Β±1,𝑦ˆ±1,π‘ŽΛ†Β±1,𝑏ˆ±1]that annihilates𝐹𝐾(π‘₯ , π‘Ž, π‘ž).

This conjecture can be generalized even further, by introducing the𝑑-variable and its conjugate which we denote by𝑒.

Conjecture 6.3.2([Ekh+22]). Let us endow(Cβˆ—)6with the holomorphic symplectic form

Ξ©β€²:=𝑑logπ‘₯βˆ§π‘‘log𝑦+𝑑logπ‘Žβˆ§π‘‘log𝑏+𝑑logπ‘‘βˆ§π‘‘log𝑒, π‘₯ , 𝑦, π‘Ž, 𝑏, 𝑑 , 𝑒 ∈Cβˆ—. For every knot𝐾, there is a holomorphic Lagrangian subvarietyΓ′𝐾 βŠ‚ (Cβˆ—)6with the following properties:

1. This holomorphic Lagrangian is preserved under the Weyl symmetry π‘₯ ↦→ (βˆ’π‘‘)3π‘Žβˆ’1π‘₯βˆ’1, 𝑦↦→ π‘‘π‘ π‘¦βˆ’1, π‘Ž β†¦β†’π‘Ž, 𝑏 ↦→ (βˆ’π‘‘)𝑠2π‘¦βˆ’1𝑏,

𝑑 ↦→𝑑 , 𝑒↦→ π‘₯βˆ’π‘ π‘¦βˆ’3π‘Žβˆ’

𝑠 2𝑒, where𝑠is a version of𝑠-invariant of the knot𝐾. 2. The projection ofΞ“β€²

𝐾 on(Cβˆ—)4π‘₯ , 𝑦,π‘Ž,𝑑 is the zero set of the super-𝐴-polynomial of 𝐾.

3. Moreover, ifπ‘₯ ,Λ† 𝑦,Λ† π‘Ž,Λ† 𝑏,Λ† 𝑑 ,Λ† 𝑒ˆare operators such that Λ†

𝑦π‘₯Λ† =π‘žπ‘₯ˆ𝑦,Λ† π‘Λ†π‘ŽΛ† =π‘žπ‘ŽΛ†π‘,Λ† 𝑒ˆ𝑑ˆ=π‘žπ‘‘Λ†π‘’,Λ† and all the other pairs commute, then the ideal definingΞ“β€²

𝐾can be quantized to a left idealΞ“Λ†β€²

𝐾 βŠ‚ C[π‘₯Λ†Β±1,𝑦ˆ±1,π‘ŽΛ†Β±1,𝑏ˆ±1,𝑑ˆ±1,𝑒ˆ±1]that annihilates𝐹𝐾(π‘₯ , π‘Ž, π‘ž, 𝑑).4 6.4 Knots-quivers correspondence

In this final section, we briefly review the knots-quivers correspondence for colored HOMFLY-PT polynomials, and then conjecture that𝐹(

𝛼)

𝐾 (π‘₯ , π‘Ž, π‘ž)also has a quiver form.

Quivers and their representations

A quiver 𝑄 is an oriented graph, i.e., a pair (𝑄

0, 𝑄

1) where𝑄

0 is a finite set of vertices and𝑄

1 is a finite set of arrows between them. We number the vertices by 1,2, ..., π‘š = |𝑄

0|. An adjacency matrix of𝑄 is theπ‘šΓ—π‘š integer matrix with entries𝐢𝑖 𝑗 equal to the number of arrows from𝑖to 𝑗. If𝐢𝑖 𝑗 =𝐢𝑗 𝑖, we call the quiver symmetric.

A quiver representation with a dimension vectord= (𝑑

1, ..., π‘‘π‘š)is an assignment of a vector space of dimension𝑑𝑖to the node𝑖 βˆˆπ‘„

0and a linear map𝛾𝑖 𝑗 :C𝑑𝑖 β†’C𝑑𝑗 to each arrow from vertex𝑖to vertex 𝑗. Quiver representation theory studies moduli spaces of quiver representations. While explicit expressions for invariants describing those spaces are difficult to find in general, they are quite well understood in the case of symmetric quivers [KS08;KS11;Efi12;MR19;FR18]. Important information about the moduli space of representations of a symmetric quiver is encoded in the

4While we haven’t discussed much about𝑑-deformation of𝐹𝐾(π‘₯ , π‘Ž, π‘ž)in this thesis, since there are quantum super 𝐴-polynomials that involves both π‘Ž and𝑑 variables, solving theπ‘ž-difference equations we naturally obtain a𝑑-deformation of𝐹𝐾.

motivic generating seriesdefined as 𝑃𝑄(x, π‘ž) =βˆ‘οΈ

dβ‰₯0

(βˆ’π‘ž1/2)dΒ·CΒ·d xd

(π‘ž)d = βˆ‘οΈ

𝑑1,...,π‘‘π‘šβ‰₯0

(βˆ’π‘ž1/2)Í𝑖 , 𝑗𝐢𝑖 𝑗𝑑𝑖𝑑𝑗

π‘š

Γ–

𝑖=1

π‘₯𝑑𝑖

𝑖

(π‘ž)𝑑𝑖

. (6.6)

Let us define theplethystic exponentialof 𝑓 =Í

π‘›π‘Žπ‘›π‘‘π‘›,π‘Ž

0=0 in the following way:

Exp 𝑓

(𝑑) =exp

βˆ‘οΈ

π‘˜ 1 π‘˜π‘“(π‘‘π‘˜)

!

=Γ–

𝑛

(1βˆ’π‘‘π‘›)π‘Žπ‘›. Then we can write

𝑃𝑄(x, π‘ž) =Exp

Ξ©(x, π‘ž) 1βˆ’π‘ž

, Ξ©(x, π‘ž) =βˆ‘οΈ

d,𝑠

Ξ©d,𝑠xdπ‘žπ‘ /2 =βˆ‘οΈ

d,𝑠

Ξ©(𝑑

1,...,π‘‘π‘š),𝑠

Γ–

𝑖

π‘₯

𝑑𝑖 𝑖

! π‘žπ‘ /2,

(6.7)

whereΞ©d,𝑠are motivic Donaldson-Thomas (DT) invariants [KS08;KS11]. The DT invariants have two geometric interpretations, either as the intersection homology Betti numbers of the moduli space of all semi-simple representations of 𝑄 of dimension vectord, or as the Chow-Betti numbers of the moduli space of all simple representations of𝑄of dimension vectord; see [MR19;FR18]. [Efi12] provides a proof of integrality of DT invariants for the symmetric quivers.

Knots-quivers correspondence for knot conormals

In the context of the knots-quivers correspondence, we combine𝑃𝐾 ,π‘Ÿ(π‘Ž, π‘ž) into the HOMFLY-PT generating series:

𝑃𝐾(𝑦, π‘Ž, π‘ž) =

∞

βˆ‘οΈ

π‘Ÿ=0

π‘¦βˆ’π‘Ÿ (π‘ž)π‘Ÿ

𝑃𝐾 ,π‘Ÿ(π‘Ž, π‘ž).

Using this expression we can encode the Labastida-MariΓ±o-Ooguri-Vafa (LMOV) invariants [OV00;LM01;LMV00] in the following way:

𝑃𝐾(𝑦, π‘Ž, π‘ž) =Exp

𝑁(𝑦, π‘Ž, π‘ž) 1βˆ’π‘ž

, 𝑁(𝑦, π‘Ž, π‘ž) =βˆ‘οΈ

π‘Ÿ ,𝑖, 𝑗

π‘π‘Ÿ ,𝑖, π‘—π‘¦βˆ’π‘Ÿπ‘Žπ‘–/2π‘žπ‘—/2. (6.8) According to the LMOV conjecture [OV00; LM01; LMV00], π‘π‘Ÿ ,𝑖, 𝑗 are integer numbers counting BPS states in the effective 3d N = 2 theories described in subsection6.1.

The knots-quivers correspondence for the knot conormals [Kuc+17; Kuc+19]

is an assignment of a symmetric quiver 𝑄 (with adjacency matrix 𝐢), vector

Dokumen terkait