• Tidak ada hasil yang ditemukan

Elliptic div-curl estiamtes in L 2 space

5.1 Energy and L 2 Elliptic Estimates

5.1.2 Elliptic div-curl estiamtes in L 2 space

Cauchy-Schwarz inequality alongΣτand (5.7), we get the desired estimate.

Lemma 5.6(Basic energy inequality for the transport equations). Letϕ be smooth on[0,T]×R3. Under the bootstrap assumptions of Section 3.6, the following inequality holds for t∈[0,T]:

kϕk2L2

xt).kϕk2L2 x0)+

Z t 0

∂∂∂~Ψ

Lxτ)kϕk2L2

xτ)dτ+ Z t

0

kϕkL2

xτ)kBϕkL2

xτ)dτ. (5.14) Proof of Lemma 5.6. LetJα:=ϕ2Bα, then∂αJα=2ϕBϕ+ (∂αBα2. We apply the divergence theorem on the space-time region[0,t]×R3 relative to the Cartesian coordinates. Note thatJ02. By Cauchy- Schwarz inequality alongΣτ, we obtain the desired estimates.

Remark 5.7. We remark that for our implementation of the geometric energy method for wave equations, the timelike vectorfieldT(defined in Definition 2.11) plays the same role asB(Note thatB=∂t+vaain [9] is not the same asB=vα

v0α in this paper.) in [9, section 4.1]. All the arguments for geometric energy method for wave equations go through in the same fashion as in [9, section 4.1].

following equations hold onΣtfor vorticityωand entropy gradient S:

(G−1)aba[)b=Fω, (G−1)abaSb=FS, (5.17a)

a[)b−∂b[)a=(ω)Hab, ∂aSb−∂bSa=(S)Hab, (5.17b)

where

Fω=L(~Ψ, ~ω,~S)[∂∂∂~Ψ], FS=L(~Ψ)D+L(~Ψ,~S)[∂∂∂~Ψ], (5.18a)

(ω)Hab=L(~Ψ)C~+L(~Ψ, ~ω,~S)[∂∂∂~Ψ], (S)Hab=L(~Ψ,~S)[∂∂∂~Ψ], (5.18b) (G−1)abab−vavb

(v0)2. (5.18c)

For convenience, we write the above 2 div-curl systems as follows, where(η,Fη,(η)Hab)which1is either (ω[,Fω,(ω)Hab)or(S,FS,(S)Hab):

(G−1)abaηb=Fη, (5.19a)

aηb−∂bηa=(η)Hab. (5.19b)

Proof of Prop 5.9. For the div part (5.19a), by the equations (2.12c) and (2.27a), we write

η0=−ηbvb

v0 . (5.20)

Also by using transport equation (2.25a) and (2.25b), we have

0])b=−vaa])b

v0 +L(~Ψ, ~ω,S)[∂∂∂~Ψ]. (5.21) Using (2.26d) forη=ω[, we write∂0ω0+∂aωa=L(~ω)[∂∂∂~Ψ]. By lowering the index∂0ω0=−∂0[)0, equations (5.20) and (5.21), we prove (5.17a) forω. Similarly, forη=S, by definition ofD(2.14), we write

0(S])0+∂a(S])a=L(~Ψ)D+L(~Ψ,~S)[∂∂∂~Ψ]. Using equations (5.20) and (5.21), we obtain the equation (5.17a) forS.

1We use the same notation throughout the remainder of the article.

Now we consider the curl part, note that we have the facts (2.27d) and (2.27e):

γηδ−∂δηγγ δ κ λvκvortλ(η)−(vκκηδ)(v[)γ+vκ(∂δηκ)(v[)γ (5.22) + (vκκηγ)(v[)δ−vκ(∂δηκ)(v[)δ.

Recall that

Cα=vortα[) +L(~Ψ,~S)[∂∂∂~Ψ]. (5.23)

Hence forη=ω, the first term on the right-hand side of (5.22) forω is manifestly in(ω)Hab. Next, using vκκ[)δ =v0B(ω[)δ and (2.25a), as well as (2.27b), we have that the right-hand side of (5.22) forω is

(ω)Hab. Similarly, by (2.26c),vκκSγ=v0BSγ, (2.25b) and (2.27c), we obtain the equation (5.17b) forS.

Remark 5.10. In terms of elliptic estimates, there is a major difference in Proposition 5.8 compared to the Hodge system of the non-relativistic 3D compressible Euler equations. In the non-relativistic case, the analogous elliptic equations are constant-coefficient div-curl equations along flat hypersurfaces of constant Cartesian time and, for example, the basic L2theory can be derived with the simple Hodge identity forΣt

vectorfields V∈H1(R3;R3):

3

a,b=1

aVb

2

L2x(R3)=kdivVk2L2

x(R3)+kcurlVk2L2

x(R3). (5.24)

In contrast, the divergence equation (5.19a) has dynamic, solution-dependent coefficients.

Proposition 5.11(The top-order div-curl system on constant-time hypersurfaces). Using the same notation as in Proposition 5.19, we have

(G−1)aba(∂η)b=Fη, (5.25a)

a(∂η)b−∂b(∂η)a=(∂η)Hab, (5.25b)

where

Fη=∂Fη−∂ n

(G−1)abo

aη, (5.26a)

(∂η)Hab=∂(η)Hab, (5.26b)

Moreover, we have

(G−1)aba∂Pνηb=FPνη, (5.27a)

a∂Pνηb−∂b∂Pνηa=(∂Pνη)Hab, (5.27b)

where

FPνη=PνFη+ [Pν,(G−1)ab]∂a∂ηb, (5.28a)

(∂Pνη)Hab=Pν

(∂η)Hab

. (5.28b)

Proof of Proposition 5.11. (5.25) is the direct result of taking one spatial derivative of(5.17). By commuting Littlewood-Paley projection operatorPν(defined in Section 3.2) with (5.25), we deduce (5.27).

For convenience, we write the above 3 div-curl systems (5.19), (5.25) and (5.27) as follows, where (X,F,Hab)is(η,Fη,(η)Hab)or(∂η,Fη,(∂η)Hab)or(∂Pνη,FPνη,(∂Pνη)Hab):

(G−1)abaXb=F, (5.29a)

aXb−∂bXa=Hab. (5.29b)

In order to derive elliptic estimates and Schauder estimates from the div-curl system (5.19), we need Lemma 5.12 provided below, which allows us to do estimates via Littlewood-Paley theory. We provide a partition of unity before the Lemma 5.12.

We want to apply the Fourier transform to a localized version of the div-curl system in Proposition 5.8.

We consider the latticeA :=δ2Z3, whereδ2is assumed to be small and will be determined in future analysis.

Notice that{xl}l∈N:=A ⊂Σthas points equally spread out, that is, for eachxl, there are 6 points inA such that the distance betweenxland any of them isδ2. We define the family of functions{ψl}l∈Nas follows:

ψl(x) =













1 x∈B(xl,18δ2),

exp( 4

22)exp( 1

|x−xl|2−(78δ2)2) x∈B(xl,78δ2)−B(xl,18δ2),

0 x∈/B(xl,78δ2),

(5.30)

and set

φl(x):= ψl(x)

k

ψk(x). (5.31)

We note thatkφlkLt),k∂ φlkLt).1.

We have constructed cut-off functions {φl}l∈N ⊂C0t) such that φl =1 in B(xl,18δ2), supp(φl)⊂ B(xl,78δ2), ∑

l

φl(x) =1 and for anyxa,xb∈A,φa(x) =φb(x−xa+xb). We want to apply Fourier trans- form on a localized region, where(G−1)ab(xl)is a constant and(G−1)ab(x)−(G−1)ab(xl)will be shown to be a controllable error term in the future analysis.

Lemma 5.12. Given the Proposition 5.9 and Proposition 5.11 with xlandφl, l∈N, defined as above, let X be the solution of equations (5.29). Then the following identity holds in frequency space for i=1,2,3:

(G−1)ab(xlaξb\(φlXi) =Cξil+

k6=i

C(G−1)ak(xlalki, (5.32)

where

Fl=(G−1)ab(xl)∂alXb) =φlF+ (G−1)ab(xl)(∂aφl)Xb (5.33a)

−h

(G−1)ab(x)−(G−1)ab(xl)i

alXb)−h

(G−1)ab(x)−(G−1)ab(xl)i

(∂aφl)Xb,

Hlab=∂alXb)−∂blXa) = (∂aφl)Xb−(∂bφl)XalHab. (5.33b)

Proof of Lemma 5.12. By multiplying the div-curl system (5.19a) and (5.19b) byφl, we rewrite the system as follows:

n

(G−1)ab(xl) + (G−1)ab(x)−(G−1)ab(xl)o

{∂alXb)−(∂aφl)Xb}=φlF, (5.34a)

alXb)−(∂aφl)Xb−∂blXa) + (∂bφl)XalHab. (5.34b)

Taking the Fourier transform of (5.34a) and multiplying byξ1, we have

ξ1

n

(G−1)a1(xla(φ\lX1) + (G−1)a2(xla(φ\lX2) + (G−1)a3(xla(φ\lX3)o

=Cξ1l, (5.35)

whereC=2πi1 is a constant from Fourier transform, and

Fl=(G−1)ab(xl)∂alXb) =φlF+ (G−1)ab(xl)(∂aφl)Xb (5.36)

−h

(G−1)ab(x)−(G−1)ab(xl)i

alXb)−h

(G−1)ab(x)−(G−1)ab(xl)i

(∂aφl)Xb.

Similarly, taking the Fourier transform of (5.34b) and multiplying by(G−1)a2(xlaand(G−1)a3(xla, we have

(G−1)a2(xlan

ξ2(φ\lX1)−ξ1(φ\lX2)o

=C(G−1)a2(xlal21, (5.37a) (G−1)a3(xlan

ξ3(φ\lX1)−ξ1(φ\lX3)o

=C(G−1)a3(xlal31, (5.37b)

whereC=2πi1 is a constant from Fourier transform, and

Hlab=∂alXb)−∂blXa) = (∂aφl)Xb−(∂bφl)XalHab. (5.38)

Adding (5.35), (5.37a) and (5.37b), we obtain

(G−1)ab(xlaξb(φ\lX1) =Cξ1l+C(G−1)a2(xlal21+C(G−1)a3(xlal31. (5.39)

We use the same argument forX2andX3. Hence fori=1,2,3, we obtain

(G−1)ab(xlaξb\(φlXi) =Cξil+

k6=i

C(G−1)ak(xlalki. (5.40)

Lemma 5.13 (Positive definiteness of G−1). For any Σt-tangent one-form ξ, that is, ξ0=0, we denote

|ξ|2:= ∑

i=1,2,3

ξi2. Then the following estimate holds for any xl∈Σt, where G is defined in Proposition 5.9:

C|ξ|2≤(G−1)ab(xlaξb≤ |ξ|2, (5.41)

where0<C<1is a constant depends only onkvkL

xt), which is in turn controlled by the bootstrap as- sumption (3.24a).

Proof of Lemma 5.13. Using the definition of(G−1)ab, we have

(G−1)ab(xlaξb=

δab− vavb (v0)2

ξaξb=|ξ|2− viξi

v0 2

. (5.42)

Hence by the normalization(v[)αvα=−1 in Section 2.2.1, we have

C|ξ|2≤(G−1)ab(xlaξb≤ |ξ|2, (5.43)

where 0<C<1 is a constant depends only onkvkL xt).

Lemma 5.14. For G defined in Proposition 5.9, the following inequality holds

(G−1)ab(x)−(G−1)ab(xl)

≤C3kvk4

C0,δ0 0t)|x−xl|δ0≤C24C3|x−xl|δ0, (5.44) where C2,C3are constants (independent of l,x,a,b,δ0).

Proof of Lemma 5.14. For H¨older continuous functionf,g∈C00,δ0t),

|f(x)g(x)−f(y)g(y)|

|x−y|δ0 =|f(x)g(x)−f(x)g(y)|+|f(x)g(y)−f(y)g(y)|

|x−y|δ0 (5.45)

≤ kfkL xt)kgk

C˙0,δ0 0t)+kgkL xt)kfk

C˙0,δ0 0t)

≤2kfk

C00,δ0t)kgk

C00,δ0t).

Therefore, by definition ofG−1in (5.18c) and the fact thatv0≥1, substitute(f,g)in (5.45) by(va,vb)and again by(vavb, 1

(v0)2), we have the estimate

(G−1)ab(x)−(G−1)ab(xl)

≤C3kvk4

C0,δ0 0t)|x−xl|δ0 (5.46) By Fundamental Theorem of Calculus, bootstrap assumptions (3.24) and (3.8), we have

kvkCx0,δ0t)≤ ∂∂∂~Ψ

L1tC0,δx 0t)+kvk

C0,δx 00). ∂∂∂~Ψ

L1tC0,δx 0t)+1≤C2, (5.47) Combining (5.46) and (5.47), we have the desired result.

Lemma 5.15(Commutator estimates). For scalar function F, G,δ1defined as in Section 3.4, Littlewood-

Paley projection operator Pνdefined in Section 3.2, we have the following estimates:

k[Pν,G]FkL2t)−δ1kGk

C0,δx 1t)kFkL2t). (5.48) Proof of Lemma 5.15. Forψdefined as in Section 3.2, we defineM(x)as follows:

Mν(x):=F−1(ψ(ν−1ξ)) = Z

eixξψ(ν−1ξ)dξ. (5.49)

Then we have

[Pν,G]F= Z

Mν(x−y) (G(y)−G(x))F(y)dy (5.50)

≤ kGk

Cx0,δ1t) Z

Mν(x−y)|x−y|δ1F(y)dy.

By Young’s inequality, we have

k[Pν,G]FkL2t).kGk

Cx0,δ1t)kFkL2t)

Mν(x)|x|δ1

L1t). (5.51) By definition of Fourier transform andψin Section 3.2, we have

Z

Mν(x)|x|δ1dx= Z

ν3ψ(−νx)ˆ |x|δ1dx.ν−δ1. (5.52)

Combining above equations, we obtain the desired result.

Lemma 5.16(Control of the inhomogeneous terms). For Fη,(η)H,G−1 defined as in Proposition 5.9, and F∂η,FPνη,(∂η)H,(∂Pνη)H defined as in Proposition 5.11, we have the following estimates:

kFηkL2t),

(η)H

L2t)≤C

∂∂∂~Ψ, ~C,D

L2t), (5.53)

F∂η L2t),

(∂η)H

L2t)≤C

∂∂∂2~Ψ,∂C~,∂D

L2t)+Cα−1 ∂~Ψ

2

H1t)k∂ηkL2t)+Cα

2η L2t),

(5.54) νN−2FPνη

l2 νL2t),

νN−2·(∂Pνη)H

lν2L2t).

2

L2t)+1

2η L2t)+

∂∂∂2~Ψ,∂C~,∂D

HN−2t), (5.55) where C,αare constants, C is independent ofα, andα>0(small), which will be determined later.

Proof of Lemma 5.16. (5.53) is the direct result of takingL2t)for (5.18).

TakingL2t)for (5.26), we have

k∂Fη,kL2t), ∂(η)H

L2t)≤C

∂∂∂2~Ψ,∂C~,∂D

L2t), (5.56)

n

(G−1)abo

aη

L2t)≤C ∂~Ψ

H1t)k∂ηk12

L2t)

2η

1 2

L2t) (5.57)

≤Cα−1 ∂~Ψ

2

H1t)k∂ηkL2t)+Cα

2η L2t),

where for the first inequality in (5.57), we used the fact thatkF·GkL2t)≤CkFk12

L2t)kFk12

H1t)kGkH1t)

(see [9, (79b)]), for the second inequality in (5.57), we used Young’s inequality.

Now we consider the proof of (5.55). Takinglν2L2t)norm of (5.28), we have

νN−2PνFη,

lν2L2t),

νN−2Pν

(∂η)H

lν2L2t)≤C

∂∂∂2~Ψ,∂C~,∂D

HN−2t)+ ∂2

L2t)

2η L2t),

(5.58) where the second term on the RHS of (5.58) is from the fact that (see [9, (81b)])

νN−2Pν

∂ n

(G−1)abo

aη

lν2L2t). ∂~Ψ

HN−32t)k∂ηkH1t)+k∂ηk

HN−32t)

∂~Ψ

H1t). (5.59) What remains to be controlled is the commutator term[Pν,(G−1)ab]∂a∂ηb. By Lemma 5.15, whereG:=

(G−1)abandF:=∂a∂ηb, and (5.47), we have

νN−2[Pν,(G−1)ab]∂a∂ηb

lν2L2t).

2η

L2t) (5.60)

Combining above 3 estimates, we obtain (5.55).

Lemma 5.17. Let G−1be defined as in (5.18c). F,H defined as in (5.29). For X the solution of the div-curl system (5.29), we have the following estimate:

k∂XkL2

xt)≤CkX,F,HkL2

xt), (5.61)

where C is a constant, which is independent of X,F,H.

Proof of Lemma 5.17. Throughout,X,F,G,Hare the same as in (5.29), andF,Hare defined in Lemma 5.12.

Since|ξ| '2νon support ofPν\(φlηi), by Littlewood-Paley estimate (3.7), (5.41) and (5.32), we remindψis

defined in Section 3.2

k∂{φlXi}k2L2

xt)≤C1

ν>1

kνPνlXi)k2L2

xt) (5.62)

≤C1

ν>1

F−1 ψ |ξ|

ν

|ν|−1 (

ξil+

k6=i

(G−1)jk(xljlki )!

2

L2xt)

≤C1

Fl

2 L2xt)+

Hl

2 L2xt)

,

whereC1is a constant andF−1is the Fourier inverse transform. By (5.33a), we have:

Fl

2

L2xt)≤ kφlFk2L2 xt)+

(G−1)

2

Lxt)k(∂ φl)Xk2L2

xt) (5.63)

+ sup

x∈B(xl2)

(G−1)ab(x)−(G−1)ab(xl)

2k∂(φlX)k2L2 xt).

By (5.33b),

Hl

2

L2xt)≤ kφlHk2L2

xt)+2k(∂ φl)Xk2L2

xt). (5.64)

LetC0:=C1C24C3, whereC1,C2,C3are constants from (5.62), (5.47), (5.44) respectively, and letδ2be small such that for allx∈B(xl2),

C0|x−xl|δ0 <1

4. (5.65)

Hence by (5.62), (5.63), (5.64), (5.65), soaking the last term in the RHS of (5.63) to the left of (5.62) (by Lemma 5.14), we have:

k∂{φlXi}k2L2

xt)≤C4lFk2L2

xt)+kφlHk2L2

xt)+k(∂ φl)Xk2L2 xt)

, (5.66)

whereC4is a constant.

Now we consider thek∂Xik2L2

xt). By (5.66), we have:

k∂Xik2L2 xt)=

l

∂{φlXi}

2

L2xt)

≤C5

l

k∂{φlXi}k2L2

xt)≤C4C5

l

l(F,H)k2L2

xt)+k(∂ φl)Xk2L2 xt)

! .

(5.67)

For the first term on the RHS of (5.67), by (5.53), we have :

l

l(F,H)k2L2

xt)=

l Z

Σt

l)2(F2+H2)dx (5.68)

l

lk2Lt) Z

ΣtT{∂ φl6=0}

(F2+H2)dx

≤C6kF,Hk2L2 xt).

For the second term on the RHS of (5.67), we have:

l

k(∂ φl)Xk2L2

xt)=

l Z

Σt

(∂ φl)2X2dx≤C7

l

k∂ φlk2Lt) Z

ΣtT{∂ φl6=0}X2dx≤C8kXk2L2

xt) (5.69) where the last inequality holds for both (5.68) and (5.69) since for eachx∈Σt, there are finite many (at most 8)φlsuch thatφl(x)6=0.

Combining (5.67)-(5.69) and lettingC:=C4C5(C6+C8), we conclude the desired estimate.

Proof of Proposition 5.8. (5.15) is a direct result by substituting(X,F,H)in (5.61) by(η,Fη,(η)H)and using the schematic definitionη=∂~Ψ, estimate (5.53).

Using (3.7), (5.16) can be proved in a similar fashion by using the following interpolation estimate:

k∂ηik2HN−1t)

2ηi

2

L2xt)+C1

ν

νN−2Pν(∂2ηi)

2

L2xt), (5.70) where we bound the first term on the RHS of (5.70) as follows:

2ηi

L2xt).

∂ ∂∂∂~Ψ,∂C,∂D L2

xt)+ ∂∂∂~Ψ

3

H1t), (5.71)

(5.71) is obtained by exactly the same method as in the proof of (5.15). That is, substituting(X,F,H,C,D) in (5.61) by(∂η,Fη,(∂η)H,∂C,∂D)and using (5.54), we have

2ηi L2

xt)≤C

∂∂∂2~Ψ,∂C~,∂D

L2t)+Cα−1 ∂~Ψ

2

H1t)k∂ηkL2t)+Cα

2η L2

t). (5.72) We pickαsmall (Cα≤12) such thatCα

2η

L2t)can be soaked into the LHS of (5.72).

Now we consider the second term on the RHS of (5.70).

Substituting(X,F,H)in (5.61) by(∂Pνη,FPνη,(∂Pνη)H), we have:

Multiplying (5.73) byνN−2and taking thelν2norm, we have:

νN−2Pν(∂2ηi) l2

νL2xt). νN−2

∂Pνη,FPνη,(∂Pνη)H

l2νL2xt). (5.74) By (5.74) and (5.55), we have:

νN−2Pν(∂2ηi)

l2νL2xt).

2

L2t)+1

2η

L2t)+

∂∂∂2~Ψ,∂C~,∂D

HN−2t). (5.75) By (5.70), (5.71) and (5.75), we have proved (5.16).

Dokumen terkait