9.3 Preparations for the Proofs of Main Estimates for the Eikonal Function Quatities
9.3.1 Proof of Proposition 9.3
kξkLQg/(St,u)= Z
S2
|ξ|Qg/dϖg/
Q1
≈ Z
S2
er2|ξ|Qg/dϖe/ Q1
= erQ2ξ
LQω(St,u). (9.47)
Proof of (9.30).
r−12ξ
2
= Z
r−1|ξ|2dϖ
≤ r−1
Z
|ξ|4dϖ 12
≈ kξk2 . (9.48)
We now provekξkL4
g/(St,u).kξkH1(Σt). For fixedtandu, letϕbe a cut-off function ofuverifying 0≤ϕ≤1, ϕ(u) =1 and supp(ϕ)⊂[u−t−u2 ,u+t−u2 ]. Integrating on the region S
u≤u0≤t+u2
St,u0, by the Fundamental Theorem of Calcules, we have:
kξk4L4 g
/(St,u)=−
Z u u−t−u2
Z
St,u0
D
/N|ϕξ|4+trg/θ|ϕξ|4
bdϖg/du0 (9.49)
=− Z u
u−t−u2 Z
St,u0
ϕ4|ξ|3·/DNξ+ϕ3|ξ|4·/DNϕ+trg/θ|ϕξ|4
bdϖg/du0.
For the first term on the RHS of (9.49), by bootstrap assumption (9.5b), the H¨older’s inequality and Sobolev embeddingL6,→H1, we have:
Z u u−t−u2
Z
St,u0
ϕ4|ξ|3·/DNξ
bdϖg/du0
.kD/NξkL2(Σt)
|ξ|3
L2(Σt).kξk4H1(Σt), (9.50) For the second term on the RHS of (9.49), by bootstrap assumption (9.5b), and noticing that|D/Nϕ|.t−u1 , we have
Z u u−t−u2
Z
St,u0
ϕ3|ξ|4·/DNϕ
bdϖg/du0
.
1 t−u
Z u u−t−u2
Z
St,u0
|ξ|4dϖg/du0
. (9.51)
By Lemma 9.4, Z
St,u0
|ξ|4dϖg/. er−12ξ
L2g/(St,u0)
|ξ|3
L2g/(St,u0)er12 .kξkH1(Σt)
|ξ|3
L2g/(St,u0)er12. (9.52) Then by (9.29), (9.51), (9.52), the H¨older’s inequality, the Sobolev embeddingL6,→H1, we have:
1 t−u
Z u u−t−u2
Z
St,u0
|ξ|4dϖg/du0
. 1
t−ukξkH1(Σt)
|ξ|3
L2(Σt)
Z u
u−t−u2 er(t,u0)du0 1/2
(9.53) .kξk4H1(Σt).
Now we consider the third term on the RHS of (9.49), that is, Ru−u t−u 2
R St,u0
trg/θ|ϕξ|4
bdϖg/du0. By bootstrap assumptions (6.13), (9.4) and (9.5b) and the H¨older’s inequality, we have:
Z u u−t−u2
Z
St,u0
trg/θ|ϕξ|4
bdϖg/du0. Z u
u−t−u2 Z
St,u0
er−1|ϕξ|4
dϖg/du0 (9.54)
+ Z u
u−t−u2 Z
St,u0
trg/θ−2 er
|ϕξ|4
dϖg/du0 .
Z u u−t−u2
Z
St,u0
er−1|ξ|4
dϖg/du0+
trg/θ−2 er L3(Σt)
kξk4L6(Σt).
By bootstrap assumptions (9.5c) where we have trg/θ−2
er
L3(Σt)≤1, and Sobolev embeddingL6,→H1for kξk4L6(Σt), we have:
Z u u−t−u
2
Z
St,u0
trg/θ|ϕξ|4
bdϖg/du0. Z u
u−t−u
2
Z
St,u0
er−1|ξ|4
dϖg/du0+kξk4H1(Σt). (9.55)
Using Lemma 9.4, the H´older inequality and the Sobolev embeddingL6,→H1, we have:
Z u u−t−u2
Z
St,u0
er−1|ξ|4
dϖg/du0.kξkH1(Σt)
|ξ|3
L2(Σt)
Z u u−t−u2
Z
St,u0er−1(t,u0)du0
!1/2
.kξk4H1(Σt). (9.56)
Proof of (9.31). Replaceξbyξ1/2in (9.49). By the same approach, we derive the following:
kξk2
L2g/(St,u).kξkH1(Σt)kξkL2(Σt). (9.57)
Integrating (9.57) with respect touonΣt, we obtain (9.31).
Proof of (9.32). We defineCu,ω:=CuT
{ωA=ω}. For anyt∈[0,T∗;(λ)], letφbe a smooth function verify- ing 0≤φ≤1,φ(t) =1 andsuppφ⊂[12t,32t]. Since|L(φ)|.er−1, by the Fundamental Theorem of Calcules, we have:
erp|ξ|2pg/ φ2p
(t) = Z t
0
L
erp|ξ|2pg/
φ2p+erp|ξ|2pg/ L φ2p
dτ (9.58)
. Z t
0erp−1|ξ|2pg/ +erp|ξ|2p−2g/ /DLξ·ξdτ.
Hence, er12ξ
2p
L2pωLt∞(Cu). Z
S2 Z t
0erp−1|ξ|2pg/ +erp|ξ|2p−2g/ D/Lξ·ξdτdϖ/e (9.59) .
Z
S2
kξkL2
t(Cu,ω)kξkL2
t(Cu,ω)+kξkL2
t(Cu,ω)kerD/LξkL2 t(Cu,ω)
erp−1ξ2p−2
Lt∞(Cu,ω)dϖ/e .kξkL∞
ωL2t(Cu)
r12ξ
2p−2 L2pωL∞t (Cu)
kerD/LξkLp
ωL2t(Cu)+kξkLp
ωL2t(Cu)
.
This yields the desired result.
Proof of (9.33b). We first consider the Euclidean sphere case, applying the Morrey’s inequality and the
Gagliardo–Nirenberg interpolation inequality with dimensionn=2, ans using Young’s inequality, we have:
kξk
C
0,1−2 ω Q(St,u)
.
∇e/ξ
LQω(St,u)+kξk
LQω(St,u) (9.60)
.
∇e/ξ
LQω(St,u)+
∇e/ξ
1−Q2 L2ω(St,u)kξk
2 Q
L2ω(St,u)+kξkL2 ω(St,u)
.
∇e/ξ
LQω(St,u)+
∇e/ξ
1−2
Q
LQω(St,u)kξk
2 Q
L2ω(St,u)+kξkL2 ω(St,u)
.
∇e/ξ
LQω(St,u)+kξkL2 ω(St,u).
Noticing that for mn
tensorfieldξ, we have:
|ξ|e/≈erm−n|ξ|g/. (9.61)
Thus, for any 0<p<∞, there holds:
∇e/ξ e/
Lωp(St,u)≈ er∇e/ξ
Lωp(St,u). (9.62)
Now we consider the difference between round metric/eand the geometric sphere metricg/. We have:
/∇ξ=∇/eξ+ (ΓΓΓ−ΓΓΓ(e/))ξ, (9.63)
whereΓΓΓ(e/) are the Christoffel symbols ofe/relative to Euclidean sphere coordinatesωA. By the bootstrap assumptions (9.3a)-(9.3b), we have:
erm−n
(ΓΓΓ−ΓΓΓ(e/))ξ /e
LQω(St,u).λ−ε0kξkL∞
ω(St,u). (9.64)
The RHS of (9.64) can be absorbed in the left hand side of (9.60).
Proof of (9.33a). We use the similar approach as in the proof of (9.33b), for the Euclidean sphere case, we have:
|ξ|/e
LQω(St,u).
∇/eξ e/
1−Q2 L2ω(St,u)
|ξ|e/
2 Q
L2ω(St,u)+ |ξ|/e
L2ω(St,u). (9.65) The proof of (9.65) can be reduced, by a partition of unity, to the case whereξhas compact support in a local chartU⊂St,u. Then we can apply the Gagliardo–Nirenberg interpolation inequality with dimensionn=2.
Now we consider the difference between Euclidean round metric/eand the geometric sphere metricg/. We
have:
/∇ξ=∇/eξ+ (ΓΓΓ−ΓΓΓ(e/))ξ. (9.66)
whereΓΓΓ(e/) are the Christoffel symbols ofe/relative to Euclidean sphere coordinatesωA. By the bootstrap assumptions (9.3a)-(9.3b), by H¨older’s inequality, we have
erm−n
(ΓΓΓ−ΓΓΓ(e/))ξ e/
L2
ω(St,u).
ΓΓΓ−ΓΓΓ(e/)
Lωp(St,u)kξk
L
2p p−2 ω (St,u)
.λ−4ε0kξkL∞ ω(St,u)er
p−2
p . (9.67)
Note thater.λ1−8ε0. Hence, forpsufficiently close to 2, we have:
erm−n
(ΓΓΓ−ΓΓΓ(e/))ξ e/
L2
ω(St,u).kξkL∞
ω(St,u). (9.68)
(9.33a) is then obtained by applying (9.33b).
Proof of (9.34). The proof is similar to the proof of (9.32). We use a cut-off function ofu with support in u∈[−45T∗;(λ),t]instead oft∈[0,T∗;(λ)], and we consider that the derivative vectorfield ∂
∂u alongΣt instead ofLalongCu. Also noticing that
/D∂
∂u
ξ
g/.|(D/N,/∇)ξ|g/and:
er12−Q1ξ
2
L2Qg/ L∞u(Σt)= er12ξ
2
L2QωL∞u(Σt), (9.69)
we obtain the desired estimate.
Proof of (9.35a). We decompose f as follows:
f =
∑
ν>1
Pνf+P≤1f. (9.70)
Using (9.33a), we have
erkPνfk
LQω(St,u).
∇/ePνf
1−Q2
L2g/(St,u)kPνfk
2 Q
L2g/(St,u)+kPνfkL2 g
/(St,u). (9.71) Integrating (9.71) with respect toualongΣt, using the finite band property and bootstrap assumption (9.3a)- (9.3b), and summing overν>1, when 0<1−Q2 <N−2, we have:
1−2
For the low frequency terms, we use Bernstein’s inequality:
kerP≤1fk
L2uLQω(Σt)≈ kP≤1fk
L2uLgQ/(Σt).kfkL2(Σt). (9.73)
Lemma 9.5(Transport lemma). Let m be a constant, and letξandFbe St,u-tangent tensorfields such that the following transport equation holds along the null cone portionCu⊂M:
D
/Lξ+mtrg/χξ=F. (9.74)
Then we have the following identities, where[u]+:=max{u,0}:
(υmξ)(t,u,ω) = lim
τ↓[u]+
(υmξ)(τ,u,ω) + Z t
[u]+
(υmF)(τ,u,ω)dτ, (9.75) (er2mξ)(t,u,ω) = lim
τ↓[u]+(er2mξ)(τ,u,ω) (9.76)
+ Z t
[u]+
(er2mF)(τ,u,ω) +m
er2m 2
er−trg/χ
ξ
(τ,u,ω)dτ.
Similarly, ifξ,FandGare St,u-tangent tensorfields such that the following transport equation holds:
D /Lξ+2m
er ξ=G·ξ+F, (9.77)
and if
kGkL∞
ωL1t(Cu)≤C, (9.78)
then under the bootstrap assumptions, the following estimates holds (where the implicit constants in the estimates below depend on the constant C on (9.78)):
er2mξ
g/(t,u,ω). lim
τ↓[u]+
er2mξ
g/(τ,u,ω) + Z t
[u]+
er2mF
g/(τ,u,ω)dτ. (9.79) Proof of (9.75). By (9.74), we have:
L(υmξ) =υm/DLξ+mυm−1(Lυ)ξ=υm /DLξ+mtrg/χ
=υmF. (9.80)
Integratingυmalong null geodesics, we get the desired equation. Proof of (9.76) is by the same process.
Proof of (9.79). By (9.77), we have:
L er2mξ
g/
=er2m/DLξ· ξ
|ξ|g/+2mer2m−1|ξ|g/ (9.81)
=er2m
−2m
er ξ+G·ξ+F
· ξ
|ξ|g/+2mer2m−1|ξ|g/
=er2m G|ξ|g/+F· ξ
|ξ|g/
! .
Integrating er2mξ
g/along null geodesics and then using the Grownwall’s inequality, we get the desired esti- mate.
Proposition 9.6(Estimates for the fluid variables). ~Ψ, ~ω,~S, ~C,Dare rescaled variables defined in Definition 6.3. Under the bootstrap assumptions, for any2≤Q≤p, where0<δ0<1−2p<N−2, the following estimates hold onM:
∂∂∂(~Ψ, ~ω,~S), ~C,D L2
uLωp(Σt), er1/2
∂
∂
∂(~Ψ, ~ω,~S), ~C,D L∞
uL2ωp(Σt).λ−1/2, (9.82a)
er1−Q2
∂
∂
∂2(~Ψ, ~ω,~S),∂∂∂(C~,D) L2
uLQg/(Σt).λ−1/2, (9.82b)
∂∂∂(~Ψ, ~ω,~S), ~C,D L2
tL∞ω(Cu).λ−1/2−4ε0, (9.82c)
∂∂∂(~Ψ, ~ω,~S), ~C,D
L2tLpω(Cu).λ−1/2−4ε0, (9.82d)
er
∂
∂
∂(~Ψ, ~ω,~S), ~C,D
L2tL∞ω(Cu).λ1/2−12ε0, (9.82e)
(∇/ ,/DL)∂∂∂~Ψ L2(Cu),
∂∂∂(C~,D) L2(Cu),
er1−2p(∇/ ,/DL)
∂
∂∂~Ψ, ~C,D
L2tLpg/(Cu).λ−1/2, (9.82f)
er1/2∂∂∂
~Ψ, ~ω,~S
L2uLt∞L2pω(M).λ−4ε0. (9.82g) Moreover, for any smooth functionf, we have:
er(∇/ ,/DL) f
~Ψ, ~ω,~S,~L ∂∂∂~Ψ, ~C,D L2
tLQω(Cu).λ−1/2, (9.83a)
er∂∂∂
f
~Ψ, ~ω,~S,~L ∂∂∂(~Ψ, ~ω,~S), ~C,D
L2uLQω(Σt).λ−1/2, (9.83b)
er1/2f
~Ψ,~L
∂
∂∂
~Ψ, ~ω,~S
L2uL∞tL2pω(M).λ−4ε0. (9.83c)
Proof of (9.82b). By using (9.35a), and rescaling the top order energy estimates (5.1), we have:
er1−Q2
∂∂∂2(~Ψ, ~ω,~S),∂∂∂(C~,D)
Lu2LQg/(Σt)≈ er
∂∂∂2(~Ψ, ~ω,~S),∂∂∂(C~,D)
L2uLQω(Σt) (9.84) .
∂∂∂2(~Ψ, ~ω,~S),∂∂∂(C~,D)
HN−2(Σt).λ−1/2.
Proof of (9.82a). By (9.31), (9.33a), (9.35a), (9.82b) and the energy estimates (5.1), we have:
∂∂∂(~Ψ, ~ω,~S), ~C,D L2
uLωp(Σt). er∇/
∂
∂∂(~Ψ, ~ω,~S), ~C,D
1−2p Lu2L2ω(Σt)
∂∂∂(~Ψ, ~ω,~S), ~C,D
2 p
L2uL2ω(Σt) (9.85) +
∂∂∂(~Ψ, ~ω,~S), ~C,D L2
uL2ω(Σt)
.
∂∂∂(~Ψ, ~ω,~S), ~C,D H1(Σ
t).λ−1/2.
For estimate of the second norm, by (9.34), (9.33b), (9.35a), (9.31), (9.82b) and the energy estimates (5.1), we have:
er1/2
∂∂
∂(~Ψ, ~ω,~S), ~C,D
2
L2pωL∞u(Σt).
∂∂∂(~Ψ, ~ω,~S), ~C,D
L2uL∞ω(Σt)· (9.86)
er(D/N,/∇)
∂
∂∂(~Ψ, ~ω,~S), ~C,D
LQωL2u(Σt)+
∂∂∂(~Ψ, ~ω,~S), ~C,D LQωL2u(Σt)
.
er∇/
∂
∂∂(~Ψ, ~ω,~S), ~C,D L2
uLQω(Σt)+
∂
∂
∂(~Ψ, ~ω,~S), ~C,D L2
uLω2(Σt)
·
er(D/N,/∇)
∂
∂∂(~Ψ, ~ω,~S), ~C,D LQ
ωL2u(Σt)+
∂∂∂(~Ψ, ~ω,~S), ~C,D LQ
ωL2u(Σt)
.
∂∂∂(~Ψ, ~ω,~S), ~C,D
HN−1(Σt).λ−1.
Proof of (9.82g). Using the fact thatu.λ1−8ε0 inM and (9.82a), we deduce:
er1/2f
~Ψ,~L
∂∂∂
~Ψ, ~ω,~S
L2uL∞tL2ωp(M).λ1/2−4ε0 er1/2f
~Ψ,~L
∂∂∂
~Ψ, ~ω,~S
L∞uL∞tL2ωp(M) (9.87) .λ−4ε0.
Proof of other estimates in Proposition 9.6. (9.82c)-(9.82e) are direct results of rescaled bootstrap assump- tions (9.2).
The first and second estimates of (9.82f) are direct results of energy estimates along acoustic null hypersur- faces (8.3)-(8.4). The last estimates of (9.82f) is [36, Lemma 5.5], we use the Sobolev inequality (9.33a) and the following inequality in [34, Proposition 2.7]:
∑
l>1
lN−2/Pl(D/L,/∇)f
2
L2tL2g/(Cu).
∑
ν>1
ν2(N−2)
F(wave)[Pνf;Cu] +kPνfkH1(Σt)
(9.88) +F(wave)[Pνf;Cu] +kfk2H1(Σt),
where/Pl is the Littlewood-Paley projection operator onSt,u. We obtain the results by the energy estimates along constant-time hypersurfaces (5.1) and along acoustic null hypersurfaces (8.3)-(8.4).
(9.83a)-(9.83c) are the results of (9.82f), (9.82b) and (9.82g) respectively.
Proposition 9.7(Needed estimates to recover and improve the bootstrap assumption). Under the bootstrap assumptions, the following estimates hold whenever q>2is sufficiently close to 2, where p is the same as in the previous proposition.
Estimates for time-integrated terms
λ−1 er−1
Z t [u]+
er(C~,D)
g/dτ
L2tL∞x(M)
.λ−1/2−12ε0, (9.89a) λ−1
er−2
Z t [u]+
er2(C~,D) g/dτ
L2tL∞x(M)
.λ−1/2−12ε0, (9.89b) λ−1
er−2
Z t [u]+
er2(C~,D) g/dτ
L
q t2L∞x(M)
.λ
2 q−1−4ε0
4 q+2
, (9.89c)
λ−1 er−1/2
Z t [u]+
er(C~,D)
g/dτ
L∞tL∞uLωp(M)
.λ−1/2−12ε0, (9.89d) λ−1
er−3/2
Z t [u]+
er2(C~,D) g/dτ
L∞tL∞uLωp(M)
.λ−1/2−12ε0, (9.89e) λ−1
er−1
Z t [u]+
er2(C~,D) g/dτ
L∞(M)
.λ−16ε0, (9.89f)
λ−1 er−32
Z t [u]+
er2(C~,D) g/dτ
L∞(M)
.λ−1/2−12ε0, (9.89g) λ−1
er−2
Z t [u]+
er2(C~,D) g/dτ
L∞(M)
.λ−1−8ε0. (9.89h)
λ−1 er−3/2
Z t [u]+
er3/∇(C~,D) g/dτ
Lt∞L∞uLωp(M)
.λ−1/2−8ε0, (9.90a) t
λ−1 er−3/2
Z t [u]+
er3(∂∂∂~Ψ,∂∂∂~ω,∂∂∂~S)·
∂∂∂~Ψ,tr
ge
/χ˜(Small),χ,ˆ ζ,er−1 g/dτ
L∞tL∞uLpω(M)
.λ−1/2−12ε0, (9.91a) λ−1
er−2
Z t [u]+
er3(∂∂∂~Ψ,∂∂∂~ω,∂∂∂~S)·
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ ζ,er−1
g/dτ
L2tL∞uLpω(M)
.λ−1/2−12ε0, (9.91b) λ−1
er−1
Z t [u]+
er2(∂∂∂~Ψ,∂∂∂~ω,∂∂∂~S)·
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ ζ,er−1 g/dτ
L2uL2tLpω(M)
.λ−16ε0, (9.91c) λ−1
er−1/2
Z t [u]+
er2(∂∂∂~Ψ,∂∂∂~ω,∂∂∂~S)·
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ ζ,er−1 g/dτ
L2uL∞t Lpω(M)
.λ−16ε0. (9.91d)
λ−1 er−1
Z t [u]+
er2(∂∂∂C~,∂∂∂D) g/dτ
L2uL2tLωp(M)
.λ−12ε0, (9.92a)
λ−1 er−1/2
Z t [u]+
er2(∂∂∂C~,∂∂∂D) g/dτ
L2uL∞tLωp(M)
.λ−12ε0. (9.92b)
space-time norm estimates
λ−1
er(C~,D)
Lt2L∞uLωp(M).−1/2−8ε0, (9.93a) λ−1
er(C~,D) L
q
t2L∞uLωp(M).−
2 q−1−4ε0
4 q+1
, (9.93b)
λ−1
er(C~,D)
L2uL2tLωp(M).−12ε0, (9.93c) λ−1
er∂∂∂(C~,D)
L2uL1tLωp(M).−12−8ε0, (9.93d) λ−1
er
∂∂∂~Ψ,∂∂∂~ω,∂∂∂~S
·
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ ζ,er−1
L2uL1tLωp(M).−12−10ε0 . (9.93e)