• Tidak ada hasil yang ditemukan

Proof of Proposition 9.1

9.4 Proofs of the Main Estimates for the Eikonal Function Quatities

9.4.1 Proof of Proposition 9.1

With the help of the previous results, we are now ready to control the geometric quantities. Recall[u]+:=

max{u,0}.

Proof ofυ≈er2in (9.17a). Recall equation (8.143a), we have:

L er−2υ

= tr

eg

/χ˜(Small)−ΓΓΓL

er−2υ

. (9.124)

Integrating (9.124) along the integral curve ofL, we have:

er−2υ

(t,u,ω) = lim

τ↓[u]+ er−2υ

(τ,u,ω) + Z t

[u]+

tr

ge/χ˜(Small)−ΓΓΓL

er−2υ

dτ. (9.125)

Using Grownwall’s inequality, bootstrap assumptions for trg/χ˜(Small)and∂∂∂~Ψ, and initial conditions forr−2υ,

we have:

er−2υ

(t,u,ω). lim

τ↓[u]+ er−2υ exp

tr

eg

/χ˜(Small)−ΓΓΓL

L1tLω(Cu)

.1. (9.126)

We get er−2υ

(t)&1 by applying similar argument to:

−er−2υ

(t,u,ω) = lim

τ↓[u]+ −er−2υ +

Z t [u]+

treg/χ˜(Small)−ΓΓΓL

−er−2υ

dτ. (9.127)

Proof ofkb−1kL(M)−4ε0<14in (9.17b). Recall equation (8.141). Taking the initial condition for the two separate casesu<0 andu≥0 into consideration, we have

b=1+ Z t

[u]+

b·f(~L)·∂∂∂~Ψdτ, u≥0, (9.128a)

b=a+ Z t

[u]+

b·f(~L)·∂∂∂~Ψdτ, u<0, (9.128b)

whereais defined in (8.62). Using Grownwall’s inequality, bootstrap assumption for∂∂∂~Ψand initial condition (8.63a), we conclude the desired estimate.

Proof of f(~L)

LtLuC0,δω0(M).1in (9.10).

f(~L)

C0,δ0

ω (St,u).1+

C0,δ0

ω (St,u)+

~L C0,δ0

ω (St,u).1+

~L C0,δ0

ω (St,u). (9.129) Recalling equation (8.133a) and using (9.108), we have:

~L

Cω0,δ0(St,u). ~L

C0,δω0(S[u]+,u)+ Z t

[u]+

f(~L)·∂∂∂~Ψ

Cω0,δ0(Sτ,u)dτ (9.130) .

~L

C0,δω0(S[u]+,u)+ Z t

[u]+

f(~L)

C0,δω0(Sτ,u)

∂∂∂~Ψ

C0,δω0(Sτ,u)dτ.

By Grownwall’s inequality, we have:

f(~L)

C0,δω0(St,u).

1+

~L

Cω0,δ0(S[u]+,u)

exp

Z t [u]+

∂∂∂~Ψ

C0,δω0(Sτ,u)

. (9.131)

By (7.7) and (9.104),

Z t [u]+

∂∂∂~Ψ

Cω0,δ0(Sτ,u)dτ.λ−7ε0. (9.132) Combining (9.101), (9.100c), (9.96) and (9.98), we have:

~L

Cω0,δ0(S[u]+,u).1+

3 i=1

A=1,2max

Θi(A)(t,t,ω)

Lω(S[u]+,u).1+

α

kLαk

LuC0,δω00).1. (9.133) Combining (9.131), (9.132) and (9.133) we conclude the desired estimate.

Proof ofkχkˆ L2

tLpω(Cu)−1/2in (9.7a). Recalling equation (8.139b) and using the transport identity (9.76), we have:

er2χˆ

g/(t,u,ω)≤ lim

τ↓[u]+

er2χˆ

g/(τ,u,ω) (9.134)

+ Z t

[u]+

λ−1

er2(C~,D) g/+

er2(∇/ ,/DLg/+

er2f(~L)·

∂~Ψ,tr

ge/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ g/dτ.

Dividing (9.134) byer2(t,u)and taking the norm, we have:

kχkˆ L2

tLωp(Cu)≤ er−2

lim

τ↓[u]+er2χˆ

L2tLωp(Cu)

(9.135) +

λ−1er−2 Z t

[u]+

er2(C~,D) g/

L2tLωp(Cu)

+ er−2

Z t [u]+

er2(∇/ ,D/Lg/

Lt2Lωp(Cu)

+ er−2

Z t [u]+

er2f(~L)·

∂∂∂~Ψ,tr

ge

/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ g/

L2tLωp(Cu)

.

We now consider the initial conditions. When u ≥0, by the initial condition on the cone-tip (8.64a), lim

τ↓[u]+

er2χˆ

g/=0. Whenu<0, lim

τ↓[u]+

er2χˆ

g/=w2χ(0,ˆ u,ω). Then, by (8.63b) and (9.82a), we have:

w1/2χ(0,ˆ u,ω) Lp

ω(Sw).

w1/2θ(0,u,ω) Lp

ω(Sw)+

w1/2∂∂∂~Ψ(0,u,ω) Lp

ω(Sw)−1/2. (9.136) Then,

er−2w2χ(0,u,ˆ ω) L2

tLωp(Cu). Z T

∗;(λ)

0

er−2w3/2λ−1/2 2

1/2

(9.137)

= (

λ−1w3 − 1 (τ+w)3

T∗;(λ)

0

!)1/2

−1/2.

Now we estimate other terms in (9.135). By (9.89b),

λ−1er−2 Z t

[u]+

er2(C~,D) g/

L2tLωp(Cu)

−1/2−12ε0. (9.138)

Using the estimate for Hardy-Littlewood maximal function (9.28) and estimate (9.82f), we have

er−2

Z t [u]+

er2(∇/ ,/DLg/

L2tLpω(Cu)

.

1 t−[u]+

Z t [u]+

|er(∇/ ,/DL)ξ|g/L2tLωp(Cu)

(9.139) .ker(∇/ ,/DL)ξkL2

tLωp(Cu)−1/2. (9.140) Similarly, by the estimate for Hardy-Littlewood maximal function (9.28), bootstrap assumptions (6.13), (9.4), and (9.5a), we have:

er−2

Z t [u]+

er2f(~L)·

∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ g/

Lt2Lωp(Cu)

(9.141) .

erf(~L)·

∂~Ψ,tr

ge/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ L2tLωp(Cu)

. er

tr

ge/χ˜(Small),χ,ˆ er−1 LtLωp(Cu)

∂∂∂~Ψ

Lt2Lω(Cu)1/2−4ε0 er1/2∂∂∂~Ψ

LtLpω(Cu)

∂∂∂~Ψ

L2tLω(Cu)

−1/2−4ε0.

Combining (9.134)-(9.141) and we conclude the desired estimate.

Proof of er1/2χˆ

LtLpω(Cu)−1/2in (9.7b). Dividing the equation (9.134) byer3/2(t,u)and taking the norm, we have:

er1/2χˆ

L

tLωp(Cu)≤ er−3/2

lim

τ↓[u]+er2χˆ

LtLωp(Cu)

(9.142) +

λ−1er−3/2 Z t

[u]+

er2(C~,D) g/

LtLpω(Cu)

+ er−3/2

Z t [u]+

er2(∇/ ,/DLg/

LtLωp(Cu)

+ er−3/2

Z t [u]+

er2f(~L)·

∂~Ψ,tr

ge/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ g/

LtLωp(Cu)

.

We control the initial condition as in the previous proof. In particular, using (9.136) foru<0, we have:

er−3/2

lim

τ↓[u]+er2χˆ

LtLωp(Cu)

−1/2. (9.143)

By (9.89e),

λ−1er−3/2 Z t

[u]+

er2(C~,D) g/

LtLωp(Cu)

−1/2−12ε0. (9.144)

By Minkowski’s integral inequality and H¨older’s inequality, also using (9.82f), we have:

er−3/2

Z t [u]+

er2(∇/ ,/DLg/

LtLωp(Cu)

≤sup

t

er−1/2(t,u) Z t

[u]+

|er(∇/ ,/DL)ξ|g/Lωp(St,u)

(9.145) .sup

t

(t−[u]+)1/2

er1/2(t,u) ker(∇/ ,/DL)ξkL2 tLωp(Cu)

−1/2.

By the same argument as above and also using (9.141), we have

er−3/2

Z t [u]+

er2f(~L)·

∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ g/

LtLpω(Cu)

(9.146) .sup

t

(t−[u]+)1/2 er1/2(t,u)

er

∂∂∂~Ψ,tr

ge

/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ L2tLpω(Cu)

−1/2−4ε0.

Combining (9.142)-(9.146) and we conclude the desired estimate.

Proof ofkerD/Lχkˆ L2

tLωp(Cu)−1/2in (9.7a). Consider equation (8.139b):

erD/Lχˆ= ertr

ge/χ˜(Small)+1 ˆ

χ+er(∇/ ,/DL)ξ+λ−1erf(~L)·(C~,D) (9.147) +erf(~L)·

∂~Ψ,tr

ge/χ˜(Small),χ,ˆ er−1 ·∂∂∂~Ψ.

By (9.4) and (9.7b), we have:

ertr

ge

/χ˜(Small)·χˆ

Lt2Lωp(Cu)1/2−4ε0 tr

eg /χ˜(Small)

L2tLω(Cu)

er1/2χˆ

LtLωp(Cu)−1/2−2ε0. (9.148) By (9.82e), (9.82f) and (9.141), we have:

ker(∇/ ,/DL)ξkL2

tLωp(Cu),

λ−1erf(~L)·(C~,D)

L2tLωp(Cu), (9.149)

erf(~L)·

∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ

Lt2Lωp(Cu)−1/2.

Proof ofkζkL2

tLpω(Cu)−1/2in (9.7a). Considering equation (8.140) and using (9.76), we have:

|erζ|g/≤ lim

τ↓[u]+

|erζ|g/(τ,u,ω) (9.150)

+ Z t

[u]+

λ−1 er(C~,D)

g/+|er(∇/ ,/DL)ξ|g/ +

erf(~L)·

∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ g/+

erf(~L)·ζ·χˆ g/dτ.

Dividing (9.150) byer(t,u)and taking theLt2Lωp norm, we have:

kζkL2

tLωp(Cu)≤ er−1

lim

τ↓[u]+erζ

L2tLωp(Cu)

(9.151) +

λ−1er−1 Z t

[u]+

er(C~,D)

g/

L2tLωp(Cu)

+ er−1

Z t [u]+

|er(∇/ ,/DL)ξ|g/L2tLωp(Cu)

+ er−1

Z t [u]+

erf(~L)·

∂~Ψ,tr

ge/χ˜(Small),ζ,er−1

·∂∂∂~Ψ g/

L2tLpω(Cu)

+ er−1

Z t [u]+

|erζ·χ|ˆ g/Lt2Lωp(Cu)

.

We now consider the initial condition. Whenu≥0, by the initial condition on the cone-tip (8.64a),er−1

lim

τ↓[u]+erζ

= 0. Whenu<0, we use (8.17), (8.63b), and bootstrap assumption for∂∂∂~Ψto deduce:

er−1

lim

τ↓[u]+erζ

L2tLpω(Cu)

.

er−1w∇/lna

L2tLpω(Cu)+

er−1w∂∂∂~Ψ

L2tLωp(Cu) (9.152) .λ−1/2

Z T∗;(λ) 0

w

(τ+w)2dτ+λ−1/2−4ε0−1/2.

By (9.89a),

λ−1er−1 Z t

[u]+

er(C~,D) g/

L2tLpω(Cu)

−1/2−12ε0. (9.153)

Using the same method as in (9.139) and (9.141), we have :

er−1

Z t [u]+

|er(∇/ ,/DL)ξ|g/L2tLωp(Cu)

−1/2, (9.154)

er−1

Z t [u]+

erf(~L)·

∂∂

∂~Ψ,tr

ge/χ˜(Small),ζ,er−1

·∂∂∂~Ψ g/

L2tLωp(Cu)

−1/2−4ε0. (9.155)

Using the estimate for Hardy-Littlewood maximal function (9.28), bootstrap assumption (9.6), and the esti-

mate previously proven forer1/2χˆin (9.7b), we have:

er−1

Z t [u]+

|erζ·χ|ˆ g/L2tLωp(Cu)

.kerζ·χkˆ L2

tLωp(Cu) (9.156)

1/2−4ε0 er1/2χˆ

LtLωp(Cu)kζkL2

tLω(Cu)−1/2−4ε0.

Combining (9.150)-(9.156), we conclude the desired estimate.

Proof of er1/2ζ

Lt Lpω(Cu)−1/2in (9.7b). Dividing the equation (9.150) byer1/2(t,u)and taking theLt Lωp

norm, we have:

er1/2ζ

LtLωp(Cu)≤ er−1/2

lim

τ↓[u]+erζ

Lt Lpω(Cu)

(9.157) +

λ−1er−1/2 Z t

[u]+

er(C~,D) g/

LtLωp(Cu)

+ er−1/2

Z t [u]+

|er(∇/ ,/DL)ξ|g/

LtLωp(Cu)

+ er−1/2

Z t [u]+

erf(~L)·

∂∂∂~Ψ,tr

ge

/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ g/

LtLωp(Cu)

+ er−1/2

Z t [u]+

|erζ·χ|ˆ g/LtLωp(Cu)

.

Let’s consider the initial condition. Whenu≥0, by the initial condition on the cone-tip (8.64a),er−1/2

τ↓[u]lim+erζ

= 0. Whenu<0, we use (8.17), (8.63b), and the estimate (9.82a) to deduce:

er−1/2

lim

τ↓[u]+erζ

LtLωp(Cu)

.

w1/2/∇lna L

t Lωp(Cu)+ er1/2∂∂∂~Ψ

L2

tLωp(Cu)−1/2. (9.158) By (9.89d), we have:

λ−1er−1/2 Z t

[u]+

er(C~,D)

g/

LtLωp(Cu)

−1/2−12ε0. (9.159)

Using the same method as in (9.145) and (9.146), we have :

er−1/2

Z t [u]+

|er(∇/ ,/DL)ξ|g/

LtLωp(Cu)

−1/2, (9.160)

er−1/2

Z t [u]+

erf(~L)·

∂∂∂~Ψ,tr

eg

/χ˜(Small),ζ,er−1

·∂∂∂~Ψ g/

LtLωp(Cu)

−1/2−4ε0. (9.161)

With the help of (9.156), we have:

er−1/2

Z t [u]+

|erζ·χ|ˆ g/

LtLωp(Cu)

.sup

t er−1/2 Z t

[u]+

kerζ·χkˆ Lp

ω(Sτ,u)dτ (9.162) .sup

t

(t−[u]+)1/2

(t−u)1/2 kerζ·χkˆ L2 tLpω(Cu)

−1/2−4ε0.

Combining (9.157)-(9.162) and we conclude the desired estimate.

Proof ofkerD/LζkL2

tLωp(Cu)−1/2in (9.7a). Consider equation (8.140):

erD/Lζ=ζ+er(∇/ ,/DL)ξ+λ−1erf(~L)·(C~,D) +erf(~L)·

∂~Ψ,tr

ge/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ (9.163) +erf(~L)·ζ·

tr

ge/χ˜(Small),χ,∂ˆ ∂∂~Ψ

.

By (6.13), (9.4) and (9.7b), we have:

er

tr

eg

/χ˜(Small),χ,ˆ ∂∂∂~Ψ ·ζ

Lt2Lωp(Cu)1/2−4ε0 tr

eg

/χ˜(Small),χ,ˆ ∂∂∂~Ψ L2tLω(Cu)

er1/2ζ

LtLωp(Cu) (9.164) .λ−1/2−2ε0.

By (9.82e), (9.82f) and (9.141), we have:

ker(∇/ ,/DL)ξkL2

tLωp(Cu),

λ−1erf(~L)·(C~,D)

L2tLωp(Cu), (9.165)

erf(~L)·

∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ

Lt2Lωp(Cu)−1/2.

Combining (9.163)-(9.165) with (9.7a) forkζkL2

tLωp(Cu), we conclude the desired estimates.

Proof of

er1/2(χ,ζ)ˆ

L2ωpLt(Cu)−1/2whenCu⊂M(Int)in (9.14). By the Sobolev inequality (9.32), the previously proven estimate (9.7a), and the bootstrap assumptions (9.6), we have:

er12(ˆχ,ζ)

2

L2pωLt(Cu).

kerD/L(ˆχ,ζ)kLp

ωL2t(Cu)+k(χ,ˆ ζ)kLp

ωL2t(Cu)

k(χ,ˆ ζ)kL

ωL2t(Cu)−1. (9.166) In deriving (9.166), we also used Minkowski’s inequality for integrals to switch the order ofLt,Lω norms.

Proof ofertr

eg

/χ˜≈1in (9.8a). It is sufficient to show ertr

eg /χ˜(Small)

g/−4ε0. We plug (8.138a) into (9.77),

whereG=tr

ge/χ˜(Small)+f(~L)·∂∂∂~Ψ. Then dividing the estimate (9.79) byer(t,u), we have:

ertr

ge/χ˜(Small)

g/.er−1 lim

τ↓[u]+

er2tr

ge/χ˜(Small)

g/ (9.167)

+er−1 Z t

[u]+

er2λ−1f(~L)·(C~,D) +er2f(~L)· ˆ

χ,er−1,∂∂∂~Ψ

·∂∂∂~Ψ+er2|χ|ˆ 2g/ g/dτ.

We now consider the initial conditions. When u ≥0, by the initial condition on the cone-tip (8.64a), er−1 lim

τ↓[u]+

er2tr

eg /χ˜(Small)

g/≤ lim

τ↓[u]+

ertr

ge /χ˜(Small)

g/=0. Whenu<0, by (8.61) and (8.63a), we have:

er−1 lim

τ↓[u]+

er2tr

eg /χ˜(Small)

g/=1

er

2w(1−a)

a ≤2(1−a)

a .λ−4ε0. (9.168)

By (9.89f), we have:

er−1 Z t

[u]+

er2λ−1f(~L)·(C~,D)dτ.λ−16ε0. (9.169) By bootstrap assumptions (6.13) and (9.4), we have:

er−1 Z t

[u]+

er2f(~L)·(χ,∂ˆ ∂∂~Ψ)·(χ,∂ˆ ∂∂~Ψ)

g/dτ.λ1−8ε0 χ,∂ˆ ∂∂~Ψ

L2tLω(Cu)

χ,∂ˆ ∂∂~Ψ

L2tLω(Cu)−4ε0. (9.170)

er−1 Z t

[u]+

erf(~L)·∂∂∂~Ψ g/dτ.

∂∂∂~Ψ

L2

tLω(Cu)λ1/2−4ε0−8ε0. (9.171) Combining (9.167)-(9.171) and we conclude the desired estimate.

ertr

ge

/χ˜(Small)

LtLωp(Cu)−4ε0 follows from the proof ofertr

ge/χ˜≈1.

Proof of er1/2tr

ge/χ˜(Small)

L(M)−1/2in (9.8b). Dividing (9.167) byer1/2, we have

er1/2tr

ge/χ˜(Small)

g/.er−3/2 lim

τ↓[u]+

er2tr

eg /χ˜(Small)

g/ (9.172)

+er−3/2 Z t

[u]+

er2λ−1f(~L)·(C~,D) +er2f(~L)· ˆ

χ,er−1,∂∂∂~Ψ

·∂∂∂~Ψ+er2|χ|ˆ 2g/ g/dτ.

We consider the initial conditions. Whenu≥0, by the initial condition on the cone-tip (8.64a), we have:

er−3/2 lim

τ↓[u]+

er2tr

ge/χ˜(Small)

g/≤er−1/2 lim

τ↓[u]+

ertr

eg /χ˜(Small)

g/. lim

τ↓[u]+er1/2=0. (9.173)

Whenu<0, by (8.61) and (8.63b), we have:

er−3/2 lim

τ↓[u]+

er2tr

ge/χ˜(Small) g/= 1

er3/2

2w(1−a)

a ≤w−1/2(1−a).λ−1/2. (9.174) By (9.89g), we have:

λ−1 er32

Z t [u]+

er2(C~,D) g/

L(M)−1/2−12ε0. (9.175) By bootstrap assumptions (6.13) and (9.4), we have:

er−3/2 Z t

[u]+

er2f(~L)·(ˆχ,∂∂∂~Ψ)·(χ,∂ˆ ∂∂~Ψ)

g/dτ.λ1/2−4ε0 χ,∂ˆ ∂∂~Ψ

L2tLω(Cu)

χ,∂ˆ ∂∂~Ψ

Lt2Lω(Cu) (9.176) .λ−1/2−4ε0.

er−3/2 Z t

[u]+

erf(~L)·∂∂∂~Ψ

g/dτ.er−1/2 Z t

[u]+

f(~L)·∂∂∂~Ψ

Lxt)dτ.(t−[u]+)1/2 (t−u)1/2

∂∂∂~Ψ

Lt2Lx(M) (9.177) .λ−1/2−4ε0.

Combining (9.172)-(9.177) and we conclude the desired estimate.

er1/2tr

ge/χ˜(Small)

LtLωp(Cu)−1/2 and er1/2tr

ge/χ˜(Small)

L2pωLt(Cu)−1/2 follows from the previously proven estimate

er1/2tr

ge/χ˜(Small)

L(M)−1/2. Proof of

treg/χ˜(Small)

L2tC0,δω0(Cu)−1/2in (9.8e). Using equation (8.138a) and dividingL(er2tr

ge

/χ˜(Small))by er2(t,u), we have:

tr

eg /χ˜(Small)

g/≤er−2 lim

τ↓[u]+

er2tr

ge /χ˜(Small)

g/+er−2

Z t [u]+

er2λ−1f(~L)·(C~,D)dτ

g/ (9.178)

+er−2 Z t

[u]+

er2f(~L)·

tr

ge/χ˜(Small),χ,ˆ er−1,∂∂∂~Ψ ·∂∂∂~Ψ

+er2|χ|ˆ 2g/+er2tr

ge/χ˜(Small)·tr

ge /χ˜(Small)

g/dτ.

Using (9.108), we have:

tr

eg

/χ˜(Small) C0,δ0

ω (St,u). er−2 lim

τ↓[u]+

er2tr

ge/χ˜(Small) Cω0,δ0(Cu)

−1

C~,D L1

tCω0,δ0(Cu) (9.179) +

tr

ge/χ˜(Small),∂∂∂~Ψ,χˆ

2

L2tC0,δω0(Cu)+M ∂∂∂~Ψ

C0,δ0

ω (St,u)

.

We now consider the initial condition. Whenu≥0, by (8.64a), lim

τ↓[u]+ er2tr

eg /χ˜(Small)

=0, we have:

er2tr

ge/χ˜(Small)≤ Z t

[u]+

er2λ−1f(~L)·(C~,D)

g/dτ (9.180)

+ Z t

[u]+

er2f(~L)· tr

eg

/χ˜(Small),χ,ˆ er−1,∂∂∂~Ψ ·∂∂∂~Ψ

+er2|χ|ˆ 2g/+er2tr

ge/χ˜(Small)·tr

ge /χ˜(Small)

g/dτ.

Whenu<0, by (8.61), we have:

er−2 lim

τ↓[u]+

er2tr

ge/χ˜(Small)

2

L2tC0,δω0(Cu)

. Z T∗;(λ)

0

w3/2 er2 λ−1/2

!2

dτ≤λ−1. (9.181)

Using the estimate for Hardy-Littlewood maximal function (9.28) and estimate (9.104), we have:

M

∂∂∂~Ψ

Cω0,δ0(St,u)

L2t

. ∂∂∂~Ψ

L2tCω0,δ0(Cu)−1/2−3ε0. (9.182) By bootstrap assumptions (6.13), (9.4), and estimate (9.104), we have:

λ−1

C~,D L1

tCω0,δ0(Cu)−1−7ε0, (9.183)

tr

eg

/χ˜(Small),∂∂∂~Ψ,χˆ

2

Lt2Cω0,δ0(Cu)−1+4ε0. (9.184) Taking theL2t norm of (9.179), combining (9.180)-(9.184), we conclude the desired result.

tr

eg

/χ˜(Small)

L2tLωp(Cu)−1/2follows directly from tr

ge/χ˜(Small)

L2tC0,δω0(Cu)−1/2. Proof of

erD/Ltr

ge/χ˜(Small)

L2tLpω(Cu)−1/2in (9.7a). Using equation (8.138a), we have:

erD/Ltr

eg

/χ˜(Small)=tr

ge

/χ˜(Small)+erλ−1f(~L)·(C~,D) +erf(~L)·

∂~Ψ,tr

ge/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ (9.185) +er|χ|ˆ2g/+ertr

ge

/χ˜(Small)·tr

eg /χ˜(Small). By (9.93a), we have:

λ−1 er(C~,D)

L2tLpω(Cu).−1/2−8ε0. (9.186)

Using the same method as in (9.141), we have:

erf(~L)·

∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ

L2tLωp(Cu)−1/2−4ε0. (9.187) By bootstrap assumtions (9.4) and the previously proven results (9.7b), we have:

er

trge/χ˜(Small),χ,ˆ ζ

·

treg/χ˜(Small),χ,ˆ ζ

L2tLpω(Cu) (9.188)

1/2−4ε0 tr

eg

/χ˜(Small),χ,ˆ ζ

L2tC0,δω0(Cu)

er1/2

ˆ χ,tr

ge/χ˜(Small)LtLωp(Cu)

−1/2−2ε0.

Combining (9.185)-(9.188) and we conclude the desired estimate.

Remark 9.14. From (9.7a), (9.141), (9.161), (9.188) and (9.164), it follows:

erf(~L)·

∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ζ,ˆ er−1

·

∂∂∂~Ψ,tr

ge

/χ˜(Small),χ,ˆ ζ

L2tLωp(Cu)−1/2. (9.189) Proof of

er /∇tr

eg

/χ˜(Small),/∇χˆ

L2tLpω(Cu)−1/2in (9.8d). First, we bound er∇/tr

ge/χ˜(Small)

L2tLωp(Cu). Plugging equation (8.138b) into (9.77), whereG=f(~L)·

∂~Ψ,tr

eg

/χ˜(Small),χˆ

, then dividing byer2(t,u), we have:

er∇/tr

ge/χ˜(Small)

g/.er−2 lim

τ↓[u]+

er3/∇tr

eg /χ˜(Small)

g/−1er−2 Z t

[u]+

er3f(~L)·/∇(C~,D)

g/dτ (9.190)

−1er−2 Z t

[u]+

er3f(~L)·(C~,D)·

∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ er−1 g/dτ +er−2

Z t [u]+

er3f(~L)·/∂∇∂∂~Ψ·

∂∂

∂~Ψ,tr

ge/χ˜(Small),er−1

+er3f(~L)·/∇χˆ·χˆ g/dτ +er−2

Z t [u]+

er3f(~L)·

∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ er−1

·

∂~Ψ,tr

ge/χ˜(Small),er−1

·∂∂∂~Ψ g/dτ.

Let’s consider the initial conditions. Whenu≥0, we use the estimate for Hardy-Littlewood maximal function (9.28) and (8.64a) to deduce

er−2 lim

τ↓[u]+(er3/∇tr

eg /χ˜(Small))

L2tLωp(Cu)

=0. Whenu<0, we use the initial condition (8.63g) to deduce:

er−2 lim

τ↓[u]+

(er3/∇tr

ge /χ˜(Small))

L2tLpω(Cu)

−1/2 er−2w3/2

Lt2Lωp(Cu)−1/2. (9.191)

By (9.90b), we have:

λ−1 er−2

Z t [u]+

er3f(~L)·/∇(C~,D) g/

Lt2Lωp(Cu)

−1/2−8ε0. (9.192)

By (9.91b), we have:

λ−1 er−2

Z t [u]+

er3f(~L)·(C~,D)·

∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ er−1

g/

L2tLpω(Cu)

−1/2−12ε0. (9.193)

By the estimate for Hardy-Littlewood maximal function (9.28), bootstrap assumptions (6.13), (9.4), and estimate (9.82f), we have:

er−2

Z t [u]+

er3f(~L)·/∇∂∂∂~Ψ·

∂∂∂~Ψ,tr

eg

/χ˜(Small),er−1

L2tLωp(Cu)

(9.194) .

Z t [u]+

er∇/∂∂∂~Ψ

Lωp(Sτ,u)

∂∂∂~Ψ,tr

ge

/χ˜(Small)

Lω(Sτ,u)L2t

+ er−1

Z t [u]+

er∇/∂∂∂~Ψ

Lωp(Sτ,u)L2t

1/2−4ε0 er∇/∂∂∂~Ψ

Lt2Lωp(Cu)

∂∂∂~Ψ,tr

eg

/χ˜(Small)

Lt2Lω(Cu)+ er∇/∂∂∂~Ψ

Lt2Lωp(Cu)

−1/2.

By the estimate for Hardy-Littlewood maximal function (9.28), bootstrap assumptions (6.13) , (9.4), (9.5a), and estimate (9.82e), we have:

er−2

Z t

[u]+er3f(~L)·

∂∂∂~Ψ,tr

ge

/χ˜(Small),χ,ˆ er−1

·

∂∂∂~Ψ,tr

eg

/χ˜(Small),er−1

·∂∂∂~Ψdτ Lt2Lωp(Cu)

(9.195) .

Z t [u]+

er

tr

ge/χ˜(Small),χ,ˆ er−1 Lωp(Sτ,u),

er∂∂∂~Ψ

Lωp(Sτ,u)

∂∂∂~Ψ,tr

eg /χ˜(Small)

Lω(Sτ,u)

∂∂∂~Ψ

Lω(Sτ,u)L2

t

+ er−1

Z t [u]+

∂∂∂~Ψ

L

ω(Sτ,u)Lt2

1/2−4ε0 ∂∂∂~Ψ,tr

eg

/χ˜(Small) L2tLω(Cu)

∂∂∂~Ψ

L2tLω(Cu)+ ∂∂∂~Ψ

L2tLω(Cu)

−1/2−4ε0.

By bootstrap assumption (9.4), we have:

er−2

Z t [u]+

er3f(~L)·/∇χˆ·χdτˆ L2Lpω(Cu)

. ker∇/χkˆ L2

tLpω(Cu)kχkˆ L2 tLω(Cu)

Lt2 (9.196)

Combining (9.190)-(9.196) and we have:

er∇/tr

eg /χ˜(Small)

L2tLpω(Cu)−1/2−2ε0ker∇/χkˆ L2

tLpω(Cu). (9.197) Now we considerker∇/χkˆ L2

tLωp(Cu). Plugging equation (8.139a) into the Hodge estimate (9.111), we have:

ker∇/χkˆ L2

tLpω(Cu). er∇/tr

eg

/χ˜(Small)

L2tLωp(Cu) (9.198)

+ er∇/∂∂∂~Ψ

L2tLωp(Cu)+ erf(~L)·

∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ

L2tLωp(Cu).

By (9.82f) and (9.189), we have:

ker∇/χkˆ L2

tLpω(Cu)−1/2+ er∇/tr

ge/χ˜(Small) L2

tLωp(Cu). (9.199) Combining (9.197) and (9.199), we have the desired estimates

er /∇tr

eg

/χ˜(Small),/∇χˆ

L2tLωp(Cu)−1/2. Proof of

er3/2/∇tr

eg /χ˜(Small)

LtLuLωp(M)−1/2in (9.8c). Plugging equation (8.138b) into (9.77), whereG= f(~L)·

∂∂~Ψ,tr

eg

/χ˜(Small),χˆ

, then dividing byer3/2(t,u), we have:

er∇/tr

ge/χ˜(Small)

g/ (9.200)

.er−3/2 lim

τ↓[u]+

er3/∇tr

eg /χ˜(Small)

g/−1er−3/2 Z t

[u]+

er3f(~L)·/∇(C~,D) g/dτ +λ−1er−3/2

Z t [u]+

er3f(~L)·(C~,D)·

∂∂∂~Ψ,tr

ge

/χ˜(Small),χ,ˆ er−1 g/dτ +er−3/2

Z t [u]+

er3f(~L)·/∇∂∂∂~Ψ·

∂∂∂~Ψ,tr

eg

/χ˜(Small),er−1

+er3f(~L)·/∇χ·ˆ χˆ g/dτ +er−3/2

Z t [u]+

er3f(~L)·

∂∂∂~Ψ,tr

ge

/χ˜(Small),χ,ˆ er−1 ·

∂∂~Ψ,tr

eg

/χ˜(Small),er−1 ·∂∂∂~Ψ

g/dτ.

We now consider the initial conditions. Whenu≥0, we use (8.64a) to deduceer−3/2 lim

τ↓[u]+ er3/∇tr

eg /χ˜(Small)

=0.

Whenu<0, we use the initial condition (8.63g) to deduce

er−3/2 lim

τ↓[u]+

er3/∇tr

eg /χ˜(Small)

g/

LuLωp0)

−1/2. By (9.90a), we have:

λ−1er−3/2 Z t

[u]+

er3f(~L)·/∇(C~,D) g/

LtLuLpω(M)

−1/2−8ε0. (9.201)

By (9.91a), we have:

λ−1er−3/2 Z t

[u]+

er3f(~L)·(C~,D)·

∂∂

∂~Ψ,tr

ge/χ˜(Small),χ,ˆ er−1 g/

LtLuLωp(M)

−1/2−12ε0. (9.202)

By bootstrap assumptions (6.13) and (9.4), estimate (9.82f), we have:

er−3/2

Z t [u]+

er3f(~L)·/∇∂∂∂~Ψ·

∂∂~Ψ,tr

eg

/χ˜(Small),er−1

g/

Lpω(St,u)

(9.203) .λ1/2−4ε0

er∇/∂∂∂~Ψ

L2tLωp(St,u)

∂∂∂~Ψ,tr

eg /χ˜(Small)

L2tLω(St,u)+(t−[u]+)1/2 (t−u)1/2

er∇/∂∂∂~Ψ

Lt2Lωp(Cu)

−1/2.

By bootstrap assumptions (6.13), (9.4) and (9.82a), we have:

er−3/2

Z t [u]+

er3f(~L)·

∂∂

∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ er−1

·

∂∂∂~Ψ,tr

ge

/χ˜(Small),er−1

·∂∂∂~Ψ g/

Lωp(St,u)

(9.204) .λ1/2−4ε0

Z t [u]+

er

tr

ge

/χ˜(Small),χ,ˆ er−1 Lp

ω(Sτ,u)

∂∂∂~Ψ,tr

eg

/χ˜(Small) L

ω(Sτ,u)

∂∂∂~Ψ

L

ω(Sτ,u)dτ +λ1−8ε0

Z t [u]+

er1/2∂∂∂~Ψ

Lωp(Sτ,u)

∂∂∂~Ψ,tr

ge /χ˜(Small)

Lω(Sτ,u)

∂∂∂~Ψ

Lω(Sτ,u)dτ +er−1/2

Z t [u]+

∂∂∂~Ψ

Lω(Sτ,u)dτ .λ1/2−4ε0

∂∂∂~Ψ,tr

ge

/χ˜(Small) L2

tLω(Cu)

∂∂∂~Ψ

L2

tLω(Cu)+(t−[u]+)1/2 (t−u)1/2

∂∂∂~Ψ

L2

tLω(Cu)

−1/2−4ε0.

By bootstrap assumptions (6.13) and the previously proven result (9.8d), we have:

er−3/2

Z t [u]+

er3f(~L)·/∇χˆ·χˆ g/

Lpω(Sτ,u)

1/2−4ε0ker∇/χkˆ L2

tLpω(Cu)kχkˆ L2

tLω(Cu)−1/2−2ε0. (9.205)

Proof of tr

eg

/χ˜(Small),trg/χ−2

er,χˆ

L2tLuCω0,δ0(M(Int))−1/2−3ε0 in (9.15). We first bound tr

eg

/χ˜(Small). Using equa-

tion (8.138a) and initial condition (8.64a), and dividingL(er2tr

ge/χ˜(Small))byer2(t,u), we have

tr

eg /χ˜(Small)

g/.er−2

Z t [u]+

er2λ−1f(~L)·(C~,D)

g/dτ (9.206)

+er−2 Z t

[u]+

er2f(~L)·

tr

ge

/χ˜(Small),χ,ˆ er−1,∂∂∂~Ψ ·∂∂∂~Ψ

+er2|χ|ˆ 2g/+er2tr

eg

/χ˜(Small)·tr

ge/χ˜(Small) g/dτ.

Using (9.108), we have:

tr

eg

/χ˜(Small) L

uC0,δω0t(Int))−1

C~,D L1

tLuC0,δω0(M(Int)) (9.207)

+ tr

ge/χ˜(Small),∂∂∂~Ψ,χˆ

2

L2tLuCω0,δ0(M(Int))+M ∂∂∂~Ψ

LuC0,δω0(Int)t )

.

Using the estimate for Hardy-Littlewood maximal function (9.28) and estimate (9.104), we have:

M

∂∂∂~Ψ

LuCω0,δ0(Int)t )

L2

t

. ∂∂∂~Ψ

L2tLuCω0,δ0(Cu)−1/2−3ε0. (9.208) By bootstrap assumption (6.13), (9.6) and (9.104), we have:

λ−1

C~,D L1

tLuCω0,δ0(Cu)−1−7ε0, (9.209)

tr

ge

/χ˜(Small),∂∂∂~Ψ,χˆ

2

L2tLuCω0,δ0(Cu)−1. (9.210) Taking theL2t norm of (9.206), combining (9.206)-(9.210), we conclude the desired result for tr

ge /χ˜(Small). Now, since trg/χ−2

er =tr

eg

/χ˜(Small)−ΓΓΓL, we have:

trg/χ−2 er

L2tLuCω0,δ0(M(Int))

= tr

ge/χ˜(Small)

L2tLuC0,δω0(M(Int))+

f(~L)·∂∂∂~Ψ

L2tLuCω0,δ0(M(Int)). (9.211) By the previously proven result (9.10) and estimate (9.104), we have:

f(~L)·∂∂∂~Ψ

L2tLuCω0,δ0(M(Int)). f(~L)

Lt LuCω0,δ0(M(Int))

∂∂∂~Ψ

Lt2LuC0,δω0(M(Int))−1/2−3ε0. (9.212) Combining (9.211)-(9.212) with the result for tr

ge/χ˜(Small), we conclude the proof for trg/χ−2

er. We now prove kχkˆ

L2tLuCω0,δ0(M(Int))−1/2−3ε0. Plugging equation (8.139a) into the Hodge estimate

(9.114) withQ:=1−δ2

0, where we recallδ0<1−2p,Q<p, we have:

kχkˆ

L2tLuC0,δω0(M(Int)). tr

ge /χ˜(Small)

Lt2LuC0,δω0(M(Int)) (9.213)

+ ∂∂∂~Ψ

Lt2LuC0,δω0(M(Int))

+ erf(~L)·

∂∂∂~Ψ,tr

ge

/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ

L2tLuLωp(M(Int)).

By bootstrap assumptions (6.13), (9.5a) and (9.82a), we have:

erf(~L)·

∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ

L2tLuLpω(M(Int)) (9.214)

.

λ1/2−4ε0 er1/2∂∂∂~Ψ

Lωp(St,u), er

trge/χ˜(Small),χ,ˆ er−1

Lωp(St,u)

∂∂∂~Ψ

Lω(St,u)

Lt2Lu

. ∂∂∂~Ψ

L2tLuLω(M)−1/2−4ε0.

Combining (9.213)-(9.214) with previously proven result for tr

eg

/χ˜(Small) and estimate (9.104), we conclude the desired estimate.

Proof of

treg/χ˜(Small),χ,ˆ trg/χ−2

er

L

q

t2LuCω0,δ0(M)

2 q−1−4ε0

4 q−1

in (9.11). We first bound tr

ge/χ˜(Small). Using equation (8.138a) and dividing byer2(t,u), we have:

tr

ge /χ˜(Small)

g/.er−2 lim

τ↓[u]+

er2tr

ge/χ˜(Small) g/+er−2

Z t [u]+

er2λ−1f(~L)·(C~,D)

g/dτ (9.215) +er−2

Z t [u]+

er2f(~L)· tr

eg

/χ˜(Small),χ,ˆ er−1,∂∂∂~Ψ ·∂∂∂~Ψ

+er2|χ|ˆ 2g/+er2tr

ge

/χ˜(Small)·tr

eg /χ˜(Small)

g/dτ.

Using (9.108), by bootstrap assumptions (6.13), (9.4) and (9.104), we have:

tr

ge/χ˜(Small) L

uC0,δω0t). er−2 lim

τ↓[u]+

er2tr

ge/χ˜(Small)

LuC0,δω0t)

−1

C~,D L1

tLuC0,δω0(M) (9.216) +

tr

ge/χ˜(Small),∂∂∂~Ψ,χˆ

2

L2tLuCω0,δ0(M)+M ∂∂∂~Ψ

L

uC0,δω0t)

.

We now consider the initial condition. Whenu≥0, by (8.64a), lim

τ↓[u]+ er2tr

eg /χ˜(Small)

=0, we have:

er2tr

ge/χ˜(Small) g/.

Z t [u]+

er2λ−1f(~L)·(C~,D)

g/dτ (9.217)

+ Z t

[u]+

er2 f(~L)·

tr

eg

/χ˜(Small),χ,ˆ er−1,∂∂∂~Ψ ·∂∂∂~Ψ

+er2|χ|ˆ2g/+er2tr

ge/χ˜(Small)·tr

eg /χ˜(Small)

g/dτ.

Whenu<0, by (8.61), we have:

er−2 lim

τ↓[u]+

er2tr

ge/χ˜(Small) L

q

t2LuCω0,δ0(M). Z T

∗;(λ)

0

er−1/2λ−1/2 q2

2q

(9.218) .

λ(1−8ε0)(1−

q 4)

λ

q 4

2q

2 q−1−4ε0

4 q−1

.

Using the estimate for Hardy-Littlewood maximal function (9.28), (9.104), and H¨older’s inequality int, we have:

M

∂∂∂~Ψ

L

uC0,δω0t)

L

q t2

. ∂∂∂~Ψ

L

q

t2LuCω0,δ0(M)

(9.219) .

∂∂∂~Ψ

L2tLuC0,δω0(M)λ(1−8ε0)(1−q4)2q

2 q−1−4ε0

4

q−1

−3ε0

.

By bootstrap assumptions (6.13) and (9.4), and (9.104), we have:

λ−1

C~,D

L1tLuCω0,δ0(M)

L

q t2

(1−8ε0)

2 q−1−7ε0

2 q−1−4ε0

4

q−1

−11ε0

, (9.220)

tr

ge/χ˜(Small),∂∂∂~Ψ,χˆ

2

L2tLuCω0,δ0(M)

L

q t2

(1−8ε0)

2 q−1+4ε0

2 q−1−4ε0

4

q−1

. (9.221)

Combining (9.215)-(9.221) and we conclude the desired estimate for tr

eg /χ˜(Small). Now since trg/χ−2

er =tr

eg

/χ˜(Small)−ΓΓΓL, we have:

trg/χ−2 er L

q

t2LuC0,δω0(M)

= tr

ge/χ˜(Small) L

q

t2LuC0,δω0(M)+

f(~L)·∂∂∂~Ψ L

q

t2LuC0,δω0(M). (9.222) By previously proven result (9.10) and previous estimate (9.219), we have:

f(~L)·∂∂∂~Ψ

L

q

t2LuC0,δω0(M). f(~L)

LtLuC0,δω0(M)

∂∂∂~Ψ

L

q

t2LuCω0,δ0(M)

2 q−1−4ε0

4

q−1

−3ε0

. (9.223)

Combining the above with the result for tr

eg

/χ˜(Small), we conclude the proof for trg/χ−2

er. Now we provekχkˆ

L

q

t2LuCω0,δ0(M)

2 q−1−4ε0

4 q−1

. Plugging equation (8.139a) into the Hodge estimate (9.114) withQ:=1−δ2

0, and recallingδ0<1−2p,Q<p, we have:

kχkˆ

L

q

t2LuC0,δω0(M). tr

eg /χ˜(Small)

L

q

t2LuC0,δω0(M)

(9.224) +

∂∂∂~Ψ

L

q

t2LuC0,δω0(M)

+ erf(~L)·

∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ L

q

t2LuLωp(M)

.

Using previous estimate (9.214), we have:

erf(~L)·

∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ L

q

t2LuLωp(M) (9.225)

(1−8ε0)(1−q4)2q erf(~L)·

∂∂∂~Ψ,tr

ge

/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ

L2tLuLωp(M)

(1−8ε0)(1−q4)2q

λ−1/2−4ε0

2

q−1−4ε0(4q−1)−4ε0

.

Combining (9.224)-(9.225) with previously proven result for tr

ge

/χ˜(Small)and (9.223), we conclude the desired estimates.

Proof ofkχkˆ

L2tCω0,δ0(Cu)−1/2in (9.8e). Using the Sobolev inequality (9.33b) withQ:=p, and the previ- ously proven estimates (9.8d) and (9.7a), we have:

kχkˆ

Lt2C0,δω0(Cu).ker∇/χkˆ L2

tLωp(Cu)+kχkˆ L2

tL2ω(Cu)−1/2. (9.226)

Proof of (9.16a) and (9.16b). We first prove (9.16a). Integrating equation (8.142) along the integral curves ofL, we find that:

er−2g/

∂ωA, ∂

∂ωB

−/e ∂

∂ωA, ∂

∂ωB

(9.227)

=lim

t↓[u]+

er−2g/

∂ωA, ∂

∂ωB

−/e ∂

∂ωA, ∂

∂ωB

+ Z t

[u]+

treg/χ˜(Small)−ΓΓΓL

er−2g/ ∂

∂ωA, ∂

∂ωB

−e/ ∂

∂ωA, ∂

∂ωB

dτ +

Z t [u]+

treg/χ˜(Small)−ΓΓΓL

e/ ∂

∂ωA, ∂

∂ωB

+ 2 er2χˆ

∂ωA, ∂

∂ωB

dτ.

Using the initial conditions (8.63c) and (8.64c), noticing that ˆχ

ωA,

∂ωB

=er2χˆAB, and using Grownwall’s inequality, we have:

er−2g/

∂ωA, ∂

∂ωB

−/e ∂

∂ωA, ∂

∂ωB

g/

(9.228) .

λ−4ε0+ tr

ge/χ˜(Small),∂∂∂~Ψ,χˆ L1tLω(Cu)

exp

tr

eg

/χ˜(Small),∂∂∂~Ψ L1tLω(Cu)

.

By bootstrap assumptions (6.13), and the previously proven result (9.11) withq:=4, we have:

er−2g/

∂ωA, ∂

∂ωB

−e/ ∂

∂ωA, ∂

∂ωB

L(M)−4ε0. (9.229) We now prove (9.16b), we first apply

ωC to equation (8.142). Note that tr

eg

/χ˜(Small)−ΓΓΓL=trg/χ−2

er. SinceL and

ωC commute, we have:

d dt

∂ωC

er−2g/ ∂

∂ωA, ∂

∂ωB

−e/ ∂

∂ωA, ∂

∂ωB

= ∂

∂ωCtrg/χer−2g/ ∂

∂ωA, ∂

∂ωB

(9.230) +

trg/χ−2

er ∂

∂ωC

er−2g/ ∂

∂ωA, ∂

∂ωB

−/e ∂

∂ωA, ∂

∂ωB

+

trg/χ−2 er

∂ωC/e ∂

∂ωA, ∂

∂ωB

+2er−2

∂ωCχˆ ∂

∂ωA, ∂

∂ωB

.

Integrating equation along the integral curves ofL, taking theLωp norm, and using the initial condition (8.63d), (8.64d), and then applying Grownwall’s inequality, we have:

∂ωC

er−2g/ ∂

∂ωA, ∂

∂ωB

−e/ ∂

∂ωA, ∂

∂ωB

Lpω(St,u)

(9.231)

. λ−4ε0+ er∇/trg/χ

Lt1Lωp(Cu)+

trg/χ−2 er

∂ωCe/ L1

tLωp(Cu)

+ker∇/χkˆ L1

tLωp(Cu)+kΓΓΓ·χkˆ L1 tLωp(Cu)

·exp

trg/χ−2 er L1tLω(Cu)

! .

By bootstrap assumptions (6.13), and the previously proven results (9.7a), (9.8d) and (9.11) withq:=4, we have:

∂ωC

er−2g/ ∂

∂ωA, ∂

∂ωB

−/e ∂

∂ωA, ∂

∂ωB

Lp

ω(St,u)

−4ε0. (9.232)

Proof of

b−1−1 er

L2

tLx(M)−1/2in (9.9). We first bound

b−1−1 er

L2

tLx(M(Int)). Integrating equation (8.141) along along the integral curves ofLemanating from the cone-tip, and using the initial condition (8.64a), we have:

b−1−1=− Z t

u

b−1−1

f(~L)·∂∂∂~Ψdτ− Z t

u

f(~L)·∂∂∂~Ψdτ. (9.233)

Using Grownwall’s inequality and the bootstrap assumption (6.13), we have:

b−1−1 er

g/

.M ∂∂∂~Ψ

Lω(St,u)

. (9.234)

Hence,

b−1−1 er

L2tLx(M(Int))

. ∂∂∂~Ψ

Lt2Lx(M)−1/2−4ε0. (9.235) Now we consider the case whenu<0. Integrating equation (8.141) along along the integral curves of L emanating fromΣ0, we have:

b−1−1 er

g/

b−1−a−1 er

g/

+

a−1−1 er

g/

.M

∂∂∂~Ψ

Lω(St,u)

+

a−1−1 er

g/

. (9.236)

By initial condition (8.63a), we have:

a−1−1 er

L2tLx(M)

.

a−1−1 w1/2

Lx(M)

Z T∗;(λ) 0

w (τ+w)2

1/2

−1/2. (9.237)

Combining (9.236)-(9.237), we have:

b−1−1 er

L2

tLx(M(Ext))

−1/2. (9.238)

Combining (9.235) and (9.238), we conclude the desired estimate.

Proof of

er(D/L,/∇)

b−1−1 er

L2tLωp(Cu)−1/2in (9.9). We first prove erD/L

b−1−1 er

L2tLωp(Cu)−1/2. By (8.141) and the fact thatL(er) =1, we have:

erD/L

b−1−1 er

=−b−1f(~L)·∂∂∂~Ψ−b−1−1

er . (9.239)

the last proof, we have:

erD/L

b−1−1 er

L2

tLωp(Cu)

. ∂∂∂~Ψ

L2tLωp(Cu)+

b−1−1 er

L2

tLωp(Cu)

−1/2. (9.240)

Now we bounder∇/

b−1−1 er

. Recall (8.17),ζ=/∇lnb+f(~L)·∂∂∂~Ψ. Therefore,

er∇/

b−1−1 er

=−b−1/∇lnb=b−1

−ζ+f(~L)·∂∂∂~Ψ

. (9.241)

By the bootstrap assumption (6.13), and the proven results (9.7a) and (9.17b), we have:

er∇/

b−1−1 er

L2

tLpω(Cu)

−1/2. (9.242)

Proof of

b−1−1 er1/2

L

t LuL2pω(M)−1/2in (9.9). By the Sobolev inequality (9.32), we have:

b−1−1 er1/2

2

LtLuL2pω(M)

(9.243)

. erD/L

b−1−1 er

L2

tLuLωp(M)

+

b−1−1 er

L2

tLuLpω(M)

!

b−1−1 er

L2

tLuLω(M)

.

Using the proven first and third estimates of (9.9), we conclude the desired result.

Proof of (9.18). We first prove

∇/ln er−2v

L2tLωp(Cu)−1/2. Plugging equation (8.143b) into estimate (9.76), we have:

er∇/ln er−2v g/=lim

t↓τ

er∇/ln er−2v g/+

Z t [u]+

er

1 2

tr

ge

/χ˜(Small)−ΓΓΓL

+f(~L)·χˆ

/∇ln er−2v g/

dτ (9.244) +

Z t [u]+

er∇/

trg/eχ˜(Small)−ΓΓΓL

g/dτ.

Applying the Grownwall’s inequality, and using the proven results (9.11) withq:=4, we have:

er∇/ln er−2v g/.

limt↓τ

er∇/ln er−2v g/+

Z t [u]+

er∇/

tr

ge

/χ˜(Small)−ΓΓΓL

g/

(9.245)

·exp

trg/χ−2 er,χˆ

L1

tLω(Cu)

!

.lim

t↓τ

er∇/ln er−2v g/+

Z t [u]+

er∇/

trg/eχ˜(Small)−ΓΓΓL

g/dτ.

We now consider the initial conditions. When u≥0, by initial condition (8.64c) and (8.64d), we have limt↓τ

er∇/ln er−2v

g/=0. Whenu<0, by (8.63e),

limt↓τer1/2/∇ln er−2v Lp

ω(Sw)

−1/2. Now dividing both sides of (9.245) byer(t,u), then take the norms and use the estimate for Hardy-Littlewood maximal function (9.28) to deduce:

∇/ln er−2v

L2tLpω(Cu)−1/2 Z T

∗;(λ)

0

w (τ+w)2

1/2

+ er

/∇tr

eg

/χ˜(Small),/∂∇∂∂~Ψ

L2tLωp(Cu). (9.246) By estimate (9.82f) and proven result (9.8d), we conclude the desired estimate.

Now we bounder1/2/∇ln er−2v

. Dividing both sides of (9.245) byer1/2, taking theLpωnorm, by estimate (9.82f) and proven result (9.8d), we have:

er1/2/∇ln er−2v

Lωp(St,u)−1/2+(t−[u]+)1/2 (t−u)1/2

er

/∇tr

eg

/χ˜(Small),/∂∇∂∂~Ψ

L2tLpω(Cu)−1/2. (9.247) Now we prove forerL∇/ln er−2v

. Using equation (8.143b), we have:

erL∇/ln er−2v

g/ (9.248)

. er∇/

tr

ge

/χ˜(Small)−ΓΓΓL

+er

tr

ge/χ˜(Small),∂∂∂~Ψ,χˆ

·/∇ln er−2v

+∇/ln er−2v g/.

By the bootstrap assumptions (6.13), the estimate (9.82f), and the proven results (9.11) withq:=4, (9.8d), we have:

erL∇/ln er−2v

Lt2Lωp(Cu). er

/∇tr

eg

/χ˜(Small),/∂∇∂∂~Ψ

L2

tLωp(Cu) (9.249)

1/2−4ε0 tr

ge/χ˜(Small),∂∂∂~Ψ,χˆ L2tLω(Cu)

er1/2/∇ln er−2v

LtLωp(Cu)

+

∇/ln er−2v L2tLωp(Cu)

−1/2.

Proof ofker∇/ζkL2

tLωp(Cu),kζk

L2tC0,δω0(Cu)−1/2in (9.19) and (9.8e). Plugging equation (8.148a) and (8.148b)

into the Hodge estimate (9.110) withQ:=p, we have:

ker∇/ζkL2

tLωp(Cu).

λ−1erf(~L)·(C~,D)

L2tLωp(Cu)+ er∇/∂∂∂~Ψ

L2tLωp(Cu) (9.250) +

erf(~L)·χ·ˆ χˆ

Lt2Lωp(Cu)+

erf(~L)·ζ·ζ L2tLωp(Cu)

+

erf(~L)·/∇ln er−2v

·(∂∂∂~Ψ,ζ) L2tLωp(Cu)

+

erf(~L)·(∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ er−1)·∂∂∂~Ψ

Lt2Lωp(Cu).

By estimates (9.82d), (9.82f), the already proven results (9.7a), (9.7c), (9.11), (9.18), (9.189), we have:

ker∇/ζkL2

tLωp(Cu)−1/2−4ε0kζkL2

tLω(Cu). (9.251)

Using the Sobolev inequality (9.33b) withQ:=p, and the already proven result (9.7a), we have:

kζkL2tCω0,δ0(Cu).ker∇/ζkL2

tLpω(Cu)+kζkL2

tL2ω(Cu)−1/2+ker∇/ζkL2

tLpω(Cu). (9.252) Combining (9.251) and (9.252), we conclude the desired estimates.

Proof ofkerµkL2

tLωp(Cu)−1/2in (9.19). Using equation (8.144), by the estimates (9.82d), (9.82f), and al- ready proven results (9.7a), (9.7c), (9.8e), (9.18), (9.189), we have:

kerµkL2

tLωp(Cu).

λ−1erf(~L)·(C~,D)

L2tLωp(Cu)+ er∇/∂∂∂~Ψ

L2tLωp(Cu)+

erf(~L)·χˆ·χˆ

L2tLpω(Cu) (9.253) +

erf(~L)·/∇ln er−2v

·(∂∂∂~Ψ,ζ) L2tLωp(Cu)

+

erf(~L)·(∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ er−1)·∂∂∂~Ψ Lt2Lωp(Cu)

−1/2.

Proof ofkζkL2

tLx(M(Int))−1/2−3ε0 andkζk

L

q

t2Lx(M)

2 q−1−4ε0

4 q−1

in (9.12). Plugging equations (8.148a)

and (8.148b) into the Hodge estimate (9.116) withQ:=p,c=2,F=f(~L)·∂∂∂~Ψ, we have:

kζkL2

tLx(M(Int)). νδ0Pν

f(~L)·∂∂∂~Ψ

L2tLul2νLω(M(Int)) (9.254)

+ ∂∂∂~Ψ

L2tLx(M(Int))+

λ−1er(C~,D)

L2tLuLωp(M(Int))

+ker(χˆ·χ,ζˆ ·ζ)kL2

tLuLωp(M(Int))

+ er(∂∂∂~Ψ,tr

ge/χ˜(Small),χ,ˆ er−1)·∂∂∂~Ψ L2

tLuLωp(M(Int))

+

er∇/ln er−2v

·(∂∂∂~Ψ,ζ)

L2tLuLωp(M(Int)).

Using the estimates (9.93a), (9.104), the already proven results (9.7c), (9.15) for ˆχ, (9.18), and (9.141), we have:

kζkL2

tLx(M(Int))−1/2−3ε0−4ε0kζkL2

tLx(M(Int)). (9.255)

By absorbing the second term on RHS of (9.255) into the left, we conclude the desired result forL2tLx norm.

To bound theL

q

t2Lx norm, we apply the H¨older’s inequality to (9.254) and use the same argument given above to deduce:

kζk

L

q

t2Lx(M)

2 q−1−4ε0

4 q14

−4ε0kζk

L

q t2Lx(M)

. (9.256)

By absorbing the second term on RHS of (9.256) into the left, we conclude the desired result.

Proof of (9.20a)-(9.20c). Using equation (8.37a) and initial condition forσ(8.37b), we have:

σ=1 2

Z t

uΓΓΓLdτ. (9.257)

Using the bootstrap assumptions (6.13), we find that:

kσkL(M(Int))−8ε0, (9.258)

er−1/2σ

L(M(Int)).sup

t,u

(t−u)1/2

er1/2 λ−1/2−4ε0−1/2−4ε0. (9.259) To provek∇/σkL2

tLpω(Cu)−1/2, we plug equation (8.145) into (9.76), and use the initial condition (8.64a) to

deduce:

|er∇/σ|g/. Z t

u er

/∂∇∂∂~Ψ

g/+

tr

ge/χ˜(Small),∂∂∂~Ψ,χˆ

·/∇σ g/

dτ. (9.260)

Using the Grownwall’s inequality, the bootstrap assumption (6.13) and the already proven results (9.8e), we have:

|er∇/σ|g/. Z t

u er /∇∂∂∂~Ψ

g/dτexp

tr

ge

/χ˜(Small),∂∂∂~Ψ,χˆ L1

tLω(Cu)

.

Z t uer

/∂∇∂∂~Ψ

g/dτ. (9.261) Dividing both sides of (9.261) byer(t,u), taking theL2tLωp norms, using the estimate for Hardy-Littlewood maximal function (9.28) and the estimate (9.83a), we have:

k∇/σkL2

tLωp(Cu). er∇/∂∂∂~Ψ

L2tLpω(Cu)−1/2, (9.262) as desired. To show

er1/2/∇σ Lp

ωLt(Cu)−1/2, dividing estimate (9.261) byer1/2(t,u), then taking theLωp norms, we have:

er1/2/∇σ

Lp

ω(St,u).(t−u)1/2 er1/2

er∇/∂∂∂~Ψ

L2

tLωp(Cu)−1/2. (9.263) We now prove

er1/2

LtL2pω(Cu)−1/2−2ε0. By the Sobolev equality (9.32), the estimate (9.82d) and (9.83a), we have:

er1/2

2

LtL2pω(Cu).

erD/L∂∂∂~Ψ

LωpLt2(Cu)+ ∂∂∂~Ψ

LωpL2t(Cu)

∂∂∂~Ψ

LωL2t(Cu)−1−4ε0. (9.264)

Proof of

er /∇µ,ˇ /∇ζ˜

L2uL2tLpω(M(Int))−4ε0 in (9.21a). In this paragraph, we are assumingCu⊂M(Int). We will silently use the fact that 0≤u≤t≤T∗;(λ)1−8ε0silently. We start by deriving a preliminary estimate for

er∇/ζ˜

L2uL2tLωp(M(Int)). Plugging equations (8.149a) and (8.149b) into the Hodge estimate (9.110), we have:

er∇/ζ˜

L2uLt2Lωp(M(Int)). er∇/∂∂∂~Ψ

L2uL2tLωp(M(Int))−1

er(C~,D)

L2uL2tLpω(M(Int)) (9.265) +ker(ζ·ζ,χ·ˆ χ)kˆ L2

uL2tLpω(M(Int))

+ er

∂~Ψ,tr

ge/χ˜(Small),χ,ˆ er

·∂∂∂~Ψ

L2uL2tLωp(M(Int))+kerµkˇ L2

uL2tLωp(M(Int)).

By estimates (9.82f), (9.93c), (9.189), we have:

er∇/ζ˜

L2

uLt2Lωp(M(Int))−4ε0+kerµkˇ L2

uLt2Lωp(M(Int)). (9.266)

We now boundkerµkˇ L2

uLt2Lωp(M(Int)). Plugging (8.146) into (9.76), and using the initial condition on cone- tip (8.64a), we have:

er2µˇ

g/. Z t

u er2

J(1) g/+

J(2) g/

dτ+

Z t u er2

tr

eg

/χ˜(Small),∂∂∂~Ψ

g/µdτ.ˇ (9.267) Using the Grownwall’s inequality, the bootstrap assumption (6.13) and the already proven estimate (9.15), we have:

er2µˇ

g/. Z t

u er2 J(1)

g/+ J(2)

g/

dτexp

tr

ge

/χ˜(Small),∂∂∂~Ψ Lt1Lω(Cu)

(9.268) .

Z t u er2

J(1) g/+

J(2) g/

dτ.

We divide estimate (9.268) byer(t,u)and then take theL2uL2tLωp norm. We now estimate terms inJ(1)andJ(2) defined in (8.147). First, by the estimate for Hardy-Littlewood maximal function (9.28), estimates (9.82f), (9.82a), we have:

er−1

Z t

u er∇/∂∂∂~Ψdτ

L2uL2tLωp(M(Int))

. er∇/∂∂∂~Ψ

L2

uLt2Lωp(M(Int))−4ε0, (9.269)

er−1

Z t u

∂∂~Ψdτ L2

uL2tLωp(M(Int))

. ∂∂∂~Ψ

L2uL2tLpω(M(Int))−4ε0. (9.270) Next, by the estimates (9.92a), (9.91c), we have:

λ−1 er−1

Z t u

er2∂∂∂(C~,D) g/

L2uL2tLωp(M(Int))

−12ε0, (9.271) λ−1

er−1

Z t [u]+

er2(∂∂∂~Ψ,∂∂∂~ω,∂∂∂~S)·

∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ ζ,er−1 g/

L2uL2tLωp(M(Int))

−16ε0. (9.272)

By the already proven estimate (9.15), we have:

er−1

Z t uer2

∇/ζ˜·χˆ g/

L2uL2tLωp(M(Int))

. er∇/ζ˜

L2tLωp(Cu)kχkˆ L2 tLω(Cu)

L2

uL2t (9.273) .λ−7ε0

er∇/ζ˜ L2

uL2tLωp(M(Int)).

By the bootstrap assumptions (9.6), and the estimates (9.82f), (9.8d) and (9.189), we have:

er−1

Z t u

er2/∇σ·

/∇∂∂∂~Ψ,/∇tr

ge/χ˜(Small),

∂∂

∂~Ψ,tr

ge/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ

g/

L2

uL2tLpω(M(Int))

(9.274) .

k∇/σkL2 tLω(Cu)

er

/∂∇∂∂~Ψ,/∇tr

ge/χ˜(Small),

∂∂

∂~Ψ,tr

ge/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ

L2

tLpω(Cu)

L2uL2t

−4ε0.

By the bootstrap assumptions (6.13), the already proven estimate (9.8d) and (9.12), we have:

er−1

Z t uer2

/∇tr

eg

/χ˜(Small)·(∂∂∂~Ψ,ζ) g/

L2uL2tLωp(M(Int))

(9.275) 1.

er∇/tr

eg /χ˜(Small)

L2tLωp(Cu)

∂∂∂~Ψ,ζ

Lt2Lω(Cu)

L2

uL2t

−11ε0.

By the bootstrap assumptions (6.13), already proven result (9.15), and the estimate (9.189), we have:

er−1

Z t u er2

∂∂

∂~Ψ,tr

ge/χ˜(Small),χ,ˆ ζ,er−1

·

∂∂

∂~Ψ,tr

ge/χ˜(Small),χ,ˆ ζ

·

∂∂

∂~Ψ,χˆ g/

L2

uL2tLpω(M(Int))

(9.276) .

er

∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ ζ,er−1

·

∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ ζ L2

tLpω(Cu)

∂∂∂~Ψ,χˆ

L2

tLω(Cu)

L2uLt2

−11ε0.

By the bootstrap assumptions (6.13), the estimates (9.82b), (9.12), (9.15), and the Fubini’s theorem, we have:

er−1

Z t u er2

(∂∂∂~Ψ,tr

ge

/χ˜(Small),χ,ζ)ˆ ·∂∂∂2g/

L2uL2tLωp(M(Int))

(9.277) .

er∂∂∂2

L2tLωp(Cu)

∂∂∂~Ψ,tr

ge/χ˜(Small),χ,ˆ ζ Lt2Lω(Cu)

L2

uL2t

−7ε0 er∂∂∂2

L2

tL2uLωp(M(Int))

−11ε0.

J(1)is bounded by (9.269)-(9.270), andJ(2)is bounded by (9.271)-(9.277). Therefore, we conclude

kerµkˇ L2

uL2tLpω(M(Int))−4ε0−7ε0 er∇/ζ˜

L2uL2tLωp(M(Int)). (9.278) Combining this estimate with the estimate (9.266) for

er∇/ζ˜ L2

uLt2Lωp(M(Int)), and soaking the second term on

the RHS of (9.266) to the LHS of (9.278), we conclude the desired results.

Proof of er3/2µˇ

L2

uLt Lpω(M(Int))−4ε0in (9.21b). We divide (9.268) byer1/2(t,u)and then take theL2uLt Lωp norms. We first estimate the terms inJ(1)andJ(2)defined in (8.147).

By the estimates (9.82f), (9.82a), we have:

er−1/2

Z t

u er∇/∂∂∂~Ψdτ

L2uLt Lpω(M(Int))

. er∇/∂∂∂~Ψ

L2uL2tLpω(M(Int))−4ε0, (9.279)

er−1/2

Z t u

∂∂∂~Ψdτ L2

uLt Lpω(M(Int))

. ∂∂∂~Ψ

L2uL2tLωp(M(Int))−4ε0. (9.280) By the estimates (9.92b), (9.91d), we have:

λ−1 er−1/2

Z t u

er2∂∂∂(C~,D) g/

L2uLtLωp(M(Int))

−12ε0, (9.281) λ−1

er−1/2

Z t [u]+

er2(∂∂∂~Ψ,∂∂∂~ω,∂∂∂~S)·

∂~Ψ,tr

ge/χ˜(Small),χ,ˆ ζ,er−1 g/

L2uLtLωp(M(Int))

−16ε0. (9.282)

By the proven estimates (9.15) and (9.21a), we have:

er−1/2

Z t uer2

∇/ζ˜·χˆ g/

L2uLtLωp(M(Int))

1/2−4ε0 er∇/ζ˜

L2tLωp(Cu)kχkˆ L2 tLω(Cu)

L2

uLt (9.283) .λ−11ε0.

By the bootstrap assumption (9.6), the estimates (9.82f), (9.8d) and (9.189), we have:

er−1/2

Z t u

er2/∇σ·

/∂∇∂∂~Ψ,/∇tr

eg

/χ˜(Small),

∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ

g/

L2uLtLωp(M(Int))

(9.284) .λ1/2−4ε0

k∇/σkL2

tLω(Cu)

· er

/∂∇∂∂~Ψ,/∇tr

ge/χ˜(Small),

∂~Ψ,tr

ge/χ˜(Small),χ,ˆ er−1 ·∂∂∂~Ψ

L2tLpω(Cu)

L2uLt

−4ε0.

By the bootstrap assumptions (6.13), proven estimates (9.8d) and (9.12), we have:

er−1/2

Z t uer2

/∇tr

eg

/χ˜(Small)·(∂∂∂~Ψ,ζ) g/

L2

uLtLωp(M(Int))

(9.285) .λ1/2−4ε0

er∇/tr

eg /χ˜(Small)

Lt2Lωp(Cu)

∂∂∂~Ψ,ζ

Lt2Lω(Cu)

L2L

−11ε0.

By bootstrap assumptions (6.13), proven result (9.15), estimate (9.189), we have:

er−1/2

Z t uer2

∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ ζ,er−1

·

∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ ζ

·

∂∂∂~Ψ,χˆ g/

L2

uLtLωp(M(Int))

(9.286) .λ1/2−4ε0

er

∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ ζ,er−1 ∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ζˆ L2

tLpω(Cu)

· ∂∂∂~Ψ,χˆ

L2tLω(Cu)

L2uLt

−11ε0.

By bootstrap assumptions (6.13), estimates (9.82b), (9.12), (9.15), using Fubini’s theorem, we have:

er−1/2

Z t u er2

(∂∂∂~Ψ,tr

ge

/χ˜(Small),χ,ζ)ˆ ·∂∂∂2g/

Lu2LtLωp(M(Int))

(9.287) .λ1/2−4ε0

er∂∂∂2

L2tLpω(Cu)

∂∂∂~Ψ,tr

ge/χ˜(Small),χ,ˆ ζ L2tLω(Cu)

L2uLt

−7ε0 er∂∂∂2

L2tL2uLωp(M(Int))

−11ε0.

J(1)is bounded by (9.279)-(9.280), andJ(2)is bounded by (9.281)-(9.287). Combining all the estimates for terms inJ(1)andJ(2), we conclude the desired result.

Proof ofk∇/σk

L2uL2tCω0,δ0(M(Int))−4ε0 in (9.21a). Plugging (8.56) into the Sobolev equality (9.33b) withQ:=

p, we have:

k∇/σk

L2uL2tCω0,δ0(M(Int)).

er(∇/ζ,˜ /∇ζ)

L2uL2tLpω(M(Int))+k∇/σkL2

uLt2L2ω(M(Int)). (9.288) By the proven estimates (9.19), (9.20a), (9.21a) for

er∇/ζ˜

L2uLt2Lωp(M(Int)), we conclude the desired estimate.

Proof of (9.22). Plugging (8.55) into the Hodge estimate (9.110), using (9.123) and the proven estimate (9.21a), we have:

ker∇/µ/ ,µ/kL2

tL2uLωp(M(Int)).kerµkˇ L2

tL2uLpω(M(Int))+ erµ¯ˇ

L2

tL2uLωp(M(Int))−4ε0. (9.289)

By the Sobolev inequality (9.33b) withQ:=p, we have:

kµ/k

L2tL2uCω0,δ0(M(Int)).ker∇/µ/kL2

tL2uLpω(M(Int))+kµ/kL2

tL2uL2ω(M(Int))−4ε0. (9.290)

Proof of ζ−˜ µ/

Lt2LuLω(M(Int))−1/2−4ε0 in (9.25a). Plugging equations (8.150a) and (8.150b) into the Hodge estimate (9.116) withQ:=p,c:=2 andδ0≤δ0, we have:

ζ˜−µ/

L2tLuLω(M(Int)).

νδ0Pν∂∂∂~Ψ L2

tLul2νLω(M(Int))+ ∂∂∂~Ψ

L2

tLuLω(M(Int)) (9.291) +λ−1

er(C~,D)

Lt2LuLωp(M(Int))

+ker(ζ·ζ,χˆ·χ)kˆ L2

tLuLωp(M(Int))

+ er

∂~Ψ,tr

ge/χ˜(Small),χ,ˆ er

·∂∂∂~Ψ

L2tLuLωp(M(Int)).

By the bootstrap assumptions (6.13), the estimates (9.93a), (9.141), and the proven results (9.7c), (9.12) and (9.15), we conclude the desired bound:

ζ˜−µ/

L2tLuLω(M(Int))−1/2−4ε0. (9.292)

Proof of (9.24). By (8.154), it suffices to show lim

t↓uerµ/ =O(er). Plugging definition (8.55) into the Hodge estimate (9.116) withF:=0 andQ:=p, and using the initial condition (8.64a), we have:

lim

t↓uerµ/ Lω(St,u)

.

lim

t↓uer2µˇ Lωp(St,u)

=O(er). (9.293)

Proof of µ/(1)

L2tLuLω(M(Int))−1/2−4ε0 in (9.25a). LetH:=/DLµ/(1)+12trg/χµ/(1). By (9.76) and the initial condition forerµ/(1), we have:

erµ/(1)

g/=

Z t u

erH+er

tr

ge/χ˜(Small)+∂∂∂~Ψ

µ/(1)

g/dτ. (9.294)

Using the Grownwall’s inequality, by the bootstrap assumption (6.13) and the proven estimate (9.15), we

have:

erµ/(1)

g/.

Z t u

|erH|g/dτexp

tr

eg

/χ˜(Small),∂∂∂~Ψ L1tLω(Cu)

.

Z t u

|erH|g/dτ. (9.295)

Dividing both sides of (9.295) byer, taking the norm, and then substituting equations (8.152a) and (8.152b) into the Hodge estimate (9.116) withF:=er−1div/ξ,Q:=p,c:=2 andδ0≤δ0, we have:

µ/(1)

L2

tLuLω(M(Int)). er−1

Z t u er

er−1

νδ0Pν∂∂∂~Ψ l2

νLω(Sτ,u)+ er−1∂∂∂~Ψ

L

ω(Sτ,u) (9.296) +

er−1∂∂∂~Ψ

Lp

ω(Sτ,u)

L2tLu

.

By the estimate for Hardy-Littlewood maximal function (9.28) and bootstrap assumptions (6.13), we conclude the desired estimate.

Proof of µ/(2)

L2uLtLω(M(Int))−1/2−3ε0 in (9.25b). Using the same argument as in the proof of (9.25a), we have

erµ/(2)

g/.

Z t u

|erH|g/dτ, (9.297)

whereH:=D/Lµ/(2)+12trg/χµ/(2). Now divide both sides of (9.297) byerand take the norms. Notice that:

µ/(2)

L2uLtLω(M(Int)). er−1

Z t u

|erH|g/

L2uLt Lω(M(Int))

.kHkL2

uL1tLω(M(Int)). (9.298) Applying equations (8.153a) and (8.153b) into Hodge estimate (9.116) withF:=0 andQ:=p, we have:

kHkL2

uL1tLω(M(Int)). erJ(2)

L2uL1tLpω(M(Int))+kerχ·ˆ /∇µ/kL2

uL1tLωp(M(Int)) (9.299)

+ er

/∇∂∂∂~Ψ,/∇tr

ge/χ˜(Small)

·µ/

L2uLt1Lωp(M(Int))

+ er

∂∂∂~Ψ,tr

ge

/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ·µ/

L2uL1tLωp(M(Int))

+

er trg/χ−trg/χ ˇ µ

L2uL1tLωp(M(Int)).

By (9.93d), we have:

λ−1

er∂∂∂(C~,D)

L2uL1tLpω(M(Int))−1/2−8ε0. (9.300)

By (9.93e), we have:

λ−1 er

∂∂

∂~Ψ,∂∂∂~ω,∂∂∂~S

·

∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ ζ,er−1

L2uLt1Lωp(M(Int)).12−10ε0. (9.301) By the proven estimates (9.21a) and (9.15), we have:

er∇/ζ˜·χˆ

Lu2L1tLωp(M(Int)). er∇/ζ˜

L2uL2tLpω(M(Int))

er∇/ζ·˜ χˆ

LuL2tLω(M(Int))−1/2−7ε0. (9.302) By (9.82f), (9.8d), (9.189) and (9.21a), we have:

er∇/σ·

/∇∂∂∂~Ψ,∇/tr

eg

/χ˜(Small),

∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ

L2uL1tLωp(M(Int)) (9.303)

.k∇/σkL2

uL2tLω(M(Int))

er

/∂∇∂∂~Ψ,/∇tr

eg

/χ˜(Small),

∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ er−1

·∂∂∂~Ψ

L

uL2tLpω(M(Int))

−1/2−4ε0.

By (9.8d), (6.13) and (9.12), we have:

er∇/tr

eg

/χ˜(Small)·(∂∂∂~Ψ,ζ)

L2uL1tLpω(M(Int)). er∇/tr

ge /χ˜(Small)

L2uL2tLpω(M(Int))

∂∂∂~Ψ,ζ

LuL2tLω(M(Int)) (9.304) .λ−1/2−3ε0.

By (9.189), (6.13) and (9.15), we have:

er

∂∂∂~Ψ,tr

eg

/χ˜(Small),χ,ζ,ˆ er

·

∂∂∂~Ψ,tr

ge

/χ˜(Small),χ,ζˆ

·(∂∂∂~Ψ,χ)ˆ

L2uL1tLpω(M(Int)) (9.305) .

er

∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ ζ,er

·

∂∂~Ψ,tr

eg

/χ˜(Small),χ,ˆ ζ

L2uLt2Lωp(M(Int))

∂∂∂~Ψ,χˆ

LuL2tLω(M(Int))

−1/2−7ε0.

By (9.82b), (6.13), (9.15) and (9.12), we have:

er

∂~Ψ,tr

ge/χ˜(Small)

·∂∂∂2L2

uL1tLωp(M(Int)). er∂∂∂2

L2

uLtLωp(M(Int))· (9.306)

∂∂∂~Ψ,tr

ge/χ˜(Small)

LuLt1Lω(M(Int))

−1/2−7ε0.

By (9.22) and (9.15), we have:

kerχˆ·/∇µ/kL2

uLt1Lωp(M(Int)).ker∇/µ/kL2

uL2tLωp(M(Int))kχkˆ L

uLt2Lω(M(Int))−1/2−7ε0. (9.307) By (9.82f), (9.8d), (9.189) and (9.22), we have:

erµ/·

/∂∇∂∂~Ψ,/∇tr

ge/χ˜(Small),

∂∂∂~Ψ,tr

ge

/χ˜(Small),χ,ˆ er−1 ·

∂∂~Ψ,tr

eg

/χ˜(Small),χˆ

L2uL1tLωp(M(Int)) (9.308) .kµ/kL2

uL2tLω(M(Int))·

er

/∇∂∂∂~Ψ,/∇tr

eg

/χ˜(Small),

∂∂

∂~Ψ,tr

ge/χ˜(Small),χ,ˆ er−1

·

∂∂∂~Ψ,tr

ge

/χ˜(Small),χˆ

LuL2tLpω(M(Int))

−1/2−4ε0.

Note that 1

er =1

er (see Definition 8.7 for the definition of 1

er). By (6.13), (9.15), and (9.21a), we have:

er trg/χ−trg/χ ˇ µ

L2uL1tLpω(M(Int)). ∂∂∂~Ψ,tr

eg /χ˜(Small)

LuLt2Lω(M(Int))kerµkˇ L2

uL2tLpω(M(Int)) (9.309) .λ−1/2−7ε0.

Combining (9.298)-(9.309), we conclude the desired estimate.

CHAPTER 10

Conformal Energy Estimates

In this section, with the control of the acoustic geometry that we derived in Proposition 9.1, we prove the boundness theorem for the conformal energy in Theorem 10.2.

Dokumen terkait