9.4 Proofs of the Main Estimates for the Eikonal Function Quatities
9.4.1 Proof of Proposition 9.1
With the help of the previous results, we are now ready to control the geometric quantities. Recall[u]+:=
max{u,0}.
Proof ofυ≈er2in (9.17a). Recall equation (8.143a), we have:
L er−2υ
= tr
eg
/χ˜(Small)−ΓΓΓL
er−2υ
. (9.124)
Integrating (9.124) along the integral curve ofL, we have:
er−2υ
(t,u,ω) = lim
τ↓[u]+ er−2υ
(τ,u,ω) + Z t
[u]+
tr
ge/χ˜(Small)−ΓΓΓL
er−2υ
dτ. (9.125)
Using Grownwall’s inequality, bootstrap assumptions for trg/χ˜(Small)and∂∂∂~Ψ, and initial conditions forr−2υ,
we have:
er−2υ
(t,u,ω). lim
τ↓[u]+ er−2υ exp
tr
eg
/χ˜(Small)−ΓΓΓL
L1tL∞ω(Cu)
.1. (9.126)
We get er−2υ
(t)&1 by applying similar argument to:
−er−2υ
(t,u,ω) = lim
τ↓[u]+ −er−2υ +
Z t [u]+
treg/χ˜(Small)−ΓΓΓL
−er−2υ
dτ. (9.127)
Proof ofkb−1kL∞(M).λ−4ε0<14in (9.17b). Recall equation (8.141). Taking the initial condition for the two separate casesu<0 andu≥0 into consideration, we have
b=1+ Z t
[u]+
b·f(~L)·∂∂∂~Ψdτ, u≥0, (9.128a)
b=a+ Z t
[u]+
b·f(~L)·∂∂∂~Ψdτ, u<0, (9.128b)
whereais defined in (8.62). Using Grownwall’s inequality, bootstrap assumption for∂∂∂~Ψand initial condition (8.63a), we conclude the desired estimate.
Proof of f(~L)
Lt∞L∞uC0,δω0(M).1in (9.10).
f(~L)
C0,δ0
ω (St,u).1+
~Ψ C0,δ0
ω (St,u)+
~L C0,δ0
ω (St,u).1+
~L C0,δ0
ω (St,u). (9.129) Recalling equation (8.133a) and using (9.108), we have:
~L
Cω0,δ0(St,u). ~L
C0,δω0(S[u]+,u)+ Z t
[u]+
f(~L)·∂∂∂~Ψ
Cω0,δ0(Sτ,u)dτ (9.130) .
~L
C0,δω0(S[u]+,u)+ Z t
[u]+
f(~L)
C0,δω0(Sτ,u)
∂∂∂~Ψ
C0,δω0(Sτ,u)dτ.
By Grownwall’s inequality, we have:
f(~L)
C0,δω0(St,u).
1+
~L
Cω0,δ0(S[u]+,u)
exp
Z t [u]+
∂∂∂~Ψ
C0,δω0(Sτ,u)dτ
. (9.131)
By (7.7) and (9.104),
Z t [u]+
∂∂∂~Ψ
Cω0,δ0(Sτ,u)dτ.λ−7ε0. (9.132) Combining (9.101), (9.100c), (9.96) and (9.98), we have:
~L
Cω0,δ0(S[u]+,u).1+
3 i=1
∑
A=1,2max
Θi(A)(t,t,ω)
L∞ω(S[u]+,u).1+
∑
α
kLαk
L∞uC0,δω0(Σ0).1. (9.133) Combining (9.131), (9.132) and (9.133) we conclude the desired estimate.
Proof ofkχkˆ L2
tLpω(Cu).λ−1/2in (9.7a). Recalling equation (8.139b) and using the transport identity (9.76), we have:
er2χˆ
g/(t,u,ω)≤ lim
τ↓[u]+
er2χˆ
g/(τ,u,ω) (9.134)
+ Z t
[u]+
λ−1
er2(C~,D) g/+
er2(∇/ ,/DL)ξ g/+
er2f(~L)·
∂
∂
∂~Ψ,tr
ge/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ g/dτ.
Dividing (9.134) byer2(t,u)and taking the norm, we have:
kχkˆ L2
tLωp(Cu)≤ er−2
lim
τ↓[u]+er2χˆ
L2tLωp(Cu)
(9.135) +
λ−1er−2 Z t
[u]+
er2(C~,D) g/dτ
L2tLωp(Cu)
+ er−2
Z t [u]+
er2(∇/ ,D/L)ξ g/dτ
Lt2Lωp(Cu)
+ er−2
Z t [u]+
er2f(~L)·
∂∂∂~Ψ,tr
ge
/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ g/dτ
L2tLωp(Cu)
.
We now consider the initial conditions. When u ≥0, by the initial condition on the cone-tip (8.64a), lim
τ↓[u]+
er2χˆ
g/=0. Whenu<0, lim
τ↓[u]+
er2χˆ
g/=w2χ(0,ˆ u,ω). Then, by (8.63b) and (9.82a), we have:
w1/2χ(0,ˆ u,ω) Lp
ω(Sw).
w1/2θ(0,u,ω) Lp
ω(Sw)+
w1/2∂∂∂~Ψ(0,u,ω) Lp
ω(Sw).λ−1/2. (9.136) Then,
er−2w2χ(0,u,ˆ ω) L2
tLωp(Cu). Z T
∗;(λ)
0
er−2w3/2λ−1/2 2
dτ 1/2
(9.137)
= (
λ−1w3 − 1 (τ+w)3
T∗;(λ)
0
!)1/2
.λ−1/2.
Now we estimate other terms in (9.135). By (9.89b),
λ−1er−2 Z t
[u]+
er2(C~,D) g/dτ
L2tLωp(Cu)
.λ−1/2−12ε0. (9.138)
Using the estimate for Hardy-Littlewood maximal function (9.28) and estimate (9.82f), we have
er−2
Z t [u]+
er2(∇/ ,/DL)ξ g/dτ
L2tLpω(Cu)
.
1 t−[u]+
Z t [u]+
|er(∇/ ,/DL)ξ|g/dτ L2tLωp(Cu)
(9.139) .ker(∇/ ,/DL)ξkL2
tLωp(Cu).λ−1/2. (9.140) Similarly, by the estimate for Hardy-Littlewood maximal function (9.28), bootstrap assumptions (6.13), (9.4), and (9.5a), we have:
er−2
Z t [u]+
er2f(~L)·
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ g/dτ
Lt2Lωp(Cu)
(9.141) .
erf(~L)·
∂
∂
∂~Ψ,tr
ge/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ L2tLωp(Cu)
. er
tr
ge/χ˜(Small),χ,ˆ er−1 L∞tLωp(Cu)
∂∂∂~Ψ
Lt2L∞ω(Cu)+λ1/2−4ε0 er1/2∂∂∂~Ψ
L∞tLpω(Cu)
∂∂∂~Ψ
L2tL∞ω(Cu)
.λ−1/2−4ε0.
Combining (9.134)-(9.141) and we conclude the desired estimate.
Proof of er1/2χˆ
L∞tLpω(Cu).λ−1/2in (9.7b). Dividing the equation (9.134) byer3/2(t,u)and taking the norm, we have:
er1/2χˆ
L∞
tLωp(Cu)≤ er−3/2
lim
τ↓[u]+er2χˆ
Lt∞Lωp(Cu)
(9.142) +
λ−1er−3/2 Z t
[u]+
er2(C~,D) g/dτ
L∞tLpω(Cu)
+ er−3/2
Z t [u]+
er2(∇/ ,/DL)ξ g/dτ
Lt∞Lωp(Cu)
+ er−3/2
Z t [u]+
er2f(~L)·
∂
∂
∂~Ψ,tr
ge/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ g/dτ
L∞tLωp(Cu)
.
We control the initial condition as in the previous proof. In particular, using (9.136) foru<0, we have:
er−3/2
lim
τ↓[u]+er2χˆ
L∞tLωp(Cu)
.λ−1/2. (9.143)
By (9.89e),
λ−1er−3/2 Z t
[u]+
er2(C~,D) g/dτ
L∞tLωp(Cu)
.λ−1/2−12ε0. (9.144)
By Minkowski’s integral inequality and H¨older’s inequality, also using (9.82f), we have:
er−3/2
Z t [u]+
er2(∇/ ,/DL)ξ g/dτ
L∞tLωp(Cu)
≤sup
t
er−1/2(t,u) Z t
[u]+
|er(∇/ ,/DL)ξ|g/dτ Lωp(St,u)
(9.145) .sup
t
(t−[u]+)1/2
er1/2(t,u) ker(∇/ ,/DL)ξkL2 tLωp(Cu)
.λ−1/2.
By the same argument as above and also using (9.141), we have
er−3/2
Z t [u]+
er2f(~L)·
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ g/dτ
L∞tLpω(Cu)
(9.146) .sup
t
(t−[u]+)1/2 er1/2(t,u)
er
∂∂∂~Ψ,tr
ge
/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ L2tLpω(Cu)
.λ−1/2−4ε0.
Combining (9.142)-(9.146) and we conclude the desired estimate.
Proof ofkerD/Lχkˆ L2
tLωp(Cu).λ−1/2in (9.7a). Consider equation (8.139b):
erD/Lχˆ= ertr
ge/χ˜(Small)+1 ˆ
χ+er(∇/ ,/DL)ξ+λ−1erf(~L)·(C~,D) (9.147) +erf(~L)·
∂
∂
∂~Ψ,tr
ge/χ˜(Small),χ,ˆ er−1 ·∂∂∂~Ψ.
By (9.4) and (9.7b), we have:
ertr
ge
/χ˜(Small)·χˆ
Lt2Lωp(Cu).λ1/2−4ε0 tr
eg /χ˜(Small)
L2tL∞ω(Cu)
er1/2χˆ
L∞tLωp(Cu).λ−1/2−2ε0. (9.148) By (9.82e), (9.82f) and (9.141), we have:
ker(∇/ ,/DL)ξkL2
tLωp(Cu),
λ−1erf(~L)·(C~,D)
L2tLωp(Cu), (9.149)
erf(~L)·
∂
∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ
Lt2Lωp(Cu).λ−1/2.
Proof ofkζkL2
tLpω(Cu).λ−1/2in (9.7a). Considering equation (8.140) and using (9.76), we have:
|erζ|g/≤ lim
τ↓[u]+
|erζ|g/(τ,u,ω) (9.150)
+ Z t
[u]+
λ−1 er(C~,D)
g/+|er(∇/ ,/DL)ξ|g/ +
erf(~L)·
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ g/+
erf(~L)·ζ·χˆ g/dτ.
Dividing (9.150) byer(t,u)and taking theLt2Lωp norm, we have:
kζkL2
tLωp(Cu)≤ er−1
lim
τ↓[u]+erζ
L2tLωp(Cu)
(9.151) +
λ−1er−1 Z t
[u]+
er(C~,D)
g/dτ
L2tLωp(Cu)
+ er−1
Z t [u]+
|er(∇/ ,/DL)ξ|g/dτ L2tLωp(Cu)
+ er−1
Z t [u]+
erf(~L)·
∂
∂
∂~Ψ,tr
ge/χ˜(Small),ζ,er−1
·∂∂∂~Ψ g/dτ
L2tLpω(Cu)
+ er−1
Z t [u]+
|erζ·χ|ˆ g/dτ Lt2Lωp(Cu)
.
We now consider the initial condition. Whenu≥0, by the initial condition on the cone-tip (8.64a),er−1
lim
τ↓[u]+erζ
= 0. Whenu<0, we use (8.17), (8.63b), and bootstrap assumption for∂∂∂~Ψto deduce:
er−1
lim
τ↓[u]+erζ
L2tLpω(Cu)
.
er−1w∇/lna
L2tLpω(Cu)+
er−1w∂∂∂~Ψ
L2tLωp(Cu) (9.152) .λ−1/2
Z T∗;(λ) 0
w
(τ+w)2dτ+λ−1/2−4ε0 .λ−1/2.
By (9.89a),
λ−1er−1 Z t
[u]+
er(C~,D) g/dτ
L2tLpω(Cu)
.λ−1/2−12ε0. (9.153)
Using the same method as in (9.139) and (9.141), we have :
er−1
Z t [u]+
|er(∇/ ,/DL)ξ|g/dτ L2tLωp(Cu)
.λ−1/2, (9.154)
er−1
Z t [u]+
erf(~L)·
∂∂
∂~Ψ,tr
ge/χ˜(Small),ζ,er−1
·∂∂∂~Ψ g/dτ
L2tLωp(Cu)
.λ−1/2−4ε0. (9.155)
Using the estimate for Hardy-Littlewood maximal function (9.28), bootstrap assumption (9.6), and the esti-
mate previously proven forer1/2χˆin (9.7b), we have:
er−1
Z t [u]+
|erζ·χ|ˆ g/dτ L2tLωp(Cu)
.kerζ·χkˆ L2
tLωp(Cu) (9.156)
.λ1/2−4ε0 er1/2χˆ
Lt∞Lωp(Cu)kζkL2
tL∞ω(Cu).λ−1/2−4ε0.
Combining (9.150)-(9.156), we conclude the desired estimate.
Proof of er1/2ζ
L∞t Lpω(Cu).λ−1/2in (9.7b). Dividing the equation (9.150) byer1/2(t,u)and taking theL∞t Lωp
norm, we have:
er1/2ζ
L∞tLωp(Cu)≤ er−1/2
lim
τ↓[u]+erζ
L∞t Lpω(Cu)
(9.157) +
λ−1er−1/2 Z t
[u]+
er(C~,D) g/dτ
L∞tLωp(Cu)
+ er−1/2
Z t [u]+
|er(∇/ ,/DL)ξ|g/dτ
Lt∞Lωp(Cu)
+ er−1/2
Z t [u]+
erf(~L)·
∂∂∂~Ψ,tr
ge
/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ g/dτ
Lt∞Lωp(Cu)
+ er−1/2
Z t [u]+
|erζ·χ|ˆ g/dτ L∞tLωp(Cu)
.
Let’s consider the initial condition. Whenu≥0, by the initial condition on the cone-tip (8.64a),er−1/2
τ↓[u]lim+erζ
= 0. Whenu<0, we use (8.17), (8.63b), and the estimate (9.82a) to deduce:
er−1/2
lim
τ↓[u]+erζ
Lt∞Lωp(Cu)
.
w1/2/∇lna L∞
t Lωp(Cu)+ er1/2∂∂∂~Ψ
L2
tLωp(Cu).λ−1/2. (9.158) By (9.89d), we have:
λ−1er−1/2 Z t
[u]+
er(C~,D)
g/dτ
L∞tLωp(Cu)
.λ−1/2−12ε0. (9.159)
Using the same method as in (9.145) and (9.146), we have :
er−1/2
Z t [u]+
|er(∇/ ,/DL)ξ|g/dτ
Lt∞Lωp(Cu)
.λ−1/2, (9.160)
er−1/2
Z t [u]+
erf(~L)·
∂∂∂~Ψ,tr
eg
/χ˜(Small),ζ,er−1
·∂∂∂~Ψ g/dτ
Lt∞Lωp(Cu)
.λ−1/2−4ε0. (9.161)
With the help of (9.156), we have:
er−1/2
Z t [u]+
|erζ·χ|ˆ g/dτ
L∞tLωp(Cu)
.sup
t er−1/2 Z t
[u]+
kerζ·χkˆ Lp
ω(Sτ,u)dτ (9.162) .sup
t
(t−[u]+)1/2
(t−u)1/2 kerζ·χkˆ L2 tLpω(Cu)
.λ−1/2−4ε0.
Combining (9.157)-(9.162) and we conclude the desired estimate.
Proof ofkerD/LζkL2
tLωp(Cu).λ−1/2in (9.7a). Consider equation (8.140):
erD/Lζ=ζ+er(∇/ ,/DL)ξ+λ−1erf(~L)·(C~,D) +erf(~L)·
∂
∂
∂~Ψ,tr
ge/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ (9.163) +erf(~L)·ζ·
tr
ge/χ˜(Small),χ,∂ˆ ∂∂~Ψ
.
By (6.13), (9.4) and (9.7b), we have:
er
tr
eg
/χ˜(Small),χ,ˆ ∂∂∂~Ψ ·ζ
Lt2Lωp(Cu).λ1/2−4ε0 tr
eg
/χ˜(Small),χ,ˆ ∂∂∂~Ψ L2tL∞ω(Cu)
er1/2ζ
Lt∞Lωp(Cu) (9.164) .λ−1/2−2ε0.
By (9.82e), (9.82f) and (9.141), we have:
ker(∇/ ,/DL)ξkL2
tLωp(Cu),
λ−1erf(~L)·(C~,D)
L2tLωp(Cu), (9.165)
erf(~L)·
∂
∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ
Lt2Lωp(Cu).λ−1/2.
Combining (9.163)-(9.165) with (9.7a) forkζkL2
tLωp(Cu), we conclude the desired estimates.
Proof of
er1/2(χ,ζ)ˆ
L2ωpL∞t(Cu).λ−1/2whenCu⊂M(Int)in (9.14). By the Sobolev inequality (9.32), the previously proven estimate (9.7a), and the bootstrap assumptions (9.6), we have:
er12(ˆχ,ζ)
2
L2pωLt∞(Cu).
kerD/L(ˆχ,ζ)kLp
ωL2t(Cu)+k(χ,ˆ ζ)kLp
ωL2t(Cu)
k(χ,ˆ ζ)kL∞
ωL2t(Cu).λ−1. (9.166) In deriving (9.166), we also used Minkowski’s inequality for integrals to switch the order ofLt,Lω norms.
Proof ofertr
eg
/χ˜≈1in (9.8a). It is sufficient to show ertr
eg /χ˜(Small)
g/.λ−4ε0. We plug (8.138a) into (9.77),
whereG=tr
ge/χ˜(Small)+f(~L)·∂∂∂~Ψ. Then dividing the estimate (9.79) byer(t,u), we have:
ertr
ge/χ˜(Small)
g/.er−1 lim
τ↓[u]+
er2tr
ge/χ˜(Small)
g/ (9.167)
+er−1 Z t
[u]+
er2λ−1f(~L)·(C~,D) +er2f(~L)· ˆ
χ,er−1,∂∂∂~Ψ
·∂∂∂~Ψ+er2|χ|ˆ 2g/ g/dτ.
We now consider the initial conditions. When u ≥0, by the initial condition on the cone-tip (8.64a), er−1 lim
τ↓[u]+
er2tr
eg /χ˜(Small)
g/≤ lim
τ↓[u]+
ertr
ge /χ˜(Small)
g/=0. Whenu<0, by (8.61) and (8.63a), we have:
er−1 lim
τ↓[u]+
er2tr
eg /χ˜(Small)
g/=1
er
2w(1−a)
a ≤2(1−a)
a .λ−4ε0. (9.168)
By (9.89f), we have:
er−1 Z t
[u]+
er2λ−1f(~L)·(C~,D)dτ.λ−16ε0. (9.169) By bootstrap assumptions (6.13) and (9.4), we have:
er−1 Z t
[u]+
er2f(~L)·(χ,∂ˆ ∂∂~Ψ)·(χ,∂ˆ ∂∂~Ψ)
g/dτ.λ1−8ε0 χ,∂ˆ ∂∂~Ψ
L2tL∞ω(Cu)
χ,∂ˆ ∂∂~Ψ
L2tL∞ω(Cu).λ−4ε0. (9.170)
er−1 Z t
[u]+
erf(~L)·∂∂∂~Ψ g/dτ.
∂∂∂~Ψ
L2
tL∞ω(Cu)λ1/2−4ε0 .λ−8ε0. (9.171) Combining (9.167)-(9.171) and we conclude the desired estimate.
ertr
ge
/χ˜(Small)
Lt∞Lωp(Cu).λ−4ε0 follows from the proof ofertr
ge/χ˜≈1.
Proof of er1/2tr
ge/χ˜(Small)
L∞(M).λ−1/2in (9.8b). Dividing (9.167) byer1/2, we have
er1/2tr
ge/χ˜(Small)
g/.er−3/2 lim
τ↓[u]+
er2tr
eg /χ˜(Small)
g/ (9.172)
+er−3/2 Z t
[u]+
er2λ−1f(~L)·(C~,D) +er2f(~L)· ˆ
χ,er−1,∂∂∂~Ψ
·∂∂∂~Ψ+er2|χ|ˆ 2g/ g/dτ.
We consider the initial conditions. Whenu≥0, by the initial condition on the cone-tip (8.64a), we have:
er−3/2 lim
τ↓[u]+
er2tr
ge/χ˜(Small)
g/≤er−1/2 lim
τ↓[u]+
ertr
eg /χ˜(Small)
g/. lim
τ↓[u]+er1/2=0. (9.173)
Whenu<0, by (8.61) and (8.63b), we have:
er−3/2 lim
τ↓[u]+
er2tr
ge/χ˜(Small) g/= 1
er3/2
2w(1−a)
a ≤w−1/2(1−a).λ−1/2. (9.174) By (9.89g), we have:
λ−1 er−32
Z t [u]+
er2(C~,D) g/dτ
L∞(M).λ−1/2−12ε0. (9.175) By bootstrap assumptions (6.13) and (9.4), we have:
er−3/2 Z t
[u]+
er2f(~L)·(ˆχ,∂∂∂~Ψ)·(χ,∂ˆ ∂∂~Ψ)
g/dτ.λ1/2−4ε0 χ,∂ˆ ∂∂~Ψ
L2tL∞ω(Cu)
χ,∂ˆ ∂∂~Ψ
Lt2L∞ω(Cu) (9.176) .λ−1/2−4ε0.
er−3/2 Z t
[u]+
erf(~L)·∂∂∂~Ψ
g/dτ.er−1/2 Z t
[u]+
f(~L)·∂∂∂~Ψ
L∞x(Σt)dτ.(t−[u]+)1/2 (t−u)1/2
∂∂∂~Ψ
Lt2L∞x(M) (9.177) .λ−1/2−4ε0.
Combining (9.172)-(9.177) and we conclude the desired estimate.
er1/2tr
ge/χ˜(Small)
L∞tLωp(Cu) .λ−1/2 and er1/2tr
ge/χ˜(Small)
L2pωLt∞(Cu).λ−1/2 follows from the previously proven estimate
er1/2tr
ge/χ˜(Small)
L∞(M).λ−1/2. Proof of
treg/χ˜(Small)
L2tC0,δω0(Cu).λ−1/2in (9.8e). Using equation (8.138a) and dividingL(er2tr
ge
/χ˜(Small))by er2(t,u), we have:
tr
eg /χ˜(Small)
g/≤er−2 lim
τ↓[u]+
er2tr
ge /χ˜(Small)
g/+er−2
Z t [u]+
er2λ−1f(~L)·(C~,D)dτ
g/ (9.178)
+er−2 Z t
[u]+
er2f(~L)·
tr
ge/χ˜(Small),χ,ˆ er−1,∂∂∂~Ψ ·∂∂∂~Ψ
+er2|χ|ˆ 2g/+er2tr
ge/χ˜(Small)·tr
ge /χ˜(Small)
g/dτ.
Using (9.108), we have:
tr
eg
/χ˜(Small) C0,δ0
ω (St,u). er−2 lim
τ↓[u]+
er2tr
ge/χ˜(Small) Cω0,δ0(Cu)
+λ−1
C~,D L1
tCω0,δ0(Cu) (9.179) +
tr
ge/χ˜(Small),∂∂∂~Ψ,χˆ
2
L2tC0,δω0(Cu)+M ∂∂∂~Ψ
C0,δ0
ω (St,u)
.
We now consider the initial condition. Whenu≥0, by (8.64a), lim
τ↓[u]+ er2tr
eg /χ˜(Small)
=0, we have:
er2tr
ge/χ˜(Small)≤ Z t
[u]+
er2λ−1f(~L)·(C~,D)
g/dτ (9.180)
+ Z t
[u]+
er2f(~L)· tr
eg
/χ˜(Small),χ,ˆ er−1,∂∂∂~Ψ ·∂∂∂~Ψ
+er2|χ|ˆ 2g/+er2tr
ge/χ˜(Small)·tr
ge /χ˜(Small)
g/dτ.
Whenu<0, by (8.61), we have:
er−2 lim
τ↓[u]+
er2tr
ge/χ˜(Small)
2
L2tC0,δω0(Cu)
. Z T∗;(λ)
0
w3/2 er2 λ−1/2
!2
dτ≤λ−1. (9.181)
Using the estimate for Hardy-Littlewood maximal function (9.28) and estimate (9.104), we have:
M
∂∂∂~Ψ
Cω0,δ0(St,u)
L2t
. ∂∂∂~Ψ
L2tCω0,δ0(Cu).λ−1/2−3ε0. (9.182) By bootstrap assumptions (6.13), (9.4), and estimate (9.104), we have:
λ−1
C~,D L1
tCω0,δ0(Cu).λ−1−7ε0, (9.183)
tr
eg
/χ˜(Small),∂∂∂~Ψ,χˆ
2
Lt2Cω0,δ0(Cu).λ−1+4ε0. (9.184) Taking theL2t norm of (9.179), combining (9.180)-(9.184), we conclude the desired result.
tr
eg
/χ˜(Small)
L2tLωp(Cu).λ−1/2follows directly from tr
ge/χ˜(Small)
L2tC0,δω0(Cu).λ−1/2. Proof of
erD/Ltr
ge/χ˜(Small)
L2tLpω(Cu).λ−1/2in (9.7a). Using equation (8.138a), we have:
erD/Ltr
eg
/χ˜(Small)=tr
ge
/χ˜(Small)+erλ−1f(~L)·(C~,D) +erf(~L)·
∂
∂
∂~Ψ,tr
ge/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ (9.185) +er|χ|ˆ2g/+ertr
ge
/χ˜(Small)·tr
eg /χ˜(Small). By (9.93a), we have:
λ−1 er(C~,D)
L2tLpω(Cu).−1/2−8ε0. (9.186)
Using the same method as in (9.141), we have:
erf(~L)·
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ
L2tLωp(Cu).λ−1/2−4ε0. (9.187) By bootstrap assumtions (9.4) and the previously proven results (9.7b), we have:
er
trge/χ˜(Small),χ,ˆ ζ
·
treg/χ˜(Small),χ,ˆ ζ
L2tLpω(Cu) (9.188)
.λ1/2−4ε0 tr
eg
/χ˜(Small),χ,ˆ ζ
L2tC0,δω0(Cu)
er1/2
ˆ χ,tr
ge/χ˜(Small),ζ L∞tLωp(Cu)
.λ−1/2−2ε0.
Combining (9.185)-(9.188) and we conclude the desired estimate.
Remark 9.14. From (9.7a), (9.141), (9.161), (9.188) and (9.164), it follows:
erf(~L)·
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ζ,ˆ er−1
·
∂∂∂~Ψ,tr
ge
/χ˜(Small),χ,ˆ ζ
L2tLωp(Cu).λ−1/2. (9.189) Proof of
er /∇tr
eg
/χ˜(Small),/∇χˆ
L2tLpω(Cu).λ−1/2in (9.8d). First, we bound er∇/tr
ge/χ˜(Small)
L2tLωp(Cu). Plugging equation (8.138b) into (9.77), whereG=f(~L)·
∂
∂
∂~Ψ,tr
eg
/χ˜(Small),χˆ
, then dividing byer2(t,u), we have:
er∇/tr
ge/χ˜(Small)
g/.er−2 lim
τ↓[u]+
er3/∇tr
eg /χ˜(Small)
g/+λ−1er−2 Z t
[u]+
er3f(~L)·/∇(C~,D)
g/dτ (9.190)
+λ−1er−2 Z t
[u]+
er3f(~L)·(C~,D)·
∂
∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ er−1 g/dτ +er−2
Z t [u]+
er3f(~L)·/∂∇∂∂~Ψ·
∂∂
∂~Ψ,tr
ge/χ˜(Small),er−1
+er3f(~L)·/∇χˆ·χˆ g/dτ +er−2
Z t [u]+
er3f(~L)·
∂
∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ er−1
·
∂
∂
∂~Ψ,tr
ge/χ˜(Small),er−1
·∂∂∂~Ψ g/dτ.
Let’s consider the initial conditions. Whenu≥0, we use the estimate for Hardy-Littlewood maximal function (9.28) and (8.64a) to deduce
er−2 lim
τ↓[u]+(er3/∇tr
eg /χ˜(Small))
L2tLωp(Cu)
=0. Whenu<0, we use the initial condition (8.63g) to deduce:
er−2 lim
τ↓[u]+
(er3/∇tr
ge /χ˜(Small))
L2tLpω(Cu)
.λ−1/2 er−2w3/2
Lt2Lωp(Cu).λ−1/2. (9.191)
By (9.90b), we have:
λ−1 er−2
Z t [u]+
er3f(~L)·/∇(C~,D) g/dτ
Lt2Lωp(Cu)
.λ−1/2−8ε0. (9.192)
By (9.91b), we have:
λ−1 er−2
Z t [u]+
er3f(~L)·(C~,D)·
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ er−1
g/dτ
L2tLpω(Cu)
.λ−1/2−12ε0. (9.193)
By the estimate for Hardy-Littlewood maximal function (9.28), bootstrap assumptions (6.13), (9.4), and estimate (9.82f), we have:
er−2
Z t [u]+
er3f(~L)·/∇∂∂∂~Ψ·
∂∂∂~Ψ,tr
eg
/χ˜(Small),er−1 dτ
L2tLωp(Cu)
(9.194) .
Z t [u]+
er∇/∂∂∂~Ψ
Lωp(Sτ,u)
∂∂∂~Ψ,tr
ge
/χ˜(Small)
L∞ω(Sτ,u)dτ L2t
+ er−1
Z t [u]+
er∇/∂∂∂~Ψ
Lωp(Sτ,u)dτ L2t
.λ1/2−4ε0 er∇/∂∂∂~Ψ
Lt2Lωp(Cu)
∂∂∂~Ψ,tr
eg
/χ˜(Small)
Lt2L∞ω(Cu)+ er∇/∂∂∂~Ψ
Lt2Lωp(Cu)
.λ−1/2.
By the estimate for Hardy-Littlewood maximal function (9.28), bootstrap assumptions (6.13) , (9.4), (9.5a), and estimate (9.82e), we have:
er−2
Z t
[u]+er3f(~L)·
∂∂∂~Ψ,tr
ge
/χ˜(Small),χ,ˆ er−1
·
∂∂∂~Ψ,tr
eg
/χ˜(Small),er−1
·∂∂∂~Ψdτ Lt2Lωp(Cu)
(9.195) .
Z t [u]+
er
tr
ge/χ˜(Small),χ,ˆ er−1 Lωp(Sτ,u),
er∂∂∂~Ψ
Lωp(Sτ,u)
∂∂∂~Ψ,tr
eg /χ˜(Small)
L∞ω(Sτ,u)
∂∂∂~Ψ
L∞ω(Sτ,u)dτ L2
t
+ er−1
Z t [u]+
∂∂∂~Ψ
L∞
ω(Sτ,u)dτ Lt2
.λ1/2−4ε0 ∂∂∂~Ψ,tr
eg
/χ˜(Small) L2tL∞ω(Cu)
∂∂∂~Ψ
L2tL∞ω(Cu)+ ∂∂∂~Ψ
L2tL∞ω(Cu)
.λ−1/2−4ε0.
By bootstrap assumption (9.4), we have:
er−2
Z t [u]+
er3f(~L)·/∇χˆ·χdτˆ L2Lpω(Cu)
. ker∇/χkˆ L2
tLpω(Cu)kχkˆ L2 tL∞ω(Cu)
Lt2 (9.196)
Combining (9.190)-(9.196) and we have:
er∇/tr
eg /χ˜(Small)
L2tLpω(Cu).λ−1/2+λ−2ε0ker∇/χkˆ L2
tLpω(Cu). (9.197) Now we considerker∇/χkˆ L2
tLωp(Cu). Plugging equation (8.139a) into the Hodge estimate (9.111), we have:
ker∇/χkˆ L2
tLpω(Cu). er∇/tr
eg
/χ˜(Small)
L2tLωp(Cu) (9.198)
+ er∇/∂∂∂~Ψ
L2tLωp(Cu)+ erf(~L)·
∂
∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ
L2tLωp(Cu).
By (9.82f) and (9.189), we have:
ker∇/χkˆ L2
tLpω(Cu).λ−1/2+ er∇/tr
ge/χ˜(Small) L2
tLωp(Cu). (9.199) Combining (9.197) and (9.199), we have the desired estimates
er /∇tr
eg
/χ˜(Small),/∇χˆ
L2tLωp(Cu).λ−1/2. Proof of
er3/2/∇tr
eg /χ˜(Small)
Lt∞L∞uLωp(M).λ−1/2in (9.8c). Plugging equation (8.138b) into (9.77), whereG= f(~L)·
∂
∂∂~Ψ,tr
eg
/χ˜(Small),χˆ
, then dividing byer3/2(t,u), we have:
er∇/tr
ge/χ˜(Small)
g/ (9.200)
.er−3/2 lim
τ↓[u]+
er3/∇tr
eg /χ˜(Small)
g/+λ−1er−3/2 Z t
[u]+
er3f(~L)·/∇(C~,D) g/dτ +λ−1er−3/2
Z t [u]+
er3f(~L)·(C~,D)·
∂∂∂~Ψ,tr
ge
/χ˜(Small),χ,ˆ er−1 g/dτ +er−3/2
Z t [u]+
er3f(~L)·/∇∂∂∂~Ψ·
∂∂∂~Ψ,tr
eg
/χ˜(Small),er−1
+er3f(~L)·/∇χ·ˆ χˆ g/dτ +er−3/2
Z t [u]+
er3f(~L)·
∂∂∂~Ψ,tr
ge
/χ˜(Small),χ,ˆ er−1 ·
∂
∂∂~Ψ,tr
eg
/χ˜(Small),er−1 ·∂∂∂~Ψ
g/dτ.
We now consider the initial conditions. Whenu≥0, we use (8.64a) to deduceer−3/2 lim
τ↓[u]+ er3/∇tr
eg /χ˜(Small)
=0.
Whenu<0, we use the initial condition (8.63g) to deduce
er−3/2 lim
τ↓[u]+
er3/∇tr
eg /χ˜(Small)
g/
L∞uLωp(Σ0)
.λ−1/2. By (9.90a), we have:
λ−1er−3/2 Z t
[u]+
er3f(~L)·/∇(C~,D) g/dτ
L∞tL∞uLpω(M)
.λ−1/2−8ε0. (9.201)
By (9.91a), we have:
λ−1er−3/2 Z t
[u]+
er3f(~L)·(C~,D)·
∂∂
∂~Ψ,tr
ge/χ˜(Small),χ,ˆ er−1 g/dτ
Lt∞L∞uLωp(M)
.λ−1/2−12ε0. (9.202)
By bootstrap assumptions (6.13) and (9.4), estimate (9.82f), we have:
er−3/2
Z t [u]+
er3f(~L)·/∇∂∂∂~Ψ·
∂
∂∂~Ψ,tr
eg
/χ˜(Small),er−1
g/dτ
Lpω(St,u)
(9.203) .λ1/2−4ε0
er∇/∂∂∂~Ψ
L2tLωp(St,u)
∂∂∂~Ψ,tr
eg /χ˜(Small)
L2tL∞ω(St,u)+(t−[u]+)1/2 (t−u)1/2
er∇/∂∂∂~Ψ
Lt2Lωp(Cu)
.λ−1/2.
By bootstrap assumptions (6.13), (9.4) and (9.82a), we have:
er−3/2
Z t [u]+
er3f(~L)·
∂∂
∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ er−1
·
∂∂∂~Ψ,tr
ge
/χ˜(Small),er−1
·∂∂∂~Ψ g/dτ
Lωp(St,u)
(9.204) .λ1/2−4ε0
Z t [u]+
er
tr
ge
/χ˜(Small),χ,ˆ er−1 Lp
ω(Sτ,u)
∂∂∂~Ψ,tr
eg
/χ˜(Small) L∞
ω(Sτ,u)
∂∂∂~Ψ
L∞
ω(Sτ,u)dτ +λ1−8ε0
Z t [u]+
er1/2∂∂∂~Ψ
Lωp(Sτ,u)
∂∂∂~Ψ,tr
ge /χ˜(Small)
L∞ω(Sτ,u)
∂∂∂~Ψ
L∞ω(Sτ,u)dτ +er−1/2
Z t [u]+
∂∂∂~Ψ
L∞ω(Sτ,u)dτ .λ1/2−4ε0
∂∂∂~Ψ,tr
ge
/χ˜(Small) L2
tL∞ω(Cu)
∂∂∂~Ψ
L2
tL∞ω(Cu)+(t−[u]+)1/2 (t−u)1/2
∂∂∂~Ψ
L2
tL∞ω(Cu)
.λ−1/2−4ε0.
By bootstrap assumptions (6.13) and the previously proven result (9.8d), we have:
er−3/2
Z t [u]+
er3f(~L)·/∇χˆ·χˆ g/dτ
Lpω(Sτ,u)
.λ1/2−4ε0ker∇/χkˆ L2
tLpω(Cu)kχkˆ L2
tL∞ω(Cu).λ−1/2−2ε0. (9.205)
Proof of tr
eg
/χ˜(Small),trg/χ−2
er,χˆ
L2tL∞uCω0,δ0(M(Int)).λ−1/2−3ε0 in (9.15). We first bound tr
eg
/χ˜(Small). Using equa-
tion (8.138a) and initial condition (8.64a), and dividingL(er2tr
ge/χ˜(Small))byer2(t,u), we have
tr
eg /χ˜(Small)
g/.er−2
Z t [u]+
er2λ−1f(~L)·(C~,D)
g/dτ (9.206)
+er−2 Z t
[u]+
er2f(~L)·
tr
ge
/χ˜(Small),χ,ˆ er−1,∂∂∂~Ψ ·∂∂∂~Ψ
+er2|χ|ˆ 2g/+er2tr
eg
/χ˜(Small)·tr
ge/χ˜(Small) g/dτ.
Using (9.108), we have:
tr
eg
/χ˜(Small) L∞
uC0,δω0(Σt(Int)).λ−1
C~,D L1
tL∞uC0,δω0(M(Int)) (9.207)
+ tr
ge/χ˜(Small),∂∂∂~Ψ,χˆ
2
L2tL∞uCω0,δ0(M(Int))+M ∂∂∂~Ψ
L∞uC0,δω0(Σ(Int)t )
.
Using the estimate for Hardy-Littlewood maximal function (9.28) and estimate (9.104), we have:
M
∂∂∂~Ψ
L∞uCω0,δ0(Σ(Int)t )
L2
t
. ∂∂∂~Ψ
L2tL∞uCω0,δ0(Cu).λ−1/2−3ε0. (9.208) By bootstrap assumption (6.13), (9.6) and (9.104), we have:
λ−1
C~,D L1
tL∞uCω0,δ0(Cu).λ−1−7ε0, (9.209)
tr
ge
/χ˜(Small),∂∂∂~Ψ,χˆ
2
L2tL∞uCω0,δ0(Cu).λ−1. (9.210) Taking theL2t norm of (9.206), combining (9.206)-(9.210), we conclude the desired result for tr
ge /χ˜(Small). Now, since trg/χ−2
er =tr
eg
/χ˜(Small)−ΓΓΓL, we have:
trg/χ−2 er
L2tL∞uCω0,δ0(M(Int))
= tr
ge/χ˜(Small)
L2tL∞uC0,δω0(M(Int))+
f(~L)·∂∂∂~Ψ
L2tL∞uCω0,δ0(M(Int)). (9.211) By the previously proven result (9.10) and estimate (9.104), we have:
f(~L)·∂∂∂~Ψ
L2tL∞uCω0,δ0(M(Int)). f(~L)
L∞t L∞uCω0,δ0(M(Int))
∂∂∂~Ψ
Lt2L∞uC0,δω0(M(Int)).λ−1/2−3ε0. (9.212) Combining (9.211)-(9.212) with the result for tr
ge/χ˜(Small), we conclude the proof for trg/χ−2
er. We now prove kχkˆ
L2tL∞uCω0,δ0(M(Int)).λ−1/2−3ε0. Plugging equation (8.139a) into the Hodge estimate
(9.114) withQ:=1−δ2
0, where we recallδ0<1−2p,Q<p, we have:
kχkˆ
L2tL∞uC0,δω0(M(Int)). tr
ge /χ˜(Small)
Lt2L∞uC0,δω0(M(Int)) (9.213)
+ ∂∂∂~Ψ
Lt2L∞uC0,δω0(M(Int))
+ erf(~L)·
∂∂∂~Ψ,tr
ge
/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ
L2tL∞uLωp(M(Int)).
By bootstrap assumptions (6.13), (9.5a) and (9.82a), we have:
erf(~L)·
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ
L2tL∞uLpω(M(Int)) (9.214)
.
λ1/2−4ε0 er1/2∂∂∂~Ψ
Lωp(St,u), er
trge/χ˜(Small),χ,ˆ er−1
Lωp(St,u)
∂∂∂~Ψ
L∞ω(St,u)
Lt2L∞u
. ∂∂∂~Ψ
L2tL∞uL∞ω(M).λ−1/2−4ε0.
Combining (9.213)-(9.214) with previously proven result for tr
eg
/χ˜(Small) and estimate (9.104), we conclude the desired estimate.
Proof of
treg/χ˜(Small),χ,ˆ trg/χ−2
er
L
q
t2L∞uCω0,δ0(M).λ
2 q−1−4ε0
4 q−1
in (9.11). We first bound tr
ge/χ˜(Small). Using equation (8.138a) and dividing byer2(t,u), we have:
tr
ge /χ˜(Small)
g/.er−2 lim
τ↓[u]+
er2tr
ge/χ˜(Small) g/+er−2
Z t [u]+
er2λ−1f(~L)·(C~,D)
g/dτ (9.215) +er−2
Z t [u]+
er2f(~L)· tr
eg
/χ˜(Small),χ,ˆ er−1,∂∂∂~Ψ ·∂∂∂~Ψ
+er2|χ|ˆ 2g/+er2tr
ge
/χ˜(Small)·tr
eg /χ˜(Small)
g/dτ.
Using (9.108), by bootstrap assumptions (6.13), (9.4) and (9.104), we have:
tr
ge/χ˜(Small) L∞
uC0,δω0(Σt). er−2 lim
τ↓[u]+
er2tr
ge/χ˜(Small)
L∞uC0,δω0(Σt)
+λ−1
C~,D L1
tL∞uC0,δω0(M) (9.216) +
tr
ge/χ˜(Small),∂∂∂~Ψ,χˆ
2
L2tL∞uCω0,δ0(M)+M ∂∂∂~Ψ
L∞
uC0,δω0(Σt)
.
We now consider the initial condition. Whenu≥0, by (8.64a), lim
τ↓[u]+ er2tr
eg /χ˜(Small)
=0, we have:
er2tr
ge/χ˜(Small) g/.
Z t [u]+
er2λ−1f(~L)·(C~,D)
g/dτ (9.217)
+ Z t
[u]+
er2 f(~L)·
tr
eg
/χ˜(Small),χ,ˆ er−1,∂∂∂~Ψ ·∂∂∂~Ψ
+er2|χ|ˆ2g/+er2tr
ge/χ˜(Small)·tr
eg /χ˜(Small)
g/dτ.
Whenu<0, by (8.61), we have:
er−2 lim
τ↓[u]+
er2tr
ge/χ˜(Small) L
q
t2L∞uCω0,δ0(M). Z T
∗;(λ)
0
er−1/2λ−1/2 q2
dτ 2q
(9.218) .
λ(1−8ε0)(1−
q 4)
λ−
q 4
2q
=λ
2 q−1−4ε0
4 q−1
.
Using the estimate for Hardy-Littlewood maximal function (9.28), (9.104), and H¨older’s inequality int, we have:
M
∂∂∂~Ψ
L∞
uC0,δω0(Σt)
L
q t2
. ∂∂∂~Ψ
L
q
t2L∞uCω0,δ0(M)
(9.219) .
∂∂∂~Ψ
L2tL∞uC0,δω0(M)λ(1−8ε0)(1−q4)2q .λ
2 q−1−4ε0
4
q−1
−3ε0
.
By bootstrap assumptions (6.13) and (9.4), and (9.104), we have:
λ−1
C~,D
L1tL∞uCω0,δ0(M)
L
q t2
.λ(1−8ε0)
2 q−1−7ε0
=λ
2 q−1−4ε0
4
q−1
−11ε0
, (9.220)
tr
ge/χ˜(Small),∂∂∂~Ψ,χˆ
2
L2tL∞uCω0,δ0(M)
L
q t2
.λ(1−8ε0)
2 q−1+4ε0
=λ
2 q−1−4ε0
4
q−1
. (9.221)
Combining (9.215)-(9.221) and we conclude the desired estimate for tr
eg /χ˜(Small). Now since trg/χ−2
er =tr
eg
/χ˜(Small)−ΓΓΓL, we have:
trg/χ−2 er L
q
t2L∞uC0,δω0(M)
= tr
ge/χ˜(Small) L
q
t2L∞uC0,δω0(M)+
f(~L)·∂∂∂~Ψ L
q
t2L∞uC0,δω0(M). (9.222) By previously proven result (9.10) and previous estimate (9.219), we have:
f(~L)·∂∂∂~Ψ
L
q
t2L∞uC0,δω0(M). f(~L)
L∞tL∞uC0,δω0(M)
∂∂∂~Ψ
L
q
t2L∞uCω0,δ0(M).λ
2 q−1−4ε0
4
q−1
−3ε0
. (9.223)
Combining the above with the result for tr
eg
/χ˜(Small), we conclude the proof for trg/χ−2
er. Now we provekχkˆ
L
q
t2L∞uCω0,δ0(M).λ
2 q−1−4ε0
4 q−1
. Plugging equation (8.139a) into the Hodge estimate (9.114) withQ:=1−δ2
0, and recallingδ0<1−2p,Q<p, we have:
kχkˆ
L
q
t2L∞uC0,δω0(M). tr
eg /χ˜(Small)
L
q
t2L∞uC0,δω0(M)
(9.224) +
∂∂∂~Ψ
L
q
t2L∞uC0,δω0(M)
+ erf(~L)·
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ L
q
t2L∞uLωp(M)
.
Using previous estimate (9.214), we have:
erf(~L)·
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ L
q
t2L∞uLωp(M) (9.225)
.λ(1−8ε0)(1−q4)2q erf(~L)·
∂∂∂~Ψ,tr
ge
/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ
L2tL∞uLωp(M)
.λ(1−8ε0)(1−q4)2q
λ−1/2−4ε0
=λ
2
q−1−4ε0(4q−1)−4ε0
.
Combining (9.224)-(9.225) with previously proven result for tr
ge
/χ˜(Small)and (9.223), we conclude the desired estimates.
Proof ofkχkˆ
L2tCω0,δ0(Cu).λ−1/2in (9.8e). Using the Sobolev inequality (9.33b) withQ:=p, and the previ- ously proven estimates (9.8d) and (9.7a), we have:
kχkˆ
Lt2C0,δω0(Cu).ker∇/χkˆ L2
tLωp(Cu)+kχkˆ L2
tL2ω(Cu).λ−1/2. (9.226)
Proof of (9.16a) and (9.16b). We first prove (9.16a). Integrating equation (8.142) along the integral curves ofL, we find that:
er−2g/
∂
∂ωA, ∂
∂ωB
−/e ∂
∂ωA, ∂
∂ωB
(9.227)
=lim
t↓[u]+
er−2g/
∂
∂ωA, ∂
∂ωB
−/e ∂
∂ωA, ∂
∂ωB
+ Z t
[u]+
treg/χ˜(Small)−ΓΓΓL
er−2g/ ∂
∂ωA, ∂
∂ωB
−e/ ∂
∂ωA, ∂
∂ωB
dτ +
Z t [u]+
treg/χ˜(Small)−ΓΓΓL
e/ ∂
∂ωA, ∂
∂ωB
+ 2 er2χˆ
∂
∂ωA, ∂
∂ωB
dτ.
Using the initial conditions (8.63c) and (8.64c), noticing that ˆχ
∂
∂ωA, ∂
∂ωB
=er2χˆAB, and using Grownwall’s inequality, we have:
er−2g/
∂
∂ωA, ∂
∂ωB
−/e ∂
∂ωA, ∂
∂ωB
g/
(9.228) .
λ−4ε0+ tr
ge/χ˜(Small),∂∂∂~Ψ,χˆ L1tL∞ω(Cu)
exp
tr
eg
/χ˜(Small),∂∂∂~Ψ L1tLω∞(Cu)
.
By bootstrap assumptions (6.13), and the previously proven result (9.11) withq:=4, we have:
er−2g/
∂
∂ωA, ∂
∂ωB
−e/ ∂
∂ωA, ∂
∂ωB
L∞(M).λ−4ε0. (9.229) We now prove (9.16b), we first apply ∂
∂ωC to equation (8.142). Note that tr
eg
/χ˜(Small)−ΓΓΓL=trg/χ−2
er. SinceL and ∂
∂ωC commute, we have:
d dt
∂
∂ωC
er−2g/ ∂
∂ωA, ∂
∂ωB
−e/ ∂
∂ωA, ∂
∂ωB
= ∂
∂ωCtrg/χer−2g/ ∂
∂ωA, ∂
∂ωB
(9.230) +
trg/χ−2
er ∂
∂ωC
er−2g/ ∂
∂ωA, ∂
∂ωB
−/e ∂
∂ωA, ∂
∂ωB
+
trg/χ−2 er
∂
∂ωC/e ∂
∂ωA, ∂
∂ωB
+2er−2 ∂
∂ωCχˆ ∂
∂ωA, ∂
∂ωB
.
Integrating equation along the integral curves ofL, taking theLωp norm, and using the initial condition (8.63d), (8.64d), and then applying Grownwall’s inequality, we have:
∂
∂ωC
er−2g/ ∂
∂ωA, ∂
∂ωB
−e/ ∂
∂ωA, ∂
∂ωB
Lpω(St,u)
(9.231)
. λ−4ε0+ er∇/trg/χ
Lt1Lωp(Cu)+
trg/χ−2 er
∂
∂ωCe/ L1
tLωp(Cu)
+ker∇/χkˆ L1
tLωp(Cu)+kΓΓΓ·χkˆ L1 tLωp(Cu)
·exp
trg/χ−2 er L1tL∞ω(Cu)
! .
By bootstrap assumptions (6.13), and the previously proven results (9.7a), (9.8d) and (9.11) withq:=4, we have:
∂
∂ωC
er−2g/ ∂
∂ωA, ∂
∂ωB
−/e ∂
∂ωA, ∂
∂ωB
Lp
ω(St,u)
.λ−4ε0. (9.232)
Proof of
b−1−1 er
L2
tL∞x(M).λ−1/2in (9.9). We first bound
b−1−1 er
L2
tL∞x(M(Int)). Integrating equation (8.141) along along the integral curves ofLemanating from the cone-tip, and using the initial condition (8.64a), we have:
b−1−1=− Z t
u
b−1−1
f(~L)·∂∂∂~Ψdτ− Z t
u
f(~L)·∂∂∂~Ψdτ. (9.233)
Using Grownwall’s inequality and the bootstrap assumption (6.13), we have:
b−1−1 er
g/
.M ∂∂∂~Ψ
L∞ω(St,u)
. (9.234)
Hence,
b−1−1 er
L2tL∞x(M(Int))
. ∂∂∂~Ψ
Lt2L∞x(M).λ−1/2−4ε0. (9.235) Now we consider the case whenu<0. Integrating equation (8.141) along along the integral curves of L emanating fromΣ0, we have:
b−1−1 er
g/
≤
b−1−a−1 er
g/
+
a−1−1 er
g/
.M
∂∂∂~Ψ
L∞ω(St,u)
+
a−1−1 er
g/
. (9.236)
By initial condition (8.63a), we have:
a−1−1 er
L2tL∞x(M)
.
a−1−1 w1/2
L∞x(M)
Z T∗;(λ) 0
w (τ+w)2dτ
1/2
.λ−1/2. (9.237)
Combining (9.236)-(9.237), we have:
b−1−1 er
L2
tL∞x(M(Ext))
.λ−1/2. (9.238)
Combining (9.235) and (9.238), we conclude the desired estimate.
Proof of
er(D/L,/∇)
b−1−1 er
L2tLωp(Cu).λ−1/2in (9.9). We first prove erD/L
b−1−1 er
L2tLωp(Cu).λ−1/2. By (8.141) and the fact thatL(er) =1, we have:
erD/L
b−1−1 er
=−b−1f(~L)·∂∂∂~Ψ−b−1−1
er . (9.239)
the last proof, we have:
erD/L
b−1−1 er
L2
tLωp(Cu)
. ∂∂∂~Ψ
L2tLωp(Cu)+
b−1−1 er
L2
tLωp(Cu)
.λ−1/2. (9.240)
Now we bounder∇/
b−1−1 er
. Recall (8.17),ζ=/∇lnb+f(~L)·∂∂∂~Ψ. Therefore,
er∇/
b−1−1 er
=−b−1/∇lnb=b−1
−ζ+f(~L)·∂∂∂~Ψ
. (9.241)
By the bootstrap assumption (6.13), and the proven results (9.7a) and (9.17b), we have:
er∇/
b−1−1 er
L2
tLpω(Cu)
.λ−1/2. (9.242)
Proof of
b−1−1 er1/2
L∞
t L∞uL2pω(M).λ−1/2in (9.9). By the Sobolev inequality (9.32), we have:
b−1−1 er1/2
2
L∞tL∞uL2pω(M)
(9.243)
. erD/L
b−1−1 er
L2
tL∞uLωp(M)
+
b−1−1 er
L2
tL∞uLpω(M)
!
b−1−1 er
L2
tL∞uL∞ω(M)
.
Using the proven first and third estimates of (9.9), we conclude the desired result.
Proof of (9.18). We first prove
∇/ln er−2v
L2tLωp(Cu) .λ−1/2. Plugging equation (8.143b) into estimate (9.76), we have:
er∇/ln er−2v g/=lim
t↓τ
er∇/ln er−2v g/+
Z t [u]+
er
1 2
tr
ge
/χ˜(Small)−ΓΓΓL
+f(~L)·χˆ
/∇ln er−2v g/
dτ (9.244) +
Z t [u]+
er∇/
trg/eχ˜(Small)−ΓΓΓL
g/dτ.
Applying the Grownwall’s inequality, and using the proven results (9.11) withq:=4, we have:
er∇/ln er−2v g/.
limt↓τ
er∇/ln er−2v g/+
Z t [u]+
er∇/
tr
ge
/χ˜(Small)−ΓΓΓL
g/dτ
(9.245)
·exp
trg/χ−2 er,χˆ
L1
tL∞ω(Cu)
!
.lim
t↓τ
er∇/ln er−2v g/+
Z t [u]+
er∇/
trg/eχ˜(Small)−ΓΓΓL
g/dτ.
We now consider the initial conditions. When u≥0, by initial condition (8.64c) and (8.64d), we have limt↓τ
er∇/ln er−2v
g/=0. Whenu<0, by (8.63e),
limt↓τer1/2/∇ln er−2v Lp
ω(Sw)
.λ−1/2. Now dividing both sides of (9.245) byer(t,u), then take the norms and use the estimate for Hardy-Littlewood maximal function (9.28) to deduce:
∇/ln er−2v
L2tLpω(Cu).λ−1/2 Z T
∗;(λ)
0
w (τ+w)2dτ
1/2
+ er
/∇tr
eg
/χ˜(Small),/∂∇∂∂~Ψ
L2tLωp(Cu). (9.246) By estimate (9.82f) and proven result (9.8d), we conclude the desired estimate.
Now we bounder1/2/∇ln er−2v
. Dividing both sides of (9.245) byer1/2, taking theLpωnorm, by estimate (9.82f) and proven result (9.8d), we have:
er1/2/∇ln er−2v
Lωp(St,u).λ−1/2+(t−[u]+)1/2 (t−u)1/2
er
/∇tr
eg
/χ˜(Small),/∂∇∂∂~Ψ
L2tLpω(Cu).λ−1/2. (9.247) Now we prove forerL∇/ln er−2v
. Using equation (8.143b), we have:
erL∇/ln er−2v
g/ (9.248)
. er∇/
tr
ge
/χ˜(Small)−ΓΓΓL
+er
tr
ge/χ˜(Small),∂∂∂~Ψ,χˆ
·/∇ln er−2v
+∇/ln er−2v g/.
By the bootstrap assumptions (6.13), the estimate (9.82f), and the proven results (9.11) withq:=4, (9.8d), we have:
erL∇/ln er−2v
Lt2Lωp(Cu). er
/∇tr
eg
/χ˜(Small),/∂∇∂∂~Ψ
L2
tLωp(Cu) (9.249)
+λ1/2−4ε0 tr
ge/χ˜(Small),∂∂∂~Ψ,χˆ L2tL∞ω(Cu)
er1/2/∇ln er−2v
L∞tLωp(Cu)
+
∇/ln er−2v L2tLωp(Cu)
.λ−1/2.
Proof ofker∇/ζkL2
tLωp(Cu),kζk
L2tC0,δω0(Cu).λ−1/2in (9.19) and (9.8e). Plugging equation (8.148a) and (8.148b)
into the Hodge estimate (9.110) withQ:=p, we have:
ker∇/ζkL2
tLωp(Cu).
λ−1erf(~L)·(C~,D)
L2tLωp(Cu)+ er∇/∂∂∂~Ψ
L2tLωp(Cu) (9.250) +
erf(~L)·χ·ˆ χˆ
Lt2Lωp(Cu)+
erf(~L)·ζ·ζ L2tLωp(Cu)
+
erf(~L)·/∇ln er−2v
·(∂∂∂~Ψ,ζ) L2tLωp(Cu)
+
erf(~L)·(∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ er−1)·∂∂∂~Ψ
Lt2Lωp(Cu).
By estimates (9.82d), (9.82f), the already proven results (9.7a), (9.7c), (9.11), (9.18), (9.189), we have:
ker∇/ζkL2
tLωp(Cu).λ−1/2+λ−4ε0kζkL2
tL∞ω(Cu). (9.251)
Using the Sobolev inequality (9.33b) withQ:=p, and the already proven result (9.7a), we have:
kζkL2tCω0,δ0(Cu).ker∇/ζkL2
tLpω(Cu)+kζkL2
tL2ω(Cu).λ−1/2+ker∇/ζkL2
tLpω(Cu). (9.252) Combining (9.251) and (9.252), we conclude the desired estimates.
Proof ofkerµkL2
tLωp(Cu).λ−1/2in (9.19). Using equation (8.144), by the estimates (9.82d), (9.82f), and al- ready proven results (9.7a), (9.7c), (9.8e), (9.18), (9.189), we have:
kerµkL2
tLωp(Cu).
λ−1erf(~L)·(C~,D)
L2tLωp(Cu)+ er∇/∂∂∂~Ψ
L2tLωp(Cu)+
erf(~L)·χˆ·χˆ
L2tLpω(Cu) (9.253) +
erf(~L)·/∇ln er−2v
·(∂∂∂~Ψ,ζ) L2tLωp(Cu)
+
erf(~L)·(∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ er−1)·∂∂∂~Ψ Lt2Lωp(Cu)
.λ−1/2.
Proof ofkζkL2
tL∞x(M(Int)).λ−1/2−3ε0 andkζk
L
q
t2L∞x(M).λ
2 q−1−4ε0
4 q−1
in (9.12). Plugging equations (8.148a)
and (8.148b) into the Hodge estimate (9.116) withQ:=p,c=2,F=f(~L)·∂∂∂~Ψ, we have:
kζkL2
tL∞x(M(Int)). νδ0Pν
f(~L)·∂∂∂~Ψ
L2tL∞ul2νL∞ω(M(Int)) (9.254)
+ ∂∂∂~Ψ
L2tL∞x(M(Int))+
λ−1er(C~,D)
L2tL∞uLωp(M(Int))
+ker(χˆ·χ,ζˆ ·ζ)kL2
tL∞uLωp(M(Int))
+ er(∂∂∂~Ψ,tr
ge/χ˜(Small),χ,ˆ er−1)·∂∂∂~Ψ L2
tL∞uLωp(M(Int))
+
er∇/ln er−2v
·(∂∂∂~Ψ,ζ)
L2tL∞uLωp(M(Int)).
Using the estimates (9.93a), (9.104), the already proven results (9.7c), (9.15) for ˆχ, (9.18), and (9.141), we have:
kζkL2
tL∞x(M(Int)).λ−1/2−3ε0+λ−4ε0kζkL2
tL∞x(M(Int)). (9.255)
By absorbing the second term on RHS of (9.255) into the left, we conclude the desired result forL2tL∞x norm.
To bound theL
q
t2L∞x norm, we apply the H¨older’s inequality to (9.254) and use the same argument given above to deduce:
kζk
L
q
t2L∞x(M).λ
2 q−1−4ε0
4 q−14
+λ−4ε0kζk
L
q t2L∞x(M)
. (9.256)
By absorbing the second term on RHS of (9.256) into the left, we conclude the desired result.
Proof of (9.20a)-(9.20c). Using equation (8.37a) and initial condition forσ(8.37b), we have:
σ=1 2
Z t
uΓΓΓLdτ. (9.257)
Using the bootstrap assumptions (6.13), we find that:
kσkL∞(M(Int)).λ−8ε0, (9.258)
er−1/2σ
L∞(M(Int)).sup
t,u
(t−u)1/2
er1/2 λ−1/2−4ε0 .λ−1/2−4ε0. (9.259) To provek∇/σkL2
tLpω(Cu).λ−1/2, we plug equation (8.145) into (9.76), and use the initial condition (8.64a) to
deduce:
|er∇/σ|g/. Z t
u er
/∂∇∂∂~Ψ
g/+
tr
ge/χ˜(Small),∂∂∂~Ψ,χˆ
·/∇σ g/
dτ. (9.260)
Using the Grownwall’s inequality, the bootstrap assumption (6.13) and the already proven results (9.8e), we have:
|er∇/σ|g/. Z t
u er /∇∂∂∂~Ψ
g/dτexp
tr
ge
/χ˜(Small),∂∂∂~Ψ,χˆ L1
tL∞ω(Cu)
.
Z t uer
/∂∇∂∂~Ψ
g/dτ. (9.261) Dividing both sides of (9.261) byer(t,u), taking theL2tLωp norms, using the estimate for Hardy-Littlewood maximal function (9.28) and the estimate (9.83a), we have:
k∇/σkL2
tLωp(Cu). er∇/∂∂∂~Ψ
L2tLpω(Cu).λ−1/2, (9.262) as desired. To show
er1/2/∇σ Lp
ωL∞t(Cu).λ−1/2, dividing estimate (9.261) byer1/2(t,u), then taking theLωp norms, we have:
er1/2/∇σ
Lp
ω(St,u).(t−u)1/2 er1/2
er∇/∂∂∂~Ψ
L2
tLωp(Cu).λ−1/2. (9.263) We now prove
er1/2Lσ
Lt∞L2pω(Cu) .λ−1/2−2ε0. By the Sobolev equality (9.32), the estimate (9.82d) and (9.83a), we have:
er1/2Lσ
2
L∞tL2pω(Cu).
erD/L∂∂∂~Ψ
LωpLt2(Cu)+ ∂∂∂~Ψ
LωpL2t(Cu)
∂∂∂~Ψ
L∞ωL2t(Cu).λ−1−4ε0. (9.264)
Proof of
er /∇µ,ˇ /∇ζ˜
L2uL2tLpω(M(Int)).λ−4ε0 in (9.21a). In this paragraph, we are assumingCu⊂M(Int). We will silently use the fact that 0≤u≤t≤T∗;(λ).λ1−8ε0silently. We start by deriving a preliminary estimate for
er∇/ζ˜
L2uL2tLωp(M(Int)). Plugging equations (8.149a) and (8.149b) into the Hodge estimate (9.110), we have:
er∇/ζ˜
L2uLt2Lωp(M(Int)). er∇/∂∂∂~Ψ
L2uL2tLωp(M(Int))+λ−1
er(C~,D)
L2uL2tLpω(M(Int)) (9.265) +ker(ζ·ζ,χ·ˆ χ)kˆ L2
uL2tLpω(M(Int))
+ er
∂
∂
∂~Ψ,tr
ge/χ˜(Small),χ,ˆ er
·∂∂∂~Ψ
L2uL2tLωp(M(Int))+kerµkˇ L2
uL2tLωp(M(Int)).
By estimates (9.82f), (9.93c), (9.189), we have:
er∇/ζ˜
L2
uLt2Lωp(M(Int)).λ−4ε0+kerµkˇ L2
uLt2Lωp(M(Int)). (9.266)
We now boundkerµkˇ L2
uLt2Lωp(M(Int)). Plugging (8.146) into (9.76), and using the initial condition on cone- tip (8.64a), we have:
er2µˇ
g/. Z t
u er2
J(1) g/+
J(2) g/
dτ+
Z t u er2
tr
eg
/χ˜(Small),∂∂∂~Ψ
g/µdτ.ˇ (9.267) Using the Grownwall’s inequality, the bootstrap assumption (6.13) and the already proven estimate (9.15), we have:
er2µˇ
g/. Z t
u er2 J(1)
g/+ J(2)
g/
dτexp
tr
ge
/χ˜(Small),∂∂∂~Ψ Lt1L∞ω(Cu)
(9.268) .
Z t u er2
J(1) g/+
J(2) g/
dτ.
We divide estimate (9.268) byer(t,u)and then take theL2uL2tLωp norm. We now estimate terms inJ(1)andJ(2) defined in (8.147). First, by the estimate for Hardy-Littlewood maximal function (9.28), estimates (9.82f), (9.82a), we have:
er−1
Z t
u er∇/∂∂∂~Ψdτ
L2uL2tLωp(M(Int))
. er∇/∂∂∂~Ψ
L2
uLt2Lωp(M(Int)).λ−4ε0, (9.269)
er−1
Z t u
∂
∂∂~Ψdτ L2
uL2tLωp(M(Int))
. ∂∂∂~Ψ
L2uL2tLpω(M(Int)).λ−4ε0. (9.270) Next, by the estimates (9.92a), (9.91c), we have:
λ−1 er−1
Z t u
er2∂∂∂(C~,D) g/dτ
L2uL2tLωp(M(Int))
.λ−12ε0, (9.271) λ−1
er−1
Z t [u]+
er2(∂∂∂~Ψ,∂∂∂~ω,∂∂∂~S)·
∂
∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ ζ,er−1 g/dτ
L2uL2tLωp(M(Int))
.λ−16ε0. (9.272)
By the already proven estimate (9.15), we have:
er−1
Z t uer2
∇/ζ˜·χˆ g/dτ
L2uL2tLωp(M(Int))
. er∇/ζ˜
L2tLωp(Cu)kχkˆ L2 tL∞ω(Cu)
L2
uL2t (9.273) .λ−7ε0
er∇/ζ˜ L2
uL2tLωp(M(Int)).
By the bootstrap assumptions (9.6), and the estimates (9.82f), (9.8d) and (9.189), we have:
er−1
Z t u
er2/∇σ·
/∇∂∂∂~Ψ,/∇tr
ge/χ˜(Small),
∂∂
∂~Ψ,tr
ge/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ
g/dτ
L2
uL2tLpω(M(Int))
(9.274) .
k∇/σkL2 tL∞ω(Cu)
er
/∂∇∂∂~Ψ,/∇tr
ge/χ˜(Small),
∂∂
∂~Ψ,tr
ge/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ
L2
tLpω(Cu)
L2uL2t
.λ−4ε0.
By the bootstrap assumptions (6.13), the already proven estimate (9.8d) and (9.12), we have:
er−1
Z t uer2
/∇tr
eg
/χ˜(Small)·(∂∂∂~Ψ,ζ) g/dτ
L2uL2tLωp(M(Int))
(9.275) 1.
er∇/tr
eg /χ˜(Small)
L2tLωp(Cu)
∂∂∂~Ψ,ζ
Lt2L∞ω(Cu)
L2
uL2t
.λ−11ε0.
By the bootstrap assumptions (6.13), already proven result (9.15), and the estimate (9.189), we have:
er−1
Z t u er2
∂∂
∂~Ψ,tr
ge/χ˜(Small),χ,ˆ ζ,er−1
·
∂∂
∂~Ψ,tr
ge/χ˜(Small),χ,ˆ ζ
·
∂∂
∂~Ψ,χˆ g/dτ
L2
uL2tLpω(M(Int))
(9.276) .
er
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ ζ,er−1
·
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ ζ L2
tLpω(Cu)
∂∂∂~Ψ,χˆ
L2
tL∞ω(Cu)
L2uLt2
.λ−11ε0.
By the bootstrap assumptions (6.13), the estimates (9.82b), (9.12), (9.15), and the Fubini’s theorem, we have:
er−1
Z t u er2
(∂∂∂~Ψ,tr
ge
/χ˜(Small),χ,ζ)ˆ ·∂∂∂2~Ψ g/dτ
L2uL2tLωp(M(Int))
(9.277) .
er∂∂∂2~Ψ
L2tLωp(Cu)
∂∂∂~Ψ,tr
ge/χ˜(Small),χ,ˆ ζ Lt2L∞ω(Cu)
L2
uL2t
.λ−7ε0 er∂∂∂2~Ψ
L2
tL2uLωp(M(Int))
.λ−11ε0.
J(1)is bounded by (9.269)-(9.270), andJ(2)is bounded by (9.271)-(9.277). Therefore, we conclude
kerµkˇ L2
uL2tLpω(M(Int)).λ−4ε0+λ−7ε0 er∇/ζ˜
L2uL2tLωp(M(Int)). (9.278) Combining this estimate with the estimate (9.266) for
er∇/ζ˜ L2
uLt2Lωp(M(Int)), and soaking the second term on
the RHS of (9.266) to the LHS of (9.278), we conclude the desired results.
Proof of er3/2µˇ
L2
uL∞t Lpω(M(Int)).λ−4ε0in (9.21b). We divide (9.268) byer1/2(t,u)and then take theL2uL∞t Lωp norms. We first estimate the terms inJ(1)andJ(2)defined in (8.147).
By the estimates (9.82f), (9.82a), we have:
er−1/2
Z t
u er∇/∂∂∂~Ψdτ
L2uL∞t Lpω(M(Int))
. er∇/∂∂∂~Ψ
L2uL2tLpω(M(Int)).λ−4ε0, (9.279)
er−1/2
Z t u
∂∂∂~Ψdτ L2
uL∞t Lpω(M(Int))
. ∂∂∂~Ψ
L2uL2tLωp(M(Int)).λ−4ε0. (9.280) By the estimates (9.92b), (9.91d), we have:
λ−1 er−1/2
Z t u
er2∂∂∂(C~,D) g/dτ
L2uLt∞Lωp(M(Int))
.λ−12ε0, (9.281) λ−1
er−1/2
Z t [u]+
er2(∂∂∂~Ψ,∂∂∂~ω,∂∂∂~S)·
∂
∂
∂~Ψ,tr
ge/χ˜(Small),χ,ˆ ζ,er−1 g/dτ
L2uLt∞Lωp(M(Int))
.λ−16ε0. (9.282)
By the proven estimates (9.15) and (9.21a), we have:
er−1/2
Z t uer2
∇/ζ˜·χˆ g/dτ
L2uL∞tLωp(M(Int))
.λ1/2−4ε0 er∇/ζ˜
L2tLωp(Cu)kχkˆ L2 tL∞ω(Cu)
L2
uL∞t (9.283) .λ−11ε0.
By the bootstrap assumption (9.6), the estimates (9.82f), (9.8d) and (9.189), we have:
er−1/2
Z t u
er2/∇σ·
/∂∇∂∂~Ψ,/∇tr
eg
/χ˜(Small),
∂
∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ
g/dτ
L2uL∞tLωp(M(Int))
(9.284) .λ1/2−4ε0
k∇/σkL2
tL∞ω(Cu)
· er
/∂∇∂∂~Ψ,/∇tr
ge/χ˜(Small),
∂
∂
∂~Ψ,tr
ge/χ˜(Small),χ,ˆ er−1 ·∂∂∂~Ψ
L2tLpω(Cu)
L2uL∞t
.λ−4ε0.
By the bootstrap assumptions (6.13), proven estimates (9.8d) and (9.12), we have:
er−1/2
Z t uer2
/∇tr
eg
/χ˜(Small)·(∂∂∂~Ψ,ζ) g/dτ
L2
uLt∞Lωp(M(Int))
(9.285) .λ1/2−4ε0
er∇/tr
eg /χ˜(Small)
Lt2Lωp(Cu)
∂∂∂~Ψ,ζ
Lt2L∞ω(Cu)
L2L∞
.λ−11ε0.
By bootstrap assumptions (6.13), proven result (9.15), estimate (9.189), we have:
er−1/2
Z t uer2
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ ζ,er−1
·
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ ζ
·
∂∂∂~Ψ,χˆ g/dτ
L2
uL∞tLωp(M(Int))
(9.286) .λ1/2−4ε0
er
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ ζ,er−1 ∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ζˆ L2
tLpω(Cu)
· ∂∂∂~Ψ,χˆ
L2tL∞ω(Cu)
L2uL∞t
.λ−11ε0.
By bootstrap assumptions (6.13), estimates (9.82b), (9.12), (9.15), using Fubini’s theorem, we have:
er−1/2
Z t u er2
(∂∂∂~Ψ,tr
ge
/χ˜(Small),χ,ζ)ˆ ·∂∂∂2~Ψ g/dτ
Lu2L∞tLωp(M(Int))
(9.287) .λ1/2−4ε0
er∂∂∂2~Ψ
L2tLpω(Cu)
∂∂∂~Ψ,tr
ge/χ˜(Small),χ,ˆ ζ L2tL∞ω(Cu)
L2uL∞t
.λ−7ε0 er∂∂∂2~Ψ
L2tL2uLωp(M(Int))
.λ−11ε0.
J(1)is bounded by (9.279)-(9.280), andJ(2)is bounded by (9.281)-(9.287). Combining all the estimates for terms inJ(1)andJ(2), we conclude the desired result.
Proof ofk∇/σk
L2uL2tCω0,δ0(M(Int)).λ−4ε0 in (9.21a). Plugging (8.56) into the Sobolev equality (9.33b) withQ:=
p, we have:
k∇/σk
L2uL2tCω0,δ0(M(Int)).
er(∇/ζ,˜ /∇ζ)
L2uL2tLpω(M(Int))+k∇/σkL2
uLt2L2ω(M(Int)). (9.288) By the proven estimates (9.19), (9.20a), (9.21a) for
er∇/ζ˜
L2uLt2Lωp(M(Int)), we conclude the desired estimate.
Proof of (9.22). Plugging (8.55) into the Hodge estimate (9.110), using (9.123) and the proven estimate (9.21a), we have:
ker∇/µ/ ,µ/kL2
tL2uLωp(M(Int)).kerµkˇ L2
tL2uLpω(M(Int))+ erµ¯ˇ
L2
tL2uLωp(M(Int)).λ−4ε0. (9.289)
By the Sobolev inequality (9.33b) withQ:=p, we have:
kµ/k
L2tL2uCω0,δ0(M(Int)).ker∇/µ/kL2
tL2uLpω(M(Int))+kµ/kL2
tL2uL2ω(M(Int)).λ−4ε0. (9.290)
Proof of ζ−˜ µ/
Lt2L∞uL∞ω(M(Int)).λ−1/2−4ε0 in (9.25a). Plugging equations (8.150a) and (8.150b) into the Hodge estimate (9.116) withQ:=p,c:=2 andδ0≤δ0, we have:
ζ˜−µ/
L2tL∞uL∞ω(M(Int)).
νδ0Pν∂∂∂~Ψ L2
tLu∞l2νL∞ω(M(Int))+ ∂∂∂~Ψ
L2
tL∞uL∞ω(M(Int)) (9.291) +λ−1
er(C~,D)
Lt2L∞uLωp(M(Int))
+ker(ζ·ζ,χˆ·χ)kˆ L2
tL∞uLωp(M(Int))
+ er
∂
∂
∂~Ψ,tr
ge/χ˜(Small),χ,ˆ er
·∂∂∂~Ψ
L2tL∞uLωp(M(Int)).
By the bootstrap assumptions (6.13), the estimates (9.93a), (9.141), and the proven results (9.7c), (9.12) and (9.15), we conclude the desired bound:
ζ˜−µ/
L2tL∞uL∞ω(M(Int)).λ−1/2−4ε0. (9.292)
Proof of (9.24). By (8.154), it suffices to show lim
t↓uerµ/ =O(er). Plugging definition (8.55) into the Hodge estimate (9.116) withF:=0 andQ:=p, and using the initial condition (8.64a), we have:
lim
t↓uerµ/ L∞ω(St,u)
.
lim
t↓uer2µˇ Lωp(St,u)
=O(er). (9.293)
Proof of µ/(1)
L2tL∞uL∞ω(M(Int)).λ−1/2−4ε0 in (9.25a). LetH:=/DLµ/(1)+12trg/χµ/(1). By (9.76) and the initial condition forerµ/(1), we have:
erµ/(1)
g/=
Z t u
erH+er
tr
ge/χ˜(Small)+∂∂∂~Ψ
µ/(1)
g/dτ. (9.294)
Using the Grownwall’s inequality, by the bootstrap assumption (6.13) and the proven estimate (9.15), we
have:
erµ/(1)
g/.
Z t u
|erH|g/dτexp
tr
eg
/χ˜(Small),∂∂∂~Ψ L1tL∞ω(Cu)
.
Z t u
|erH|g/dτ. (9.295)
Dividing both sides of (9.295) byer, taking the norm, and then substituting equations (8.152a) and (8.152b) into the Hodge estimate (9.116) withF:=er−1div/ξ,Q:=p,c:=2 andδ0≤δ0, we have:
µ/(1)
L2
tL∞uLω∞(M(Int)). er−1
Z t u er
er−1
νδ0Pν∂∂∂~Ψ l2
νL∞ω(Sτ,u)+ er−1∂∂∂~Ψ
L∞
ω(Sτ,u) (9.296) +
er−1∂∂∂~Ψ
Lp
ω(Sτ,u)
dτ
L2tL∞u
.
By the estimate for Hardy-Littlewood maximal function (9.28) and bootstrap assumptions (6.13), we conclude the desired estimate.
Proof of µ/(2)
L2uLt∞L∞ω(M(Int)).λ−1/2−3ε0 in (9.25b). Using the same argument as in the proof of (9.25a), we have
erµ/(2)
g/.
Z t u
|erH|g/dτ, (9.297)
whereH:=D/Lµ/(2)+12trg/χµ/(2). Now divide both sides of (9.297) byerand take the norms. Notice that:
µ/(2)
L2uL∞tL∞ω(M(Int)). er−1
Z t u
|erH|g/dτ
L2uL∞t L∞ω(M(Int))
.kHkL2
uL1tL∞ω(M(Int)). (9.298) Applying equations (8.153a) and (8.153b) into Hodge estimate (9.116) withF:=0 andQ:=p, we have:
kHkL2
uL1tL∞ω(M(Int)). erJ(2)
L2uL1tLpω(M(Int))+kerχ·ˆ /∇µ/kL2
uL1tLωp(M(Int)) (9.299)
+ er
/∇∂∂∂~Ψ,/∇tr
ge/χ˜(Small)
·µ/
L2uLt1Lωp(M(Int))
+ er
∂∂∂~Ψ,tr
ge
/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ·µ/
L2uL1tLωp(M(Int))
+
er trg/χ−trg/χ ˇ µ
L2uL1tLωp(M(Int)).
By (9.93d), we have:
λ−1
er∂∂∂(C~,D)
L2uL1tLpω(M(Int)).λ−1/2−8ε0. (9.300)
By (9.93e), we have:
λ−1 er
∂∂
∂~Ψ,∂∂∂~ω,∂∂∂~S
·
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ ζ,er−1
L2uLt1Lωp(M(Int)).−12−10ε0. (9.301) By the proven estimates (9.21a) and (9.15), we have:
er∇/ζ˜·χˆ
Lu2L1tLωp(M(Int)). er∇/ζ˜
L2uL2tLpω(M(Int))
er∇/ζ·˜ χˆ
L∞uL2tL∞ω(M(Int)).λ−1/2−7ε0. (9.302) By (9.82f), (9.8d), (9.189) and (9.21a), we have:
er∇/σ·
/∇∂∂∂~Ψ,∇/tr
eg
/χ˜(Small),
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ
L2uL1tLωp(M(Int)) (9.303)
.k∇/σkL2
uL2tL∞ω(M(Int))
er
/∂∇∂∂~Ψ,/∇tr
eg
/χ˜(Small),
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ er−1
·∂∂∂~Ψ
L∞
uL2tLpω(M(Int))
.λ−1/2−4ε0.
By (9.8d), (6.13) and (9.12), we have:
er∇/tr
eg
/χ˜(Small)·(∂∂∂~Ψ,ζ)
L2uL1tLpω(M(Int)). er∇/tr
ge /χ˜(Small)
L2uL2tLpω(M(Int))
∂∂∂~Ψ,ζ
L∞uL2tL∞ω(M(Int)) (9.304) .λ−1/2−3ε0.
By (9.189), (6.13) and (9.15), we have:
er
∂∂∂~Ψ,tr
eg
/χ˜(Small),χ,ζ,ˆ er
·
∂∂∂~Ψ,tr
ge
/χ˜(Small),χ,ζˆ
·(∂∂∂~Ψ,χ)ˆ
L2uL1tLpω(M(Int)) (9.305) .
er
∂
∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ ζ,er
·
∂
∂∂~Ψ,tr
eg
/χ˜(Small),χ,ˆ ζ
L2uLt2Lωp(M(Int))
∂∂∂~Ψ,χˆ
L∞uL2tL∞ω(M(Int))
.λ−1/2−7ε0.
By (9.82b), (6.13), (9.15) and (9.12), we have:
er
∂
∂
∂~Ψ,tr
ge/χ˜(Small),ζ
·∂∂∂2~Ψ L2
uL1tLωp(M(Int)). er∂∂∂2~Ψ
L2
uLt∞Lωp(M(Int))· (9.306)
∂∂∂~Ψ,tr
ge/χ˜(Small),ζ
L∞uLt1L∞ω(M(Int))
.λ−1/2−7ε0.
By (9.22) and (9.15), we have:
kerχˆ·/∇µ/kL2
uLt1Lωp(M(Int)).ker∇/µ/kL2
uL2tLωp(M(Int))kχkˆ L∞
uLt2L∞ω(M(Int)).λ−1/2−7ε0. (9.307) By (9.82f), (9.8d), (9.189) and (9.22), we have:
erµ/·
/∂∇∂∂~Ψ,/∇tr
ge/χ˜(Small),
∂∂∂~Ψ,tr
ge
/χ˜(Small),χ,ˆ er−1 ·
∂
∂∂~Ψ,tr
eg
/χ˜(Small),χˆ
L2uL1tLωp(M(Int)) (9.308) .kµ/kL2
uL2tL∞ω(M(Int))·
er
/∇∂∂∂~Ψ,/∇tr
eg
/χ˜(Small),
∂∂
∂~Ψ,tr
ge/χ˜(Small),χ,ˆ er−1
·
∂∂∂~Ψ,tr
ge
/χ˜(Small),χˆ
L∞uL2tLpω(M(Int))
.λ−1/2−4ε0.
Note that 1
er =1
er (see Definition 8.7 for the definition of 1
er). By (6.13), (9.15), and (9.21a), we have:
er trg/χ−trg/χ ˇ µ
L2uL1tLpω(M(Int)). ∂∂∂~Ψ,tr
eg /χ˜(Small)
L∞uLt2L∞ω(M(Int))kerµkˇ L2
uL2tLpω(M(Int)) (9.309) .λ−1/2−7ε0.
Combining (9.298)-(9.309), we conclude the desired estimate.
CHAPTER 10
Conformal Energy Estimates
In this section, with the control of the acoustic geometry that we derived in Proposition 9.1, we prove the boundness theorem for the conformal energy in Theorem 10.2.