• Tidak ada hasil yang ditemukan

Equilibrium Characterization

Dalam dokumen Agency Problems in Political Science (Halaman 121-126)

Chapter IV: Formal Requirements on Costly Information

B.2 Equilibrium Characterization

also𝑃(πœ” =Β¬π‘₯|𝑠 =Β¬π‘₯) > 𝑃(πœ” =π‘₯|𝑠 =Β¬π‘₯) we must have 𝐸 π‘ˆ

𝑦=Β¬π‘₯ 𝑠=Β¬π‘₯ > 𝐸 π‘ˆ

𝑦=π‘₯ 𝑠=Β¬π‘₯, and anyπœ‚π‘₯ > 0 cannot be an incumbent best-response. QED.

Collecting the preceding results, yields an intermediate characterization of equilib- rium as a corollary.

Corollary 39 Profile (πœ‚,Λ† πœƒΛ†) is a sequential equilibrium i.f.f. it satisfies Lemma 9 and either

β€’ πœ‚Λ†π‘₯ =0andΞ”π‘₯𝑠=Β¬π‘₯(πœƒ) ≀ Δ¯π‘₯𝑠=Β¬π‘₯ βˆ€π‘₯ ∈ {𝐴, 𝐡} (the incumbent is truthful),

β€’ βˆƒπ‘§ s.t. πœ‚Λ†π‘§ ∈ (0,1), πœ‚Λ†Β¬π‘§ = 0, and Δ𝑧𝑠=¬𝑧(πœƒ) = Δ¯𝑧𝑠=¬𝑧 (the incumbent distorts toward z).

The statement that Β―πœ™π΅ > πœ™Β―π΄ →𝛾 < πœ‡Β―π΄ follows trivially from the first property.

The final property is equivalent to 𝛾 ≀ πœ‡ β†’ πœ™Β―π΅ β‰₯ πœ™Β―π΄. To show this we argue that

Β―

πœ™π΅+(πœ‡) > πœ™Β―βˆ’π΄(πœ‡). From this it is easy to verify the desired property using that (i) πœ‡ ∈ (πœ‡Β―π΅,πœ‡Β―π΄), (ii) Β―πœ™π΅βˆ’ > πœ™Β―βˆ’π΄, (iii)πœ™π‘₯βˆ’(𝛾) decreasing in𝛾, and (iv)πœ™π‘₯+(𝛾) increasing in𝛾. First observe from Lemma 36 that for any values of (𝜎, 𝛾)we have πœ™π΅+ > πœ™βˆ’π΄ i.f.f.

Pr(𝑦 = 𝐴) Β·

𝛾 βˆ’ π›Ύβˆ’πœ‡

Pr(𝑦 = 𝐴|πœ” =𝐡)

>Pr(𝑦= 𝐡) ·𝛾

. Next observe that when𝛾 = πœ‡ the condition reduces to Pr(𝑦 = 𝐴) > Pr(𝑦 = 𝐡), which always holds when a low-ability incumbent is truthful. QED.

We next examine how a low-ability incumbent’s potential distortionsπœ‚affects these values of attention. Our next two lemmas are used to this end.

Lemma 41 Pr(πœ”β‰  π‘₯|𝑦 =π‘₯) is strictly increasing inπœ‚π‘₯ (whenπœ‚Β¬π‘₯=0) and strictly decreasing inπœ‚Β¬π‘₯ (whenπœ‚π‘₯ =0).

Proof:Pr(πœ”β‰  π‘₯|𝑦 =π‘₯) = Pr(𝑦 =π‘₯|πœ” β‰ π‘₯) Β· (1βˆ’πœ‹π‘₯)

Pr(𝑦 =π‘₯|πœ” =π‘₯) Β·πœ‹π‘₯+Pr(𝑦=π‘₯|πœ” β‰ π‘₯) Β· (1βˆ’πœ‹π‘₯)

= 1

Pr(𝑦=π‘₯|πœ”=π‘₯) Pr(𝑦=π‘₯|πœ”β‰ π‘₯) Β· πœ‹π‘₯

1βˆ’πœ‹π‘₯ +1 .

Soπœ‚π‘₯(πœ‚Β¬π‘₯)affect the desired quantity solely through Pr(Pr(𝑦𝑦==π‘₯|πœ”π‘₯|πœ”β‰ =π‘₯)π‘₯), where:

Pr(𝑦 =π‘₯|πœ” =π‘₯)

Pr(𝑦=π‘₯|πœ” β‰ π‘₯) = πœ‡+ (1βˆ’ πœ‡) Β· (π‘ž(1βˆ’πœ‚Β¬π‘₯) + (1βˆ’π‘ž)πœ‚π‘₯) (1βˆ’ πœ‡) Β· ( (1βˆ’π‘ž) (1βˆ’πœ‚Β¬π‘₯) +π‘žπœ‚π‘₯) . To perform comparative staticsπœ‚π‘₯, assumeπœ‚Β¬π‘₯ =0 so

Pr(𝑦 =π‘₯|πœ” =π‘₯)

Pr(𝑦=π‘₯|πœ”β‰  π‘₯) = πœ‡+ (1βˆ’πœ‡) Β· (π‘ž+ (1βˆ’π‘ž)πœ‚π‘₯) (1βˆ’πœ‡) Β· ( (1βˆ’π‘ž) +π‘žπœ‚π‘₯)

= πœ‡+ (1βˆ’πœ‡) Β· (1βˆ’π‘ž(1βˆ’πœ‚π‘₯) + (2π‘žβˆ’1) (1βˆ’πœ‚π‘₯)) (1βˆ’πœ‡) Β· (1βˆ’π‘ž(1βˆ’πœ‚π‘₯))

= 1+ πœ‡

1βˆ’πœ‡

1 1βˆ’π‘ž(1βˆ’πœ‚π‘₯)

+ (2π‘žβˆ’1) (1βˆ’πœ‚π‘₯) 1βˆ’π‘ž(1βˆ’πœ‚π‘₯) which is straightforwardly decreasing inπœ‚π‘₯ whenπ‘ž β‰₯ 1

2. To perform comparative statics inπœ‚Β¬π‘₯, assume thatπœ‚π‘₯ =0 so

Pr(𝑦=π‘₯|πœ” =π‘₯)

Pr(𝑦 =π‘₯|πœ” β‰  π‘₯) = πœ‡+ (1βˆ’πœ‡)π‘ž(1βˆ’πœ‚Β¬π‘₯) (1βˆ’πœ‡) Β· (1βˆ’π‘ž) (1βˆ’πœ‚Β¬π‘₯) =

πœ‡

1βˆ’πœ‚Β¬π‘₯ + (1βˆ’πœ‡)π‘ž (1βˆ’πœ‡) (1βˆ’π‘ž) which is clearly strictly increasing inπœ‚Β¬π‘₯. QED.

Lemma 42 Pr(πœ” = π‘₯|𝑦 = π‘₯) (πœ‡π‘₯

π‘₯ βˆ’ 𝛾) is strictly decreasing inπœ‚π‘₯ (whenπœ‚Β¬π‘₯ = 0) and strictly increasing inπœ‚Β¬π‘₯ (whenπœ‚π‘₯ =0).

Proof: First observe that Pr(πœ” =π‘₯|𝑦 =π‘₯) is strictly decreasing (increasing) inπœ‚π‘₯ (πœ‚Β¬π‘₯) by Lemma 41. Next

πœ‡π‘₯

π‘₯ = πœ‡

πœ‡+ (1βˆ’πœ‡) (π‘ž(1βˆ’πœ‚Β¬π‘₯) + (1βˆ’π‘ž)πœ‚π‘₯),

which is also straightforwardly strictly decreasing (increasing) inπœ‚π‘₯ (πœ‚Β¬π‘₯). QED.

The preceding lemmas immediately yield comparative statics effects of πœ‚π‘₯ β‰₯ 0 (when πœ‚Β¬π‘₯ = 0) on the four relevant values of information (πœ™π‘₯βˆ’, πœ™π‘₯+, πœ™Β¬βˆ’π‘₯, πœ™Β¬+π‘₯) as a corollary.

Corollary 43 Suppose thatπœ‚Β¬π‘₯ =0. Thenπœ™π‘₯βˆ’(πœ‚π‘₯)andπœ™Β¬π‘₯+ (πœ‚π‘₯)are strictly increas- ing inπœ‚π‘₯, whileπœ™π‘₯+(πœ‚π‘₯)andπœ™Β¬π‘₯βˆ’ (πœ‚π‘₯)are strictly decreasing inπœ‚π‘₯.

We now use the preceding results to examine how an anticipated distortionπœ‚π‘§ > 0 toward some policy𝑧(withπœ‚Β¬π‘§ =0) affects theelectoral incentivesof a low-ability incumbent when the voter best-responds. This analysis yields a key lemma which implies that the model is well behaved. The lemma states that (despite the greater complexity of the RA model), a greater distortion toward some policy𝑧still makes that policy relatively less electorally appealing once the voter best responds (as in the CHS model). To state the lemma formally, let

𝚫I𝑧 (πœ‚π‘§) =

Ξ”: βˆƒπœƒsatisfyingπœƒπ‘₯ ∈Θ¯π‘₯(πœ‚π‘₯) βˆ€π‘₯ ∈ {𝐴, 𝐡}andΞ” = Ξ”I𝑧 (πœƒ) denote the set of reelection probability differences from choosing policy 𝑧 vs.

policy¬𝑧for a low-ability incumbent with informationI that can be generated by a voter best response toπœ‚π‘§ ∈ [0,1] (withπœ‚Β¬π‘§ =0).

Lemma 44 𝚫I𝑧 (πœ‚π‘§)is an upper-hemi continuous, compact, convex-valued,decreas- ing correspondence that is constant and singleton everywhere except at (at most) four points.

Proof: Starting with the voter’s objective functions𝑉(πœƒπ‘₯|πœ‚)and the best responses stated in main text Lemma 9 and Appendix Lemma 32, it is straightforward to verify

all properties of the correspondence except that it is decreasing using standard arguments.

To argue that𝚫I𝑧 (πœ‚π‘§)is decreasing, first observe that:

𝚫I𝑧 (πœ‚π‘§) =VI𝑧(πœ‚π‘§)βˆ’V¬𝑧I (πœ‚π‘§), whereVπ‘₯I(πœ‚π‘§) ={𝑣 :βˆƒπœƒπ‘₯ ∈Θ(Β― πœ‚π‘§)satisfying𝑣 =𝑣π‘₯

I(πœƒπ‘₯)}. Specifically,Vπ‘₯I(πœ‚π‘§)the set of reelection probabilities following policyπ‘₯that can be generated by a voter best response toπœ‚π‘§ ∈ [0,1](withπœ‚Β¬π‘§ =0). To show the desired result we therefore argue thatV𝑧I(πœ‚π‘§)is decreasing andVΒ¬I𝑧(πœ‚π‘§) is increasing.

To argue that VI𝑧(πœ‚π‘§) is decreasing, first observe by Lemma 9 and Corollary 43 thatπœ™π‘§(πœ‚π‘§) =min{πœ™π‘§βˆ’(πœ‚π‘§), πœ™+𝑧(πœ‚π‘§)}, withπœ™π‘§βˆ’(πœ‚π‘§)strictly increasing inπœ‚π‘§andπœ™+𝑧(πœ‚π‘§) strictly decreasing inπœ‚π‘§. Thus, thereβˆƒsome Β―πœ‚π‘§

𝑧whereπœ™π‘§(πœ‚π‘§)achieves its strict max- imum over [0,1], and moreover if Β―πœ‚π‘§

𝑧 ∈ (0,1) then πœ™βˆ’π‘§(πœ‚π‘§) < (>) (=)πœ™+𝑧(πœ‚π‘§) ⇐⇒

πœ‚π‘§ < (>) (=)πœ‚Β―π‘§

𝑧.

Suppose first that𝑐 β‰₯ πœ™π‘§(πœ‚Β―π‘§

𝑧). By Lemma 9, ifπœ‚π‘§ < πœ‚Β―π‘§

𝑧 then Λ†πœƒπ‘§ ∈ Ξ˜Β―π‘§(πœ‚π‘§) β†’ πœˆΛ†π‘§

βˆ… = 1 > πœŒΛ†π‘§ =0 β†’ V𝑧I(πœ‚π‘§) = {1}, and ifπœ‚π‘§ > πœ‚Β―π‘§

𝑧 then Λ†πœƒπ‘§ ∈ Ξ˜Β―π‘§(πœ‚π‘§) β†’ πœˆΛ†π‘§

βˆ… = πœŒΛ†π‘§ =0 β†’ V𝑧I(πœ‚π‘§)={0}. VI𝑧(πœ‚π‘§)decreasing then immediately follows.

Suppose next that𝑐 < πœ™π‘§(πœ‚Β―π‘§

𝑧). There are three subcases.

(a) If πœ‚π‘§ < πœ‚Β―π‘§

𝑧 then by Lemma 9 we have Λ†πœƒπ‘§ ∈ Ξ˜Β―π‘§(πœ‚π‘§) ⇐⇒ πœƒΛ†π‘§ satisfies (i) Λ†

πœˆπ‘§

βˆ… = πœˆΛ†π‘§

𝑧 = 1 > πœˆΛ†Β¬π‘§π‘§ = 0, and (ii) 𝑐 > (<)πœ™π‘§βˆ’(πœ‚π‘§) β†’ πœŒΛ†π‘§ = 1(0). Since πœ™π‘§βˆ’(πœ‚π‘§) is strictly increasing in πœ‚π‘§, it is easy to see that {𝜌 : βˆƒπœƒΛ†π‘§ ∈ Ξ˜Β―π‘§ with𝜌 = πœŒΛ†π‘§} is an increasing correspondence. Moreover, observe that𝑣𝑧

I(πœŒπ‘§|πœˆΛ†π‘§

βˆ… =πœˆΛ†π‘§

𝑧 = 1,πœˆΛ†Β¬π‘§π‘§ =0) = 1βˆ’πœŒπ‘§Pr(πœ” β‰  π‘₯|I)is decreasing in πœŒπ‘§(that is, more attention to𝑧hurts reelection prospects when the voter’s posture is favorable). Thus it immediately follows that V𝑧I(πœ‚π‘§)is decreasing over the rangeπœ‚π‘§ < πœ‚Β―π‘§

𝑧. (b)If πœ‚π‘§ > πœ‚Β―π‘§

𝑧 then by Lemma 9 we have Λ†πœƒπ‘§ ∈ Ξ˜Β―π‘§(πœ‚π‘§) ⇐⇒ πœƒΛ†π‘§ satisfies (i) Λ†πœˆπ‘§

βˆ… = Λ†

πœˆΒ¬π‘§π‘§ = 0, (ii)πœ™+𝑧(πœ‚π‘§) > (<)0 β†’ πœˆΛ†π‘§

𝑧 = 1(0), and (iii) 𝑐 > (<)πœ™π‘§βˆ’(πœ‚π‘§) β†’ πœŒΛ†π‘§ = 1(0). Since πœ™+𝑧(πœ‚π‘§) is strictly decreasing in πœ‚π‘§, it is easy to see that both {𝜌 : βˆƒπœƒΛ†π‘§ ∈ Ξ˜Β―π‘§ with𝜌 = πœŒΛ†π‘§} and {𝜈 : βˆƒπœƒΛ†π‘§ ∈ Ξ˜Β―π‘§ with𝜈 = πœˆΛ†π‘§

𝑧} are decreasing correspondences.

Moreover, observe that𝑣𝑧

I(πœŒπ‘§, πœˆπ‘§

𝑧|πœˆΛ†π‘§

βˆ… = πœˆΛ†Β¬π‘§

𝑧 =0) =πœŒπ‘§πœˆπ‘§

𝑧 Β·Pr(πœ” = 𝑧|I) is increasing in both 𝜈π‘₯

π‘₯ and πœŒπ‘§ (that is, more attention to 𝑧helps reelection prospects when the voter’s posture is adversarial). Thus it immediately follows that V𝑧I(πœ‚π‘§) is again decreasing over the rangeπœ‚π‘§ > πœ‚Β―π‘§

𝑧. (c)Ifπœ‚π‘§ is sufficiently close to Β―πœ‚π‘§

𝑧 then by Lemma 9 we have Λ†πœƒπ‘§ ∈ Ξ˜Β―π‘§(πœ‚π‘§) β†’ πœŒΛ†π‘§ = Λ†

πœˆπ‘§

𝑧 =1 > πœˆΛ†Β¬π‘§π‘§ =0β†’VI𝑧(πœ‚π‘§) ={Pr(𝑧 =πœ”|I)}and constant.

Finally, exactly symmetric arguments showV¬𝑧I (πœ‚π‘§) is increasing, beginning again

with the observations (by Lemma 9 and Corollary 43) thatπœ™Β¬π‘§(πœ‚π‘§) =min{πœ™Β¬π‘§βˆ’ (πœ‚π‘§), πœ™Β¬π‘§+ (πœ‚π‘§)}, but withπœ™Β¬π‘§+ (πœ‚π‘§)strictly increasing inπœ‚π‘§andπœ™Β¬βˆ’π‘§(πœ‚π‘§)strictly decreasing inπœ‚π‘§. QED

With the preceding lemma in hand, we first prove main text Proposition 10 stating that the incumbent is always truthful when πœ‹ = 12 (i.e., is no ex-ante β€œpopular"

policy).

Proof of Proposition 10Applying Proposition 39 and Lemma 44, to rule out an equilibrium distorted toward a policy π‘₯ ∈ {𝐴, 𝐡} (πœ‚π‘₯ > 0, πœ‚Β¬π‘₯=0), it suffices to show min{𝚫π‘₯𝑠=Β¬π‘₯(0)} ≀ 0 (intuitively, that there is no electoral benefit to policy π‘₯ after signal Β¬π‘₯ when the incumbent is believed to be truthful). Given ex-ante policy symmetry and incumbent truthfulness, there always exists a best-response Λ†πœƒ in which the voter treats the incumbent identically after either policy, soΞ”π‘₯𝑠=Β¬π‘₯(πœƒΛ†)= 𝜌π‘₯(Pr(πœ” =Β¬π‘₯|𝑠 =π‘₯) βˆ’Pr(πœ” =π‘₯|𝑠 =π‘₯)) ≀0. QED.

We next prove Proposition 11 ruling out β€œfake leadership” equilibria.

Proof of Proposition 11Applying Proposition 39 and Lemma 44, to rule out fake leadership equilibria (πœ‚π΄ =0, πœ‚π΅ ∈ (0,1)) it suffices to show that min{πš«π΅π‘ =𝐴(0)} ≀ 0 (intuitively, that there is no electoral benefit to the unpopular policy 𝐡 when the incumbent is believed to be truthful). Recall from the main text that Β―πœ‡π΅ < πœ‡ < πœ‡Β―π΄ <

Β― πœ‡π΄

𝐴 =πœ‡Β―π΅

𝐡.

Suppose first that 𝛾 ∈ (πœ‡Β―π΅,πœ‡Β―π΄) so that 𝜈𝐴

βˆ… = 1 > 𝜈𝐡

βˆ… = 0 in a voter best response.

Then it is easily verified that min{πš«π΅π‘ =𝐴(0)} ≀ βˆ’ (2 Pr(πœ” = 𝐴|𝑠 = 𝐴) βˆ’1) ≀0.

Suppose next that𝛾 ≀ πœ‡Β―π΅, so that the voter’s posture is favorable after both policies.

Then Β―πœ™π΅ > πœ™Β―π΄(by Lemma 40), and there exists some Λ†πœƒ ∈Θ(Β― 0)with Λ†πœˆπ‘₯

π‘₯ =πœˆΛ†π΄ =1>

Λ†

𝜈π‘₯Β¬π‘₯ =0 βˆ€π‘₯and Λ†πœŒπ΅ β‰₯ πœŒΛ†π΄, soΔ𝐡𝑠=𝐴(πœƒΛ†) =

βˆ’πœŒΛ†π΄(2 Pr(πœ” = 𝐴|𝑠 = 𝐴) βˆ’1) βˆ’ (πœŒΛ†π΅βˆ’πœŒΛ†π΄)Pr(πœ”= 𝐴|𝑠= 𝐴) βˆ’ (1βˆ’πœŒΛ†π΅) (1βˆ’πœˆΛ†π΅) ≀0. Suppose next that 𝛾 ∈ [πœ‡Β―π΄

𝐴,πœ‡Β―π΄] (recalling that Β―πœ‡π΄

𝐴 = πœ‡Β―π΅

𝐡) so that the voter has an adversarial posture after both policies. Then Β―πœ™π΄ > πœ™Β―π΅ (by Lemma 40), and there exists some Λ†πœƒ ∈Θ(0)Β― with Λ†πœˆπ‘₯

π‘₯ =1 > πœˆΛ†Β¬π‘₯π‘₯ =πœˆΛ†π΅ =0βˆ€π‘₯ and Λ†πœŒπ΄ β‰₯ πœŒΛ†π΅, soΔ𝐡

𝑠=𝐴(πœƒΛ†) =

βˆ’πœŒΛ†π΅(2 Pr(πœ” = 𝐴|𝑠 = 𝐴) βˆ’1) βˆ’ (πœŒΛ†π΄βˆ’πœŒΛ†π΅)Pr(πœ”= 𝐴|𝑠= 𝐴) βˆ’ (1βˆ’ πœŒΛ†π΄)πœˆΛ†π΄ ≀ 0.

Finally suppose that Β―πœ‡π΄

𝐴 = πœ‡Β―π΅

𝐡 < 𝛾; then clearlyπš«π‘ =𝐴𝐡 (0) ={0}. QED.

We conclude by proving existence and generic uniqueness of sequential equilibrium.

Lemma 45 A sequential equilibrium of the model exists and is generically unique.

Proof: It is straightforward to verify from the definitions that for generic model parameters (πœ‡, 𝛾 , πœ‹, π‘ž, 𝑐) ∈ [0,1]4Γ— R+ we have that (i) for any particular fixed πœ‚= (πœ‚π΄, πœ‚π΅),𝚫𝐴

𝑠=𝐡(πœ‚)is a singleton, and (ii)𝚫𝐴

𝑠=𝐡(0) β‰  Δ¯𝑠𝐴=𝐡. Suppose first that 𝚫𝐴

𝑠=𝐡(0) < Δ¯𝐴

𝑠=𝐡; then by Proposition 39 there exists a truthful equilibrium. Moreover, by Lemma 44,πš«π΄π‘ =𝐡(πœ‚π΄) <Δ¯𝑠=𝐡𝐴 βˆ€πœ‚π΄ >0. Hence again by Proposition 39 there cannot exist a pandering equilibrium with Λ†πœ‚π΄ > 0.

Suppose next that πš«π΄π‘ =𝐡(0) > Δ¯𝑠𝐴=𝐡; then by Proposition 39 there does not exist a truthful equilibrium. In addition, by Lemma 44,𝚫𝐴

𝑠=𝐡 πœ‚π΄

is decreasing and satisfies 𝚫𝐴

𝑠=𝐡(1) ≀ 0 < Δ¯𝑠𝐴=𝐡 ∈ (0,1). Thus, thereβˆƒsome Λ†πœ‚π΄ > 0 with ¯Δ𝐴𝑠=𝐡 ∈𝚫𝐴

𝑠=𝐡(πœ‚Λ†π΄), so by Proposition 39 a pandering equilibrium exists at Λ†πœ‚π΄. Moreover, for generic parameters, Λ†πœ‚π΄must be equal to one of the (at most) four values where𝚫𝐴

𝑠=𝐡(πœ‚Λ†π΄)is non-singleton, with ¯Δ𝐴

𝑠=𝐡 ∈ (min{πš«π‘ π΄=𝐡(πœ‚Λ†π΄)},max{πš«π΄π‘ =𝐡(πœ‚Λ†π΄)}). Thus, by Lemma 44 we haveπš«π΄π‘ =𝐡(πœ‚π΄) > (<)Δ¯𝑠=𝐡𝐴 forπœ‚π΄ < (>)πœ‚Λ†π΄and no other pandering equilibrium exists. QED.

Dalam dokumen Agency Problems in Political Science (Halaman 121-126)