• Tidak ada hasil yang ditemukan

Main Proofs

Dalam dokumen Agency Problems in Political Science (Halaman 126-139)

Chapter IV: Formal Requirements on Costly Information

B.3 Main Proofs

Finally suppose that Β―πœ‡π΄

𝐴 = πœ‡Β―π΅

𝐡 < 𝛾; then clearlyπš«π‘ =𝐴𝐡 (0) ={0}. QED.

We conclude by proving existence and generic uniqueness of sequential equilibrium.

Lemma 45 A sequential equilibrium of the model exists and is generically unique.

Proof: It is straightforward to verify from the definitions that for generic model parameters (πœ‡, 𝛾 , πœ‹, π‘ž, 𝑐) ∈ [0,1]4Γ— R+ we have that (i) for any particular fixed πœ‚= (πœ‚π΄, πœ‚π΅),𝚫𝐴

𝑠=𝐡(πœ‚)is a singleton, and (ii)𝚫𝐴

𝑠=𝐡(0) β‰  Δ¯𝑠𝐴=𝐡. Suppose first that 𝚫𝐴

𝑠=𝐡(0) < Δ¯𝐴

𝑠=𝐡; then by Proposition 39 there exists a truthful equilibrium. Moreover, by Lemma 44,πš«π΄π‘ =𝐡(πœ‚π΄) <Δ¯𝑠=𝐡𝐴 βˆ€πœ‚π΄ >0. Hence again by Proposition 39 there cannot exist a pandering equilibrium with Λ†πœ‚π΄ > 0.

Suppose next that πš«π΄π‘ =𝐡(0) > Δ¯𝑠𝐴=𝐡; then by Proposition 39 there does not exist a truthful equilibrium. In addition, by Lemma 44,𝚫𝐴

𝑠=𝐡 πœ‚π΄

is decreasing and satisfies 𝚫𝐴

𝑠=𝐡(1) ≀ 0 < Δ¯𝑠𝐴=𝐡 ∈ (0,1). Thus, thereβˆƒsome Λ†πœ‚π΄ > 0 with ¯Δ𝐴𝑠=𝐡 ∈𝚫𝐴

𝑠=𝐡(πœ‚Λ†π΄), so by Proposition 39 a pandering equilibrium exists at Λ†πœ‚π΄. Moreover, for generic parameters, Λ†πœ‚π΄must be equal to one of the (at most) four values where𝚫𝐴

𝑠=𝐡(πœ‚Λ†π΄)is non-singleton, with ¯Δ𝐴

𝑠=𝐡 ∈ (min{πš«π‘ π΄=𝐡(πœ‚Λ†π΄)},max{πš«π΄π‘ =𝐡(πœ‚Λ†π΄)}). Thus, by Lemma 44 we haveπš«π΄π‘ =𝐡(πœ‚π΄) > (<)Δ¯𝑠=𝐡𝐴 forπœ‚π΄ < (>)πœ‚Λ†π΄and no other pandering equilibrium exists. QED.

𝜎, and (iv) πœ™π‘₯βˆ’(𝜎) < (>) (=)πœ™π‘₯+(𝜎) ⇐⇒ πœ‡π‘₯

βˆ…(𝜎) > (<)𝛾, further implying that πœ™π‘₯(𝜎)=min{πœ™π‘₯βˆ’(𝜎), πœ™π‘₯+(𝜎)}.

With respect to the incumbent, having ruled out fake leadership we may focus specifically on incentives after observing the unpopular signal 𝑠 = 𝐡. Recall from Appendix A that:

Δ𝑠=𝐡𝐴 (πœƒ) =

(1βˆ’πœŒπ΄)𝜈𝐴

βˆ… +𝜌𝐴Pr(πœ” = 𝐴|𝑠 =𝐡)

βˆ’

(1βˆ’ 𝜌𝐡)𝜈𝐡

βˆ… +𝜌𝐡Pr(πœ”= 𝐡|𝑠 =𝐡)

(imposing 1 = 𝜈π‘₯

π‘₯ > 𝜈π‘₯Β¬

π‘₯ = 0 which always holds when 𝜌π‘₯ > 0 is a best response), and also

Δ¯𝑠𝐴=𝐡 = Pr(πœ” =𝐡|𝑠=𝐡) βˆ’Pr(πœ” = 𝐴|𝑠=𝐡) π›Ώπ‘ž

. Next recall from the main text that Λ†π‘žis the unique solution to

π›Ώπ‘žΛ†( (1βˆ’πœ‹)π‘žΛ†+πœ‹(1βˆ’π‘žΛ†)) =π‘žΛ†βˆ’πœ‹ .

It is helpful to observe that ¯Δ𝑠𝐴=𝐡 < (=) > 1 ⇐⇒ π‘ž < (>) = π‘žΛ†. Finally, recall from the main text that Β―π‘ž is the unique solution to

π›Ώπ‘žΛ†( (1βˆ’πœ‹)π‘žΛ†+πœ‹(1βˆ’π‘žΛ†)) =π‘žΛ†βˆ’πœ‹ .

It is again helpful to observe that ¯Δ𝐴𝑠=𝐡 < (=) > Pr(πœ” = 𝐴|𝑠=𝐡) ⇐⇒ π‘ž < (>)=

Β― π‘ž.

The simplified equilibrium characterization is then as follows.

Corollary 46 Profile (𝜎,Λ† πœƒΛ†) is a sequential equilibrium i.f.f. it satisfies Lemma 9 and either

β€’ πœŽΛ† =0(the incumbent is truthful) andΔ𝑠=𝐡𝐴 (πœƒΛ†) ≀Δ¯𝑠=𝐡𝐴

β€’ πœŽΛ† ∈ (0,1) (the incumbent panders); andΔ𝑠𝐴=𝐡(πœƒΛ†) =Δ¯𝑠𝐴=𝐡.

A sequential equilibrium of the model always exists and is generically unique.

Truthful Equilibria

Recall from Proposition 8 that a truthful equilibrium of the CHS model exists i.f.f.

either (i)𝛾 βˆ‰ (πœ‡Β―π΅,πœ‡Β―π΄) or (ii)π‘ž β‰₯ π‘žΛ†. We now provide conditions for existence of a truthful equilibrium in the RA model; Propositions 12 and 13 are then immediate corollaries.

Lemma 47 There exists a truthful equilibrium of the RA model if and only if:

β€’ 𝑐 ≀ min{πœ™Β―π΄,πœ™Β―π΅};

β€’ 𝑐 ∈ min{πœ™Β―π΄,πœ™Β―π΅},max{πœ™Β―π΄,πœ™Β―π΅}

andπ‘ž β‰₯ π‘žΒ―;

β€’ 𝑐 β‰₯ max{πœ™Β―π΄,πœ™Β―π΅}and either (i) 𝛾 βˆ‰(πœ‡Β―π΅,πœ‡Β―π΄)or (ii)π‘ž β‰₯ π‘žΛ†.

Proof: Suppose first that𝑐 ≀ min{πœ™Β―π΄,πœ™Β―π΅}; then there exists a voter best response Λ†

πœƒ to truthfulness with full attention (πœŒΛ†π΄ = πœŒΛ†π΅ = 1), for any such Λ†πœƒ we have Δ𝑠𝐴=𝐡(πœƒΛ†) = Pr(πœ” = 𝐴|𝑠 = 𝐡) βˆ’Pr(πœ” = 𝐡|𝑠 = 𝐡) < 0 < Δ¯𝑠𝐴=𝐡, so truthfulness is a best response to full attention, and a truthful equilibrium exists.

Suppose next that𝑐 ∈ min{πœ™Β―π΄,πœ™Β―π΅},max{πœ™Β―π΄,πœ™Β―π΅}

. Then in any best response Λ†πœƒ, either Λ†πœŒπ΅ = 1 > πœŒΛ†π΄ = 0 and 𝛾 < πœ‡Β―π΄ implying Λ†πœˆπ΄ = 1, or Λ†πœŒπ΄ = 1 > πœŒΛ†π΅ = 0 and 𝛾 > πœ‡Β―π΅ implying Λ†πœˆπ΅ =1. In either case,Δ𝐴

𝑠=𝐡(πœƒΛ†) =Pr(πœ” = 𝐴|𝑠 =𝐡). This in turn is≀ Δ¯𝐴𝑠=𝐡(and thus a truthful equilibrium exists) i.f.f. π‘ž β‰₯ π‘žΒ―.

Finally suppose that𝑐 β‰₯ max{πœ™Β―π΄,πœ™Β―π΅}; then there exists a voter best response Λ†πœƒ to truthfulness with no attention after either policy, and conditions on the remaining quantities for truthful equilibrium are trivially identical to conditions in the CHS model. QED.

Asymmetric Attention and Pandering Equilibria

The precise structure of equilibrium is relatively complex within the asymmetric attention region when a low-ability incumbent panders. To describe these equilibria first requires a closer examination of how pandering affects the value of attention after each policy.

The Value of Attention with Pandering Consider two distinct values of attention πœ™π‘₯

𝑠(𝜎) and πœ™π‘₯

0

𝑠0(𝜎), which are strictly monotonic in𝜎. It is straightforward to see that their derivatives will have opposite signs, and hence cross at most once over 𝜎 ∈ [0,1], if either π‘₯ = π‘₯0 or 𝑠 = 𝑠0. However, single-crossing is not assured whenbothπ‘₯ β‰  π‘₯0and𝑠 β‰  𝑠0. In particular, in our analysis it will be necessary to compare the value of negative attentionπœ™βˆ’π΄(𝜎) after 𝐴and of positive attention πœ™π΅+(𝜎), which are both increasing in𝜎. We thus begin by proving that these functions also cross at most once over𝜎 =[0,1].

Lemma 48 πœ™βˆ’π΄(𝜎) andπœ™π΅+(𝜎)cross at most once over [0,1].

Proof: By Lemma 36, the conditionπœ™π΅+ > (=)πœ™βˆ’π΄ can be equivalently written both as𝑍(𝜎, 𝛾) > (=0), where

𝑍(𝜎;𝛾) =Pr(𝑦= 𝐴) Β· (πœ‡βˆ’Pr(𝑦 =𝐡|πœ”= 𝐡)𝛾) βˆ’Pr(𝑦= 𝐡) Β·Pr(𝑦 = 𝐴|πœ” =𝐡)𝛾 , and also ˆ𝑍 (𝜎, 𝛾) > (=0), where

Λ†

𝑍 (𝜎;𝛾) =Pr(𝑦= 𝐴) Β·

π›Ύβˆ’ π›Ύβˆ’πœ‡

Pr(𝑦 = 𝐴|πœ” =𝐡)

βˆ’Pr(𝑦 =𝐡) ·𝛾

(Intuitively,𝑍(𝜎;𝛾)and ˆ𝑍(𝜎;𝛾)are distinct functions of𝜎and𝛾with potentially distinct derivatives in (𝜎, 𝛾), but both of whose zeroes over [0,1] are crossings of πœ™π΅+ andπœ™βˆ’π΄).

Now𝑍 (𝜎, 𝛾)is strictly decreasing in𝛾and𝑍(𝜎;πœ‡) =Pr(𝑦= 𝐴) βˆ’Pr(𝑦= 𝐡) > 0

βˆ€πœŽ ∈ [0,1]; hence, πœ™π΅+ βˆ’ πœ™βˆ’π΄ > 0 βˆ€πœŽ ∈ [0,1] when 𝛾 ≀ πœ‡. Next observe that Λ†

𝑍(𝜎;𝛾)is strictly increasing in𝜎at any(𝛾 , 𝜎)where both𝛾 > πœ‡and ˆ𝑍 (𝜎;𝛾) β‰₯0 (since then 𝛾 > π›Ύβˆ’πœ‡

Pr(𝑦=𝐴|πœ”=𝐡)), so ˆ𝑍(𝜎;𝛾) and hence also 𝑍 (𝜎;𝛾) and πœ™π΅+ βˆ’ πœ™βˆ’π΄ satisfy single-crossing in𝜎. QED

Having shown that single-crossing holds for all necessary pairs for our subsequent analysis, we next introduce several useful definitions.

Definition 49 For each (π‘₯ , 𝑠) ∈ {𝐴, 𝐡} Γ— {βˆ’,+}, let πœ™Λœπ‘ 

𝑠(𝜎) denote the unique continuously-differentiable function that extendsπœ™π‘₯

𝑠(𝜎)linearly overR, and define cutpoints𝜎π‘₯

0,𝑠0

π‘₯ ,𝑠 and𝜎π‘₯

𝑠(𝑐)as follows:1

β€’ Let𝜎π‘₯

0,𝑠0

π‘₯ ,𝑠 denote the unique solution toπœ™Λœπ‘₯

𝑠(𝜎) =πœ™Λœπ‘₯

0

𝑠0(𝜎);

β€’ Let𝜎π‘₯

𝑠(𝑐)denote the (well-defined) inverse ofπœ™Λœπ‘₯

𝑠(𝜎).

In short, 𝜎π‘₯

0,𝑠0

π‘₯ ,𝑠 denotes the level of pandering that equates the values of attention πœ™π‘₯

𝑠(𝜎)andπœ™π‘₯

0

𝑠0(𝜎), while𝜎π‘₯

𝑠(𝑐)denotes the level of pandering that equates the value of attentionπœ™π‘₯

𝑠 with its exogenous cost𝑐. (We intermittently indicate the dependence of these cutpoints on𝛾, depending on the context). We now prove several essential properties of these cutpoints.

1Specifically, Λœπœ™π‘ π‘₯(𝜎)=πœ™π‘ π‘₯(𝜎)for𝜎∈ [0,1], πœ•πœ™Λœ

π‘₯ 𝑠(𝜎)

πœ• 𝜎

𝜎

=0·𝜎for𝜎 <0, and πœ™Λœ

π‘₯ 𝑠(𝜎)

πœ• 𝜎

𝜎

=1·𝜎for 𝜎 >1.

Lemma 50 The cutpoints𝜎π‘₯

0,𝑠0

π‘₯ ,𝑠 satisfy the following:

β€’ πœ‡π‘₯(𝜎π‘₯+

π‘₯βˆ’(𝛾)) =𝛾 βˆ€π‘₯ ∈ {𝐴, 𝐡}andπœŽβˆ—

𝑁 =min{max{𝜎𝐴+

π΄βˆ’,0},max{𝜎𝐡+

π΅βˆ’,0}};

β€’ πœŽπ΅βˆ’

π΄βˆ’(𝛾) ∈ (0,1) and is constant in𝛾;

β€’ 𝜎𝐡+

𝐴+(𝛾) ∈ (0,1) and is< 𝜎𝐡+

π΅βˆ’ when𝛾 > πœ‡;

β€’ πœŽπ΅βˆ’

π΄βˆ’(𝛾) is strictly increasing in 𝛾 when πœŽπ΅βˆ’

π΄βˆ’(𝛾) ∈ [0,1], and there βˆƒ 𝛾 ,𝛾¯ withπœ‡ < 𝛾 < 𝛾 <Β― πœ‡Β―π΄such that𝜎𝐡+

π΄βˆ’(𝛾) =0and𝜎𝐡+

π΄βˆ’(𝛾¯) =𝜎𝐴+

π΄βˆ’(𝛾¯) =πœŽβˆ—

𝑁(𝛾¯). Proof: The first property is an immediate implication of Lemma 35 and Proposition 8, and the second is easily verified from the definitions.

Proof of third property: We argue that 𝛾 > πœ‡ β†’ πœ™+𝐴(𝜎𝐡+

π΅βˆ’) < πœ™π΅+(𝜎𝐡+

π΅βˆ’); combined withπœ™+𝐴(0) < πœ™π΅+(0)(from Lemma 40),πœ™+𝐴(𝜎)decreasing in𝜎andπœ™π΅+(𝜎)increas- ing in𝜎 (from Corollary 43) this yields the desired property. Recall from the main text that there exists a unique level of pandering Λ†πœŽ ∈ (0,1)that makes policy choice uninformative and thus satisfiesπœ‡π΄(πœŽΛ†) =πœ‡π΅(πœŽΛ†) = πœ‡. Further, is easily verified that at Λ†πœŽ, for allπ‘₯ ∈ {𝐴, 𝐡}we have Pr(𝑦 =π‘₯|πœ†πΌ = 𝐿) =Pr(𝑦 =π‘₯|πœ†πΌ =𝐻) =Pr(πœ” =π‘₯) (since a high-ability incumbent always chooses correctly). Now suppose thatπœ‡ < 𝛾. Then (i) πœ‡π΅(πœŽΛ†) = πœ‡ < 𝛾, (ii) πœ‡π΅ 𝜎𝐡+

π΅βˆ’

= 𝛾, and (iii) πœ‡π΅(𝜎) increasing jointly imply that Λ†πœŽ < 𝜎𝐡+

π΅βˆ’. We last argue that πœ™+𝐴(πœŽΛ†) < πœ™+𝐡(πœŽΛ†), which implies the de- sired property since πœ™+𝐴(𝜎) is decreasing and πœ™+𝐡(𝜎) is increasing. Observe that πœ™+𝐴(πœŽΛ†) < πœ™π΅+(πœŽΛ†) if and only if

Pr(πœ”= 𝐴|𝑦 = 𝐴)

πœ‡π΄

π΄βˆ’π›Ύ

< Pr(πœ” =𝐡|𝑦=𝐡)

πœ‡π΅

π΅βˆ’π›Ύ

⇐⇒ πœ‡π΄βˆ’Pr(πœ” = 𝐴|𝑦 = 𝐴)𝛾 < πœ‡π΅βˆ’Pr(πœ” =𝐡|𝑦 =𝐡)𝛾

⇐⇒ Pr(πœ”= 𝐴|𝑦 = 𝐴) > Pr(πœ”= 𝐡|𝑦= 𝐡)

⇐⇒ πœ‡Pr(πœ”= 𝐴|𝑦 = 𝐴, πœ†πΌ =𝐻) + (1βˆ’ πœ‡)Pr(πœ” = 𝐴|𝑦= 𝐴, πœ†πΌ =𝐿)

> πœ‡Pr(πœ”= 𝐡|𝑦= 𝐡, πœ†πΌ =𝐻) + (1βˆ’ πœ‡)Pr(πœ” =𝐡|𝑦 =𝐡, πœ†πΌ =𝐿)

⇐⇒ Pr(πœ”= 𝐴|𝑦 = 𝐴, πœ†πΌ = 𝐿) >Pr(πœ” =𝐡|𝑦 =𝐡, πœ†πΌ = 𝐿)

⇐⇒ Pr(𝑦 = 𝐴|πœ” = 𝐴, πœ†πΌ =𝐿)Pr(πœ”= 𝐴)

Pr(𝑦 = 𝐴|πœ†πΌ = 𝐿) > Pr(𝑦 =𝐡|πœ”= 𝐡, πœ†πΌ =𝐿)Pr(πœ”= 𝐡) Pr(𝑦= 𝐡|πœ†πΌ = 𝐿)

⇐⇒ Pr(𝑦 = 𝐴|πœ” = 𝐴, πœ†πΌ = 𝐿) >Pr(𝑦= 𝐡|πœ” =𝐡, πœ†πΌ = 𝐿)

⇐⇒ π‘ž+ (1βˆ’π‘ž)𝜎 > π‘ž(1βˆ’πœŽ), which holdsβˆ€πœŽ >0.

The first equivalence follows from Lemma 33, the second fromπœ‡π΄(πœŽΛ†) =πœ‡π΅(πœŽΛ†)= πœ‡, the fourth from Pr(πœ” =π‘₯|𝑦 =π‘₯ , πœ†πΌ =𝐻) =1, and the sixth from Pr(𝑦 =π‘₯|πœ†πΌ = 𝐿) = Pr(πœ”=π‘₯)at Λ†πœŽ. QED.

Proof of fourth property: Recall from the proof of Lemma 48 that πœ™π΅+ (𝜎;𝛾) βˆ’ πœ™βˆ’π΄(𝜎;𝛾) > (=)0 i.f.f. 𝑍(𝜎, 𝛾) > (=0), where𝑍(𝜎, 𝛾)is strictly decreasing in𝛾 and crosses 0 over𝜎 ∈ [0,1]at most once.

We first argue that𝜎𝐡+

π΄βˆ’ (𝛾)is strictly increasing in𝛾when𝜎𝐡+

π΄βˆ’ (𝛾) ∈ [0,1]. For𝛾 <

𝛾0where both𝜎𝐡+

π΄βˆ’(𝛾) ∈ [0,1]and𝜎𝐡+

π΄βˆ’ (𝛾0) ∈ [0,1]we have that𝑍 𝜎𝐡+

π΄βˆ’(𝛾);𝛾

= 0 β†’ 𝑍 𝜎𝐡+

π΄βˆ’ (𝛾);𝛾0

< 0, implying 𝜎𝐡+

π΄βˆ’ (𝛾0) such that ˆ𝑍 𝜎𝐡+

π΄βˆ’ (𝛾);𝛾0

= 0 must satisfy𝜎𝐡+

π΄βˆ’(𝛾0) > 𝜎𝐡+

π΄βˆ’ (𝛾)by single crossing of 𝑍(𝜎, 𝛾)over𝜎 ∈ [0,1]. We next argue that there exists a unique𝛾 ∈ πœ‡,πœ‡Β―π΄

that solves𝜎𝐡+

π΄βˆ’

𝛾

=0, which is equivalent to πœ™+𝐡

0;𝛾

βˆ’ πœ™βˆ’π΄

0;𝛾

= 0. To see this, observe that 𝑍(𝜎;πœ‡) = Pr(𝑦 = 𝐴) βˆ’Pr(𝑦 =𝐡) > 0βˆ€πœŽ ∈ [0,1]soπœ™π΅+ (0;πœ‡) > πœ™βˆ’π΄(0;πœ‡), andπœ™βˆ’π΄ 0; Β―πœ‡π΄

= πœ™+𝐴 0; Β―πœ‡π΄

> πœ™+𝐡 0,πœ‡Β―π΄

(where the equality follows from 𝜎𝐴+

π΄βˆ’ πœ‡Β―π΄

= 0 and the inequality from Lemma 35).

Lastly, since𝜎𝐡+

π΄βˆ’(𝛾) is strictly increasing in𝛾, 𝜎𝐴+

π΄βˆ’ (𝛾) is strictly decreasing in𝛾, 𝜎𝐡+

π΄βˆ’

𝛾

= 0< 𝜎𝐴+

π΄βˆ’

𝛾

, and 𝜎𝐡+

π΄βˆ’ πœ‡Β―π΄

> 𝜎𝐴+

π΄βˆ’ πœ‡Β―π΄

=0, there must exist a unique

Β― 𝛾 ∈

𝛾 ,πœ‡Β―π΄

where𝜎𝐡+

π΄βˆ’ (𝛾¯)=𝜎𝐴+

π΄βˆ’(𝛾¯). QED.

Having established properties of these critical cutpoints, we are now in a position to boundthe equilibrium level of panderingπœŽβˆ—

𝑅under a variety of different conditions.

Lemma 51 An equilibrium level of pandering πœŽβˆ—

𝑅 in the RA model satisfies the following.

β€’ If𝛾 <𝛾¯ thenπœŽβˆ—

𝑅 ≀ 𝜎𝐴+

π΄βˆ’;

β€’ If𝛾 < 𝛾thenπœŽβˆ—

𝑅

< πœŽπ΅βˆ’

π΄βˆ’;

β€’ If𝛾 β‰₯ 𝛾¯ thenπœŽβˆ—

𝑅 < 𝜎𝐡+

𝐴+;

β€’ If𝛾 ∈ [𝛾 ,𝛾¯]then𝑐 > (<)πœ™π΅+(𝜎𝐡+

π΄βˆ’) =πœ™βˆ’π΄(𝜎𝐡+

π΄βˆ’) β†’πœŽβˆ—

𝑅 > (<)𝜎𝐡+

π΄βˆ’. Proof: We first argue𝛾 ≀ 𝛾¯ β†’ πœŽβˆ—

𝑅 ≀ 𝜎𝐴+

π΄βˆ’. Suppose alternatively thatπœŽβˆ—

𝑅 > 𝜎𝐴+

π΄βˆ’; then 𝜈𝐴 = 0 in any best response. Supporting such an equilibrium requires that a low-ability incumbent who receives signal 𝐡 have a strict electoral incentive to choose 𝐴; it is easily verified that this in turn requires both that 𝜈𝐡 < 1 (so πœŽβˆ—

𝑅 ≀ 𝜎𝐡+

π΅βˆ’), and also that 𝜌𝐴 > 𝜌𝐡 (so πœ™π΄ πœŽβˆ—

𝑅

β‰₯ πœ™π΅ πœŽβˆ—

𝑅

). Clearly we cannot have 𝛾 ≀ πœ‡ since then 𝜎𝐡+

π΅βˆ’ ≀ 𝜎𝐴+

π΄βˆ’, so suppose instead that 𝛾 ∈ (πœ‡,𝛾¯]. Then

we have πœŽβˆ—

𝑁 = 𝜎𝐴+

π΄βˆ’, πœ™π΄ πœŽβˆ—

𝑅

= πœ™+𝐴 πœŽβˆ—

𝑅

< πœ™+𝐴 𝜎𝐴+

π΄βˆ’

= πœ™βˆ’π΄ 𝜎𝐴+

π΄βˆ’

= πœ™βˆ’π΄ πœŽβˆ—

𝑁

and πœ™π΅ πœŽβˆ—

𝑅

= πœ™+𝐡 πœŽβˆ—

𝑅

> πœ™π΅+ 𝜎𝐴+

π΄βˆ’

= πœ™π΅+ πœŽβˆ—

𝑁

. But by the definition of ¯𝛾 we have πœ™π΅+ πœŽβˆ—

𝑁

> πœ™βˆ’π΄ πœŽβˆ—

𝑁

implying πœ™π΅ πœŽβˆ—

𝑅

> πœ™π΄ πœŽβˆ—

𝑅

, a contradiction.

We next argue 𝛾 ≀ 𝛾 β†’ πœŽβˆ—

𝑅 < πœŽπ΅βˆ’

π΄βˆ’. By the definition of 𝛾 we have we have πœ™βˆ’π΄(𝜎) < πœ™+𝐡(𝜎) βˆ€πœŽ so πœŽπ΅βˆ’

𝐡+ < πœŽπ΅βˆ’

π΄βˆ’. Thus πœ™π΄ πœŽπ΅βˆ’

π΄βˆ’

≀ πœ™βˆ’π΄ πœŽπ΅βˆ’

π΄βˆ’

= πœ™βˆ’π΅ πœŽπ΅βˆ’

π΄βˆ’

= πœ™π΅ πœŽπ΅βˆ’

π΄βˆ’

. Now consider a voter best response Λ†πœƒ to πœŽπ΅βˆ’

π΄βˆ’. If 𝑐 > πœ™βˆ’π΅ πœŽπ΅βˆ’

π΄βˆ’

then in any best response, 𝜈𝐡 = 1 > 𝜌𝐡 = 0; but then Δ𝑠𝐴=𝐡(πœƒΛ†) ≀ 0 < Δ¯𝑠𝐴=𝐡 so πœŽβˆ—

𝑅 < πœŽπ΅βˆ’

π΄βˆ’. Alternatively, if 𝑐 < πœ™βˆ’π΅ πœŽπ΅βˆ’

π΄βˆ’

then in any best response Λ†πœƒ we have 𝜌𝐡 = 1, and either have 𝜌𝐴 = 1 (if πœ™π΄ πœŽπ΅βˆ’

π΄βˆ’

= πœ™βˆ’π΄ πœŽπ΅βˆ’

π΄βˆ’

≀ πœ™+𝐴 πœŽπ΅βˆ’

π΄βˆ’

) or 𝜌𝐴 = 𝜈𝐴 = 0 (if πœ™π΄ πœŽπ΅βˆ’

π΄βˆ’

= πœ™+𝐴 πœŽπ΅βˆ’

π΄βˆ’

< πœ™βˆ’π΄ πœŽπ΅βˆ’

π΄βˆ’

); in either case Δ𝑠𝐴=𝐡(πœƒΛ†) ≀

βˆ’ (Pr(πœ”= 𝐡|𝑠 =𝐡) βˆ’Pr(πœ” = 𝐴|𝑠=𝐡)) <0 < Δ¯𝐴

𝑠=𝐡, so againπœŽβˆ—

𝑅 < πœŽπ΅βˆ’

π΄βˆ’. We next argue that 𝛾 β‰₯ 𝛾¯ β†’ πœŽβˆ—

𝑅 ≀ 𝜎𝐡+

𝐴+. By the definition of ¯𝛾 we have that πœŽπ΄βˆ’

𝐴+ ≀ 𝜎𝐡+

𝐴+ ≀ 𝜎𝐡+

π΄βˆ’, and further by Lemma 50 we have that 𝜎𝐡+

𝐴+ ≀ 𝜎𝐡+

π΅βˆ’. Hence πœ™π΄ 𝜎𝐡+

𝐴+

= πœ™+𝐴 𝜎𝐡+

𝐴+

= πœ™+𝐡 𝜎𝐡+

𝐴+

= πœ™π΅ 𝜎𝐡+

𝐴+

. We now consider a voter best response Λ†πœƒ to 𝜎𝐡+

𝐴+. If 𝑐 > πœ™π΄ 𝜎𝐡+

𝐴+

= πœ™π΅ 𝜎𝐡+

𝐴+

, then the voter will replace the incumbent outright after either policy, soΔ𝑠𝐴=𝐡(πœƒΛ†) =0< Δ¯𝐴𝑠=𝐡, implyingπœŽβˆ—

𝑅 < πœŽπ΅βˆ’

π΄βˆ’. Alternatively, if 𝑐 < πœ™π΄ 𝜎𝐡+

𝐴+

= πœ™π΅ 𝜎𝐡+

𝐴+

then the voter will pay attention after either policy, soΔ𝑠𝐴=𝐡(πœƒΛ†) = βˆ’ (Pr(πœ” =𝐡|𝑠 =𝐡) βˆ’Pr(πœ” = 𝐴|𝑠 =𝐡)) < 0 < Δ¯𝐴𝑠=𝐡, again implyingπœŽβˆ—

𝑅 < πœŽπ΅βˆ’

π΄βˆ’. We last argue that when𝛾 ∈ h

𝛾 ,𝛾¯ i

we haveπœŽβˆ—

𝑅

> (<)𝜎𝐡+

π΄βˆ’when𝑐 > (<)πœ™π΅+ 𝜎𝐡+

π΄βˆ’

= πœ™βˆ’π΄ 𝜎𝐡+

π΄βˆ’

. Observe that by the definitions of 𝛾 and ¯𝛾 we have that 𝜎𝐡+

π΄βˆ’ ≀ 𝜎𝐡+

𝐴+ ≀ πœŽπ΄βˆ’

𝐴+ < πœŽπ΅βˆ’

𝐡+. Hence πœ™π΄ 𝜎𝐡+

π΄βˆ’

= πœ™βˆ’π΄ 𝜎𝐡+

π΄βˆ’

= πœ™π΅+ 𝜎𝐡+

π΄βˆ’

= πœ™π΅ 𝜎𝐡+

π΄βˆ’

. Now consider a voter best response Λ†πœƒ to 𝜎𝐡+

π΄βˆ’. If 𝑐 > πœ™π΄ 𝜎𝐡+

π΄βˆ’

= πœ™π΅ 𝜎𝐡+

π΄βˆ’

then the voter will retain the incumbent outright after 𝐴 and replace her af- ter 𝐡, so Δ𝑠=𝐡𝐴 (πœƒΛ†) = 1 > Δ¯𝐴𝑠=𝐡, implying πœŽβˆ—

𝑅

> 𝜎𝐡+

π΄βˆ’. Alternatively, if 𝑐 <

πœ™π΄ 𝜎𝐡+

π΄βˆ’

= πœ™π΅ 𝜎𝐡+

π΄βˆ’

then the voter will pay attention after either policy, so Δ𝑠𝐴=𝐡(πœƒΛ†) = βˆ’ (Pr(πœ”= 𝐡|𝑠 =𝐡) βˆ’Pr(πœ” = 𝐴|𝑠=𝐡)) < 0 < Δ¯𝑠𝐴=𝐡, implyingπœŽβˆ—

𝑅 <

𝜎𝐡+

π΄βˆ’. QED

Finally, we are now in a position to characterize which policy receives more attention in the asymmetric attention region.

Proof of Lemma 14 We first argue that 𝛾 < 𝛾 < 𝛾¯ β†’ πœ™π΅ πœŽβˆ—

𝑅

> πœ™π΄ πœŽβˆ—

𝑅

, implying 𝜌𝐡 β‰₯ 𝜌𝐴. By the definition of 𝛾 we have πœ™π΅+ πœŽβˆ—

𝑅

> πœ™βˆ’π΄ πœŽβˆ—

𝑅

, and by

Lemma 51 we haveπœŽβˆ—

𝑅 ∈ [0, πœŽπ΄βˆ’

π΅βˆ’) whichβ†’ πœ™βˆ’π΅ πœŽβˆ—

𝑅

> πœ™βˆ’π΄ πœŽβˆ—

𝑅

. Thusπœ™π΅ πœŽβˆ—

𝑅

= min

πœ™π΅βˆ’ πœŽβˆ—

𝑅

, πœ™π΅+ πœŽβˆ—

𝑅

> πœ™βˆ’π΄ πœŽβˆ—

𝑅

β‰₯ πœ™π΄ πœŽβˆ—

𝑅

. We next argue that 𝛾 > 𝛾¯ > 𝛾 β†’ πœ™π΄ πœŽβˆ—

𝑅

> πœ™π΅ πœŽβˆ—

𝑅

, implying 𝜌𝐴 β‰₯ 𝜌𝐡. By Lemma 51 we have that πœŽβˆ—

𝑅 ∈ [0, 𝜎𝐴+

𝐡+), and by Lemma 50 we have 𝜎𝐴+

𝐡+ < πœŽπ΅βˆ’

𝐡+. Henceπœ™+𝐴 πœŽβˆ—

𝑅

> πœ™π΅+ πœŽβˆ—

𝑅

= πœ™π΅ πœŽβˆ—

𝑅

. Now ifπœŽβˆ—

𝑅 β‰₯ 𝜎𝐴+

π΄βˆ’ thenπœ™π΄ πœŽβˆ—

𝑅

= πœ™+𝐴 πœŽβˆ—

𝑅

which yields the desired property, whereas if πœŽβˆ—

𝑅 ≀ 𝜎𝐴+

π΄βˆ’ ≀ πœŽβˆ—

𝑁 then πœ™π΄ πœŽβˆ—

𝑅

= πœ™βˆ’π΄ πœŽβˆ—

𝑅

> πœ™π΅+ πœŽβˆ—

𝑅

from the definition of𝛾, again yielding the desired property.

We last argue that if 𝛾 ∈ h 𝛾 ,𝛾¯

i

we have 𝑐 > (<)πœ™π΅βˆ’ 𝜎𝐡+

π΄βˆ’

= πœ™+𝐴 𝜎𝐡+

π΄βˆ’

β†’ 𝜌𝐡 ≀ (β‰₯)𝜌𝐴. Observe that πœŽβˆ—

𝑁 = 𝜎𝐴+

π΄βˆ’, by the definitions of 𝛾 and ¯𝛾 we have 𝜎𝐡+

π΄βˆ’ ≀ 𝜎𝐡+

𝐴+ ≀ 𝜎𝐴+

π΄βˆ’, and also 𝜎𝐴+

π΄βˆ’ < 𝜎𝐡+

π΅βˆ’ since πœ‡ < 𝛾. Hence βˆ€πœŽ ∈ 0, 𝜎𝐴+

π΄βˆ’

we have πœ™π΄(𝜎) = πœ™βˆ’π΄(𝜎) and πœ™π΅(𝜎) = πœ™π΅+ (𝜎). Finally by Lemma 51 we have 𝑐 > πœ™π΅βˆ’ 𝜎𝐡+

π΄βˆ’

β†’ πœŽβˆ—

𝑅 > 𝜎𝐡+

π΄βˆ’ β†’ πœ™π΄ πœŽβˆ—

𝑅

> πœ™π΅ πœŽβˆ—

𝑅

β†’ 𝜌𝐴 β‰₯ 𝜌𝐡 and 𝑐 <

πœ™π΅βˆ’ 𝜎𝐡+

π΄βˆ’

β†’ πœŽβˆ—

𝑅 < 𝜎𝐡+

π΄βˆ’ β†’ πœ™π΄ πœŽβˆ—

𝑅

< πœ™π΅ πœŽβˆ—

𝑅

β†’ 𝜌𝐡 β‰₯ 𝜌𝐴. QED.

Equilibrium with Moderate-Quality Information

We now use the preceding to fully characterize equilibrium in the asymmetric attention attention region when a low-ability incumbent receives moderate-quality information. Propositions 16 and 18 in the main text are corollaries of this more complete characterization.

Case 1. Suppose that𝑐 ∈ min

πœ™π΄(0), πœ™π΅(0) ,max

πœ™π΄(0), πœ™π΅(0)

. Then by Lemma 47, there exists a truthful equilibrium .

Case 2. Suppose that𝑐 ∈ (max

πœ™π΄(0), πœ™π΅(0) ,max{πœ™π΄(πœŽβˆ—

𝑁), πœ™π΅(πœŽβˆ—

𝑁)}). Then πœŽβˆ—

𝑁 β‰  0 and 𝛾 ∈ (πœ‡Β―π΅,πœ‡Β―π΄). Then in any best response Λ†πœƒ to truthfulness we have Λ†

𝜈𝐴 =1> πœˆΛ†π΅ =πœŒΛ†π΄ =πœŒΛ†π΅ =0, implyingΔ𝐴

𝑠=𝐡(πœƒΛ†) =1> Δ¯𝐴

𝑠=𝐡, so truthfulness is not a best response to Λ†πœƒ.

Subcase 2.1: 𝛾 ∈

Β― πœ‡π΅, 𝛾

. First, since πœ™π΄(𝜎) = πœ™βˆ’π΄(𝜎) < πœ™π΅+ (𝜎) for all 𝜎 ∈

0, πœŽβˆ—

𝑁

(sinceπœŽβˆ—

𝑁 =min 𝜎𝐡+

π΅βˆ’, 𝜎𝐴+

π΄βˆ’ ) by Lemma 50 the condition reduces to 𝑐 ∈ πœ™π΅+(0), πœ™+𝐡 πœŽβˆ—

𝑁 . Thus, there exists a well-defined cutpoint𝜎+𝐡(𝑐) ∈ 0, πœŽβˆ—

𝑁

; we argue that there exist an equilibrium with Λ†πœŽπ‘… = 𝜎+𝐡(𝑐). First observe that since πœ™βˆ’π΄(𝜎) < πœ™π΅+ (𝜎) βˆ€πœŽ ∈

0, πœŽβˆ—

𝑁

, we have that Λ†πœˆπ΄ = 1 > πœŒΛ†π΄ = 0 is a best

response after 𝐴. Next observe that since 𝜎+𝐡(𝑐) < πœŽβˆ—

𝑁 = min 𝜎𝐴+

π΄βˆ’, 𝜎𝐡+

π΅βˆ’ , Λ†πœƒπ΅ is a best-response to𝜎+𝐡(𝑐) ⇐⇒ πœˆΛ†π΅ =0. Since,

Δ𝑠=𝐡𝐴 (πœŒΛ†π΅ =0; Λ†πœƒ) =1> Δ¯𝐴𝑠=𝐡 > Δ𝐴𝑠=𝐡(πœŒΛ†π΅ =1; Λ†πœƒ) =Pr(πœ” = 𝐴|𝑠 =𝐡),

there exists a best response Λ†πœƒ with partial attention Λ†πœŒπ΅ ∈ (0,1) after 𝐡 and no attention Λ†πœŒπ΄ =0 after 𝐴that supports an equilibrium.

Subcase 2.2: 𝛾 ∈ 𝛾 ,𝛾¯

. By Lemma 50 we have 0 < 𝜎𝐡+

π΄βˆ’ < 𝜎𝐡+

𝐴+ < 𝜎𝐴+

π΄βˆ’, so the condition reduces to 𝑐 ∈ πœ™βˆ’π΄(0), πœ™+𝐡 𝜎𝐴+

π΄βˆ’ where 𝜎𝐴+

π΄βˆ’ = πœŽβˆ—

𝑁. Thus, there exists a well-defined cutpoint min

πœŽβˆ’π΄(𝑐), 𝜎+𝐡(𝑐) ∈ 0, πœŽβˆ—

𝑁

; we argue that there exists an equilibrium with Λ†πœŽπ‘… =min

𝜎+𝐡(𝑐), πœŽβˆ’π΄(𝑐) . If Λ†πœŽπ‘… =𝜎+𝐡(𝑐) thenπœ™βˆ’π΄ 𝜎+𝐡(𝑐)

≀ πœ™π΅+ 𝜎+𝐡(𝑐)

=𝑐and Λ†πœƒπ΄ with Λ†πœˆπ΄ =1 > πœŒΛ†π΄ =0 is a best response after 𝐴. Next observe that since𝜎+𝐡(𝑐) < πœŽβˆ—

𝑁 =min 𝜎𝐴+

π΄βˆ’, 𝜎𝐡+

π΅βˆ’ , Λ†

πœƒπ΅is a best-response to𝜎+𝐡(𝑐) ⇐⇒ πœˆΛ†π΅ =0. Since

Δ𝑠𝐴=𝐡(πœŒΛ†π΅ =0; Λ†πœƒ) =1> Δ¯𝐴𝑠=𝐡 > Δ𝐴𝑠=𝐡(πœŒΛ†π΅ =1; Λ†πœƒ) =Pr(πœ” = 𝐴|𝑠 =𝐡),

there exists a best response Λ†πœƒ with partial attention Λ†πœŒπ΅ ∈ (0,1) after 𝐡 and no attention Λ†πœŒπ΄ =0 after 𝐴that supports an equilibrium.

If Λ†πœŽπ‘… =πœŽβˆ’π΄(𝑐) thenπœ™+𝐡 πœŽβˆ’π΄(𝑐)

≀ πœ™βˆ’π΄ πœŽβˆ’π΄(𝑐)

=𝑐, and Λ†πœƒπ΅ with Λ†πœŒπ΅ =πœˆΛ†π΅ =0 is a best response after 𝐴. Next, observe that since πœŽβˆ’π΄(𝑐) < πœŽβˆ—

𝑁 =min 𝜎𝐴+

π΄βˆ’, 𝜎𝐡+

π΅βˆ’ , Λ†πœƒπ΄ is a best response toπœŽβˆ’π΄(𝑐) ⇐⇒ πœˆΛ†π΄ =1. Since

Δ𝐴𝑠=𝐡(πœŒΛ†π΄ =0; Λ†πœƒ) =1> Δ¯𝐴𝑠=𝐡 > Δ𝐴𝑠=𝐡(πœŒΛ†π΄ =1; Λ†πœƒ) =Pr(πœ” = 𝐴|𝑠=𝐡),

there exists a best response with partial attention Λ†πœŒπ΄ ∈ (0,1)after𝐴and no attention Λ†

𝜌 =0 after 𝐡that supports an equilibrium.

Subcase 2.3: 𝛾 ∈ 𝛾 ,Β― πœ‡Β―π΄

. By Lemma 50 we have 0 < 𝜎𝐴+

π΄βˆ’ < 𝜎𝐡+

𝐴+ < 𝜎𝐡+

π΄βˆ’, so the condition reduces to 𝑐 ∈ πœ™βˆ’π΄(0), πœ™βˆ’π΄ 𝜎𝐴+

π΄βˆ’ where 𝜎𝐴+

π΄βˆ’ = πœŽβˆ—

𝑁. Thus, there exists a well-defined cutpointπœŽβˆ’π΄(𝑐) ∈ 0, πœŽβˆ—

𝑁

; we argue that there exist an equilibrium with Λ†πœŽπ‘… = πœŽβˆ’π΄(𝑐). First observe that since πœ™π΅+ (𝜎) < πœ™βˆ’π΄(𝜎) βˆ€πœŽ ∈

0, πœŽβˆ—

𝑁

where πœŽβˆ—

𝑁 =𝜎𝐴+

π΄βˆ’, we have Λ†πœŒπ΅ =πœˆΛ†π΅ =0 is a best response after𝐡. Next observe that since πœŽβˆ’π΄(𝑐) < πœŽβˆ—

𝑁 = min 𝜎𝐴+

π΄βˆ’, 𝜎𝐡+

π΅βˆ’ , Λ†πœƒπ΄ is a best-response to πœŽβˆ’π΄(𝑐) ⇐⇒ πœˆΛ†π΄ = 1.

Since,

Δ𝐴𝑠=𝐡(πœŒΛ†π΄ =0; Λ†πœƒ) =1> Δ¯𝐴𝑠=𝐡 > Δ𝐴𝑠=𝐡(πœŒΛ†π΄ =1; Λ†πœƒ) =Pr(πœ” = 𝐴|𝑠=𝐡),

there exists a best response Λ†πœƒ with partial attention Λ†πœŒπ΄ ∈ (0,1) after 𝐴 and no attention Λ†πœŒπ΅ =0 after 𝐡that supports an equilibrium. QED

Equilibrium with Low-Quality Information

We last fully characterize equilibria in the asymmetric attention attention region when a low-ability incumbent receives low-quality information (π‘ž ∈ (πœ‹,π‘žΒ―)). Propo- sitions 17 and 19 are corollaries of this more complete characterization.

Recall thatπ‘ž < π‘žΛ† ⇐⇒ Δ¯𝐴

𝑠=𝐡 < Pr(πœ” =𝐴|𝑠 =𝐡) and 𝑐 ∈ (min

πœ™π΄(0), πœ™π΅(0) ,max πœ™π΄ πœŽβˆ—

𝑁

, πœ™π΅ πœŽβˆ—

𝑁

) We divide up into several cases.

CASE 1:𝛾 ∈ 0, 𝛾

.

We begin by arguing that (i) min

πœ™π΄(0), πœ™π΅(0) =πœ™βˆ’π΄(0)and (ii) max πœ™π΄ πœŽβˆ—

𝑁

, πœ™π΅ πœŽβˆ—

𝑁

= πœ™π΅ πœŽβˆ—

𝑁

, so that the asymmetric attention condition reduces to 𝑐 ∈

πœ™βˆ’π΄(0), πœ™π΅ πœŽβˆ—

𝑁

First observe that 𝛾 < πœ‡Β―π΄ β†’ πœ™βˆ’π΄(0) < πœ™+𝐴(0). Second recall from Lemma 40 that πœ™βˆ’π΄(0) < πœ™βˆ’π΅(0). Third recall that𝛾 < 𝛾 β†’ πœ™βˆ’π΄(𝜎) < πœ™+𝐡(𝜎) βˆ€πœŽ ∈ [0,1]. These immediately yield (i), as well as (ii) when𝛾 ≀ πœ‡Β―π΅so thatπœŽβˆ—

𝑁 =0. Finally, whenever 𝛾 ∈ πœ‡Β―π΅,πœ‡Β―π΄

we have πœ™π΅ πœŽβˆ—

𝑁

= πœ™+𝐡 πœŽβˆ—

𝑁

and πœ™π΄ πœŽβˆ—

𝑁

= πœ™βˆ’π΄ πœŽβˆ—

𝑁

which again yields (ii).

We now argue that there exists a pandering equilibrium at Λ†

πœŽπ‘… =min{πœŽβˆ’π΅(𝑐), πœŽβˆ’π΄(𝑐), 𝜎𝐴+

π΄βˆ’}. To do so observe that 𝛾 < πœ‡Β―π΄ β†’ 𝜎𝐴+

π΄βˆ’ ∈ (0,1) andπœŽπ΅βˆ’

π΄βˆ’ is constant in𝛾. We now examine three exhaustive and mutually exclusive conditions on the cost of attention 𝑐.

Subcase 1.1 (High Attention). 𝑐 ∈ πœ™βˆ’π΄(0), πœ™βˆ’π΄ min 𝜎𝐴+

π΄βˆ’, πœŽπ΅βˆ’

π΄βˆ’

. It is easily verified that 0 < πœŽβˆ’π΄(𝑐) < min

πœŽβˆ’π΅(𝑐), 𝜎𝐴+

π΄βˆ’ so Λ†πœŽπ‘… = πœŽβˆ’π΄(𝑐). Clearly, any Λ†πœƒπ΄ such that Λ†πœˆπ΄ =1 is a best response to πœŽβˆ’π΄(𝑐). Next we have𝑐 = πœ™βˆ’π΄ πœŽβˆ’π΄(𝑐)

and

πœ™βˆ’π΄ πœŽβˆ’π΄(𝑐)

< πœ™π΅βˆ’ πœŽβˆ’π΄(𝑐)

andπœ™βˆ’π΄ πœŽβˆ’π΄(𝑐)

< πœ™+𝐡 πœŽβˆ’π΄(𝑐)

, so any Λ†πœƒπ΅that is a best response toπœŽβˆ’π΄(𝑐)must have Λ†πœŒπ΅ =1. Thus, we have:

Δ𝑠𝐴=𝐡(πœŒΛ†π΄ =0; Λ†πœƒ) = Pr(πœ” = 𝐴|𝑠 =𝐡) >Δ¯𝑠𝐴=𝐡 > Δ𝑠𝐴=𝐡(πœŒΛ†π΄ =1; Λ†πœƒ)

= βˆ’ (Pr(πœ” =𝐡|𝑠=𝐡) βˆ’Pr(πœ”= 𝐴|𝑠= 𝐡)),

and there exists a best response to πœŽβˆ’π΄(𝑐) with partial attention Λ†πœŒπ΄ ∈ (0,1) and a favorable posture Λ†πœˆπ΄ =1 after 𝐴, and full attention Λ†πœŒπ΅ =1 after 𝐡.

Subcase 1.2 (Medium Attention). 𝑐 ∈ πœ™βˆ’π΄ min 𝜎𝐴+

π΄βˆ’, πœŽπ΅βˆ’

π΄βˆ’

, πœ™π΅ min 𝜎𝐴+

π΄βˆ’, πœŽπ΅βˆ’

π΄βˆ’

. We first argue that for this case to hold, 𝛾 must be such that 𝜎𝐴+

π΄βˆ’ < πœŽπ΅βˆ’

π΄βˆ’. First recall that by Lemma 50 thatπœ™π΅+ (𝜎) > πœ™βˆ’π΄(𝜎) βˆ€πœŽ when𝛾 < 𝛾, whichβ†’ 𝜎𝐡+

π΅βˆ’ <

πœŽπ΄βˆ’

π΅βˆ’. Next, if instead we had πœŽπ΅βˆ’

π΄βˆ’ ≀ 𝜎𝐴+

π΄βˆ’ then the interval would reduce to πœ™βˆ’π΄ πœŽπ΅βˆ’

π΄βˆ’

, πœ™βˆ’π΅ πœŽπ΅βˆ’

π΄βˆ’ which is empty. Concluding, this case may be simplified to 𝜎𝐴+

π΄βˆ’ < πœŽπ΅βˆ’

π΄βˆ’ and

𝑐 ∈ πœ™βˆ’π΄

𝜎𝐴+

π΄βˆ’

, πœ™π΅

𝜎𝐴+

π΄βˆ’ . It is easily verified that𝜎𝐴+

π΄βˆ’ < min

πœŽβˆ’π΅(𝑐), πœŽβˆ’π΄(𝑐) so Λ†πœŽπ‘… =𝜎𝐴+

π΄βˆ’. Now clearly any Λ†πœƒπ΄ with Λ†πœŒπ΄ =0 is a best response to𝜎𝐴+

π΄βˆ’, and any Λ†πœƒπ΅with Λ†πœŒπ΅ =1 is a best response to𝜎𝐴+

π΄βˆ’. Thus, we have that

Δ𝑠𝐴=𝐡(πœˆΛ†π΄ =1; Λ†πœƒ) =Pr(πœ” = 𝐴|𝑠 =𝐡) >Δ¯𝑠𝐴=𝐡 > Δ𝑠𝐴=𝐡(πœˆΛ†π΄ =0; Λ†πœƒ) =βˆ’Pr(πœ”= 𝐡|𝑠=𝐡), and there exists a best response to𝜎𝐴+

π΄βˆ’ with no attention Λ†πœŒπ΄ =0 and a mixed posture Λ†

𝜈𝐴 ∈ (0,1)after 𝐴, and full attention Λ†πœŒπ΅ =1 after𝐡. Subcase 1.3 (Low Attention). 𝑐 ∈ πœ™π΅ min

𝜎𝐴+

π΄βˆ’, πœŽπ΅βˆ’

π΄βˆ’

, πœ™π΅ πœŽβˆ—

𝑁 . We first argue that this case may be simplified to𝛾 < πœ‡and

𝑐 ∈ πœ™π΅βˆ’

min

𝜎𝐴+

π΄βˆ’, πœŽπ΅βˆ’

π΄βˆ’

, πœ™βˆ’π΅

max

𝜎𝐡+

π΅βˆ’,0 . To see this, first observe that when𝛾 = πœ‡we haveπœŽβˆ—

𝑁 =𝜎𝐴+

π΄βˆ’ = 𝜎𝐡+

π΅βˆ’, so πœ™βˆ’π΅ πœŽβˆ—

𝑁

= πœ™π΅+ πœŽβˆ—

𝑁

> πœ™βˆ’π΄ πœŽβˆ—

𝑁

(fromπœ‡ < 𝛾¯) implying𝜎𝐡+

π΅βˆ’ =𝜎𝐴+

π΄βˆ’ < πœŽπ΅βˆ’

π΄βˆ’. Next since𝜎𝐡+

π΅βˆ’ is increasing in𝛾,𝜎𝐴+

π΄βˆ’ is decreasing in𝛾, andπœŽπ΅βˆ’

π΄βˆ’ is constant in𝛾(by Lemma 50), we have that 𝜎𝐴+

π΄βˆ’ < πœŽπ΅βˆ’

π΄βˆ’ for𝛾 ∈ [πœ‡,𝛾¯] and𝜎𝐡+

π΅βˆ’ < πœŽπ΅βˆ’

π΄βˆ’ for𝛾 < πœ‡. Consequently, the condition reduces to𝑐 ∈ πœ™π΅ 𝜎𝐴+

π΄βˆ’

, πœ™π΅ 𝜎𝐴+

π΄βˆ’ when𝛾 ∈ [πœ‡,𝛾¯) (which is empty) and𝑐 ∈ πœ™π΅βˆ’ min

𝜎𝐴+

π΄βˆ’, πœŽπ΅βˆ’

π΄βˆ’

, πœ™π΅βˆ’ max 𝜎𝐡+

π΅βˆ’,0

when𝛾 < πœ‡, which is always nonempty sinceπœ™βˆ’π΅(𝜎) is decreasing in𝜎and𝜎𝐡+

π΅βˆ’ < min 𝜎𝐴+

π΄βˆ’, πœŽπ΅βˆ’

π΄βˆ’ .

Next, it is easily verified that 0 < πœŽβˆ’π΅(𝑐) < 𝜎𝐴+

π΄βˆ’ < πœŽβˆ’π΄(𝑐) so Λ†πœŽπ‘… = πœŽβˆ’π΅(𝑐). Clearly, any Λ†πœƒπ΅ such that Λ†πœˆπ΅ =1 is a best response toπœŽβˆ’π΅(𝑐). Next,πœ™π΄ πœŽβˆ’π΅(𝑐)

= πœ™βˆ’π΄ πœŽβˆ’π΅(𝑐)

(byπœŽβˆ’π΅(𝑐) < 𝜎𝐴+

π΄βˆ’), which is< πœ™βˆ’π΅ πœŽβˆ’π΅(𝑐)

(by πœŽβˆ’π΅(𝑐) < πœŽπ΅βˆ’

π΄βˆ’) which is=𝑐, so Λ†πœƒπ΄is a best response toπœŽβˆ’π΅(𝑐)i.f.f. Λ†πœˆπ΄ =1> πœŒΛ†π΄ =0. Thus, we have that:

Δ𝐴𝑠=𝐡(πœŒΛ†π΅ =1; Λ†πœƒ) =Pr(πœ” = 𝐴|𝑠 =𝐡) > Δ¯𝑠𝐴=𝐡 > Δ𝑠𝐴=𝐡(πœŒΛ†π΅ =0; Λ†πœƒ) =0,

so there exists a best response to πœŽβˆ’π΅(𝑐) with partial attention Λ†πœŒπ΅ ∈ (0,1) and a favorable posture Λ†πœˆπ΅ =1 after 𝐡, and no attention Λ†πœŒπ΄ = 0 with a favorable posture

Λ†

𝜈𝐴 =1 after 𝐴.

CASE 2:𝛾 ∈ h

𝛾 ,𝛾¯ i

We begin by recalling useful observations from Lemma 50: (i)πœ‡ < 𝛾 < 𝛾 β†’πœŽβˆ—

𝑁 = max

0, πœŽπ΄βˆ’

𝐴+ < πœŽπ΅βˆ’

𝐡+ and alsoπœ™π‘₯(𝜎) = πœ™π‘₯+(𝜎) βˆ€πœŽ ∈ 0, πœŽβˆ—

𝑁

, (ii)πœŽπ΄βˆ’

𝐡+ ∈ (0, πœŽβˆ—

𝑁), and (iii) πœ™+𝐴(0) > πœ™π΅+ (0) (and so 𝜎𝐴+

𝐡+ ∈ (0,1)). Combining these observations yields that the cost condition reduces to

𝑐 ∈ (πœ™+𝐡(0), πœ™+𝐡 πœŽβˆ—

𝑁

) From these properties it is also easily verified that 0< πœŽπ΄βˆ’

𝐡+ < πœ™π΄+

𝐡+ < πœŽπ΄βˆ’

𝐴+ < πœ™π΅βˆ’

𝐡+. We now argue that there exists a pandering equilibrium at

Λ†

πœŽπ‘… =min max

𝜎+𝐡(𝑐), πœŽβˆ’π΄(𝑐) , 𝜎𝐴+

π΄βˆ’

. To do we examine three exhaustive mutually exclusive conditions on the cost.

Subcase 2.1 (High attention favoring A):𝑐 ∈ (πœ™π΅+ (0), πœ™+𝐡 πœŽπ΄βˆ’

𝐡+

) It is easily verified that πœŽβˆ’π΄(𝑐) < 𝜎+𝐡(𝑐) < 𝜎𝐴+

π΄βˆ’ < πœ™π΅+

π΅βˆ’; we argue that there exists an equilibrium with Λ†πœŽπ‘… =𝜎+𝐡(𝑐). Using this we have that Λ†πœƒπ΄is a best response after 𝐴i.f.f. Λ†πœˆπ΄ = πœŒΛ†π΄ =1 and Λ†πœƒπ΅ is a best response after𝐡 i.f.f. Λ†πœˆπ΅ =0. Thus, we have that:

Δ𝐴𝑠=𝐡(πœŒΛ†π΅ =0; Λ†πœƒ) = Pr(πœ” = 𝐴|𝑠 =𝐡) >Δ¯𝑠𝐴=𝐡 > Δ𝑠𝐴=𝐡(πœŒΛ†π΅ =1; Λ†πœƒ)

= βˆ’ (Pr(πœ” =𝐡|𝑠=𝐡) βˆ’Pr(πœ”= 𝐴|𝑠= 𝐡)),

so there exists a best response to𝜎+𝐡(𝑐) with partial attention Λ†πœŒπ΅ ∈ (0,1) and an adversarial posture Λ†πœˆπ΅ =0 after 𝐡, and full attention Λ†πœŒπ΄ =1 after 𝐴.

Subcase 2.2 (High attention favoring B):𝑐 ∈ (πœ™π΅+ πœŽπ΄βˆ’

𝐡+

, πœ™βˆ’π΄ 𝜎𝐴+

π΄βˆ’

) It is easily verified that 𝜎+𝐡(𝑐) < πœŽβˆ’π΄(𝑐) < 𝜎𝐴+

π΄βˆ’; we argue that there exists an equilibrium with Λ†πœŽπ‘… = πœŽβˆ’π΄(𝑐). Using this we have that Λ†πœƒπ΄ is a best response after 𝐴 i.f.f. Λ†πœˆπ΄ =1 and Λ†πœƒπ΅ is a best response after 𝐡i.f.f. Λ†πœˆπ΅ = 0 < πœŒΛ†π΅ =1. Thus, we have:

Δ𝑠𝐴=𝐡(πœŒΛ†π΄ =0; Λ†πœƒ) = Pr(πœ” = 𝐴|𝑠 =𝐡) >Δ¯𝑠𝐴=𝐡 > Δ𝑠𝐴=𝐡(πœŒΛ†π΄ =1; Λ†πœƒ)

= βˆ’ (Pr(πœ” =𝐡|𝑠=𝐡) βˆ’Pr(πœ”= 𝐴|𝑠= 𝐡)),

and there exists a best response to πœŽβˆ’π΄(𝑐) with partial attention Λ†πœŒπ΄ ∈ (0,1) and a favorable posture Λ†πœˆπ΄ =1 after 𝐴, and full attention Λ†πœŒπ΅ =1 after 𝐡.

Subcase 2.3 (Medium attention): 𝑐 ∈ (πœ™βˆ’π΄ 𝜎𝐴+

π΄βˆ’

, πœ™π΅+ 𝜎𝐴+

π΄βˆ’

) It is easily verified that 𝜎+𝐡(𝑐) < 𝜎𝐴+

π΄βˆ’ < πœŽβˆ’π΄(𝑐); we argue that there exists an equilibrium with Λ†πœŽπ‘… = 𝜎𝐴+

π΄βˆ’. Using this we have that Λ†πœƒπ΄ is a best response after 𝐴 i.f.f. Λ†πœŒπ΄ =0 and that every Λ†πœƒπ΅ that is a best response after𝐡satisfies Λ†πœŒπ΅ =1. Thus, we have that

Δ𝑠𝐴=𝐡(πœˆΛ†π΄ =1; Λ†πœƒ) =Pr(πœ” = 𝐴|𝑠 =𝐡) >Δ¯𝑠𝐴=𝐡 > Δ𝑠𝐴=𝐡(πœˆΛ†π΄ =0; Λ†πœƒ) =βˆ’Pr(πœ”= 𝐡|𝑠=𝐡), and there exists a best response to𝜎𝐴+

π΄βˆ’ with no attention Λ†πœŒπ΄ =0 and a mixed posture Λ†

𝜈𝐴 ∈ (0,1)after 𝐴, and full attention Λ†πœŒπ΅ =1 after𝐡.

CASE 3:𝛾 ∈ (𝛾 ,Β― 1]

We begin by recalling useful observations from Lemma 50: (i)πœ‡ <𝛾 < 𝛾¯ β†’πœŽβˆ—

𝑁 = max

0, πœŽπ΄βˆ’

𝐴+ < πœŽπ΅βˆ’

𝐡+, (ii) πœ™π‘₯(𝜎) = πœ™π‘₯+(𝜎) βˆ€πœŽ ∈ 0, πœŽβˆ—

𝑁

, (iii) πœ™+𝐡(𝜎) < πœ™βˆ’π΄(𝜎) for𝜎 ∈

0, πœŽβˆ—

𝑁

, and (iv)πœ™+𝐴(0) > πœ™+𝐡(0)(and so𝜎𝐴+

𝐡+ ∈ (0,1)), and (v) 0 < 𝜎𝐴+

𝐡+ <

πœŽπ΅βˆ’

𝐡+. Combining these observation yields that the cost condition reduces to:

𝑐 ∈ (πœ™+𝐡(0), πœ™+𝐴 πœŽβˆ—

𝑁

). From these properties it is also easily verified that 𝜎𝐴+

π΄βˆ’ < 𝜎𝐴+

𝐡+ < 𝜎𝐡+

π΄βˆ’. We now argue that there exists a pandering equilibrium at

Λ†

πœŽπ‘… =min

𝜎+𝐡(𝑐), 𝜎+𝐴(𝑐) .

To do we examine two exhaustive and mutually exclusive conditions on the cost𝑐.

Subcase 3.1 (High attention):𝑐 ∈ πœ™+𝐡(0), πœ™π΅+ πœ™π΄+

𝐡+

It is straightforward that𝜎+𝐡(𝑐) < 𝜎+𝐴(𝑐); we argue that there exists an equilibrium with Λ†πœŽπ‘… =𝜎+𝐡(𝑐). Since𝜎+𝐡(𝑐) < 𝜎𝐴+

𝐡+ < 𝜎𝐡+

π΅βˆ’ we have that Λ†πœƒπ΅ is a best response to 𝜎+𝐡(𝑐)if and only if Λ†πœˆπ΅ =0. Next we argue that𝑐 < min

πœ™+𝐴 𝜎+𝐡(𝑐)

, πœ™βˆ’π΄ 𝜎+𝐡(𝑐) so that in any best response Λ†πœƒπ΄to𝜎+𝐡(𝑐)we must have Λ†πœŒπ΄ =1. To see this, observe that (a) 𝛾 > 𝛾¯ β†’ πœ™π΅+ (𝜎) < πœ™βˆ’π΄(𝜎) > βˆ€πœŽ ∈ [0,1] (by Lemma 50) so 𝑐 = πœ™π΅+ 𝜎+𝐡(𝑐)

< πœ™βˆ’π΄ 𝜎+𝐡(𝑐)

, and (b) 𝑐 = πœ™π΅+ 𝜎+𝐡(𝑐)

< πœ™π΅+ 𝜎𝐴+

𝐡+

< πœ™+𝐴 𝜎𝐴+

𝐡+

<

πœ™+𝐴 𝜎+𝐡(𝑐) . Thus, we have that:

Δ𝐴𝑠=𝐡(πœŒΛ†π΅ =0; Λ†πœƒ) = Pr(πœ” = 𝐴|𝑠 =𝐡) >Δ¯𝑠𝐴=𝐡 > Δ𝑠𝐴=𝐡(πœŒΛ†π΅ =1; Λ†πœƒ)

= βˆ’ (Pr(πœ” =𝐡|𝑠=𝐡) βˆ’Pr(πœ”= 𝐴|𝑠= 𝐡)),

so there exists a best response to𝜎+𝐡(𝑐) with partial attention Λ†πœŒπ΅ ∈ (0,1) and an adversarial posture Λ†πœˆπ΅ =0 after 𝐡, and full attention Λ†πœŒπ΄ =1 after 𝐴.

Subcase 3.2 (Low attention):𝑐 ∈ πœ™+𝐴 𝜎𝐴+

𝐡+

, πœ™+𝐴 𝜎𝐴+

π΄βˆ’

It is straightforward to see that 𝜎+𝐴(𝑐) < 𝜎+𝐡(𝑐); we argue that there exists an equilibrium with Λ†πœŽπ‘… =𝜎+𝐴(𝑐). Since𝜎+𝐴(𝑐) ∈ 𝜎𝐴+

π΄βˆ’, 𝜎𝐴+

𝐡+

, we have that Λ†πœƒπ΄is a best response to𝜎+𝐴(𝑐)if and only if Λ†πœˆπ΄=0. Next, since𝜎+𝐴(𝑐) < 𝜎𝐴+

𝐡+ < πœŽπ΅βˆ’

𝐡+ we have that𝑐 =πœ™+𝐴 𝜎+𝐴(𝑐)

> πœ™π΅+ 𝜎+𝐴(𝑐)

=πœ™π΅ 𝜎+𝐴(𝑐)

, so that Λ†πœƒπ΅ is a best response to 𝜎+𝐴(𝑐) if and only if Λ†πœˆπ΅ =πœŒΛ†π΅ =0.

Thus, we have that:

Δ𝑠=𝐡𝐴 (πœŒΛ†π΄ =1; Λ†πœƒ) =Pr(πœ” = 𝐴|𝑠 =𝐡) > Δ¯𝑠=𝐡𝐴 > Δ𝑠=𝐡𝐴 (πœŒΛ†π΄ =0; Λ†πœƒ)=0,

so there exists a best response to 𝜎+𝐴(𝑐) with partial attention Λ†πœŒπ΄ ∈ (0,1) and an adversarial posture Λ†πœˆπ΄ = 0 after 𝐴, and no attention Λ†πœŒπ΅ = 0 and an adversarial posture Λ†πœˆπ΅ =0 after 𝐡.

Dalam dokumen Agency Problems in Political Science (Halaman 126-139)