• Tidak ada hasil yang ditemukan

Formulation of the constitutive relation

A GENERAL CONSTITUTIVE MODEL FOR A NON-IDEAL ISOTROPIC-GENESIS POLYDOMAIN NEMATIC ELASTOMER

4.2 Formulation of the constitutive relation

Revisiting the relaxed energy of an ideal nematic elastomer

We follow the work of DeSimone and Dolzmann [23] using the same three regions of interest, a liquid-like region ๐ฟ, a solid-like region ๐‘†, and a region ๐‘€ in which laminated microstructure occurs. Recall the generalized energy density of a nematic elastomer

๐‘ŠNE(F,n) = ๐‘“(F๐‘‡`โˆ’1n F), (4.1) where`n =๐‘Ÿโˆ’1/3( (๐‘Ÿ โˆ’1)nโŠ—n+I) is the โ€œstep-length tensor" that describes the metric of the nematic elastomer in the โ€œstress-free state". The corresponding elastic energy is

๐‘Š(F) =min

n

๐‘Š๐‘ ๐ธ(F,n) = min

Qโˆˆ๐‘†๐‘‚(3)

๐‘“(F>`โˆ’1Qn

0F) = min

Qโˆˆ๐‘†๐‘‚(3)

๐‘“(F>Q`โˆ’1n0Q>F). (4.2) Now, consider a situation where the nematic elastomer has formed a fine-scale domain pattern so that the resulting โ€œstress-free" state is described by a metric G.

We know from previous chapters that

G=QG0(๐œ†, ๐›ฟ)Q>, (4.3)

where

Qโˆˆ๐‘†๐‘‚(3), (4.4)

G0(๐œ†, ๐›ฟ) =ยฉ

ยญ

ยญ

ยซ

๐œ†2 0 0 0 ๐›ฟ2

๐œ†2 0

0 0 1

๐›ฟ2

ยช

ยฎ

ยฎ

ยฎ

ยฌ

, and (4.5)

๐œ†, ๐›ฟ โˆˆ T :={(๐‘ , ๐‘ก) :๐‘ก โ‰ค ๐‘Ÿ1/6, ๐‘ก โ‰ค ๐‘ 2, ๐‘ก โ‰ฅ โˆš

๐‘ }. (4.6)

The triangular regionT is depicted in Figure 4.1.

In analogy to (4.2), we may write the energy of a nematic elastomer with fine-scale domain pattern characterized by๐œ†, ๐›ฟto be

๐‘ŠPNE(F, ๐œ†, ๐›ฟ) = min

Qโˆˆ๐‘†๐‘‚(3)

๐‘“(F>QGโˆ’01Q>F), (4.7)

Figure 4.1: Triangular region T in (๐œ†, ๐›ฟ) space enclosed by the three constraints:

๐›ฟ โ‰ค๐‘Ÿ1/6,๐›ฟ โ‰ค ๐œ†2, and๐›ฟ โ‰ฅ โˆš ๐œ†.

so that the effective energy over arbitrary domain patterns is given by ๐‘Šeff(F)= min

๐œ†,๐›ฟโˆˆT min

Qโˆˆ๐‘†๐‘‚(3)

๐‘“(F>QGโˆ’10 Q>F). (4.8) Theorem 1. With the definitions above,

๐‘Šeff(F) =๐‘Šqc(F). (4.9)

Proof. Let ๐‘  be the largest singular value of F and ๐‘ก the product of the largest singular values ofF. Then,

๐‘Šeff(F) = min

๐œ†,๐›ฟโˆˆT

๐‘“

ยฉ

ยญ

ยญ

ยญ

ยซ

๐‘  ๐œ†

2 ๐‘ก ๐œ† ๐›ฟ ๐‘ 

2 ๐›ฟ ๐‘ก

2

ยช

ยฎ

ยฎ

ยฎ

ยฌ

. (4.10)

Now, recall that

๐‘“(A) =ร•

๐‘–

๐‘๐‘–(trAโˆ’3)๐‘๐‘– +ร•

๐‘—

๐‘‘๐‘—(tr(cofA) โˆ’3)๐‘ž๐‘— (4.11) where ๐‘๐‘–, ๐‘ž๐‘— โ‰ฅ 1 so that

๐‘ŠPNE(F, ๐œ†, ๐›ฟ) =ร•

๐‘–

๐‘๐‘– ๐‘ 2

๐œ†2

+ ๐‘ก2๐œ†2 ๐›ฟ2๐‘ 2

+ ๐›ฟ2 ๐‘ก2

โˆ’3 ๐‘๐‘–

+ร•

๐‘—

๐‘‘๐‘— ๐œ†2

๐‘ 2

+ ๐›ฟ2๐‘ 2 ๐‘ก2๐œ†2

+ ๐‘ก2 ๐›ฟ2

โˆ’3 ๐‘ž๐‘—

(4.12) and

๐‘Šeff(F) = min

๐œ†,๐›ฟโˆˆT

ร•

๐‘–

๐‘๐‘– ๐‘ 2

๐œ†2

+ ๐‘ก2๐œ†2 ๐›ฟ2๐‘ 2

+ ๐›ฟ2 ๐‘ก2

โˆ’3 ๐‘๐‘–

+ร•

๐‘—

๐‘‘๐‘— ๐œ†2

๐‘ 2

+ ๐›ฟ2๐‘ 2 ๐‘ก2๐œ†2

+ ๐‘ก2 ๐›ฟ2

โˆ’3 ๐‘ž๐‘—!

. (4.13)

In light of the constraint๐œ†, ๐›ฟ โˆˆ T, we have multiple cases.

Case 1: Attained minimum. We solve

๐œ•๐‘Šeff

๐œ•๐œ†

= ๐œ•๐‘Šeff

๐œ• ๐›ฟ

=0. (4.14)

Since๐‘๐‘–, ๐‘‘๐‘— > 0, ๐‘๐‘–, ๐‘ž๐‘— โ‰ฅ1, it is sufficient (and necessary in a generic sense) that

๐œ•

๐œ•๐œ† ๐‘ 2

๐œ†2

+ ๐‘ก2๐œ†2 ๐›ฟ2๐‘ 2

+ ๐›ฟ2 ๐‘ก2

=0, (4.15)

๐œ•

๐œ• ๐›ฟ ๐‘ 2

๐œ†2

+ ๐‘ก2๐œ†2 ๐›ฟ2๐‘ 2

+ ๐›ฟ2 ๐‘ก2

=0, (4.16)

๐œ•

๐œ•๐œ† ๐œ†2

๐‘ 2

+ ๐›ฟ2๐‘ 2 ๐‘ก2๐œ†2

+ ๐‘ก2 ๐›ฟ2

=0, (4.17)

๐œ•

๐œ• ๐›ฟ ๐œ†2

๐‘ 2

+ ๐›ฟ2๐‘ 2 ๐‘ก2๐œ†2

+ ๐‘ก2 ๐›ฟ2

=0, (4.18)

or

๐œ•๐‘Š

๐œ•๐œ†

=0โ†’ ๐œ†4 ๐‘ 4

= ๐›ฟ2 ๐‘ก2 ,

๐œ•๐‘Š

๐œ• ๐›ฟ

=0โ†’ ๐œ†2 ๐‘ 2

= ๐›ฟ4 ๐‘ก4

โ‡โ‡’ ๐œ†=๐‘ , ๐›ฟ=๐‘ก =โ‡’ ๐‘Šeff(๐น) =0. (4.19) This is possible if and only if๐‘ , ๐‘ก โˆˆ T. Recalling that๐‘Šqc = 0 when๐‘ , ๐‘ก โˆˆ T, we conclude

๐‘Šeff(๐น) =๐‘Šqc(๐น) in๐ฟ . (4.20) Case 2: ๐‘ก > ๐‘Ÿ1/6. We set๐›ฟ =๐‘Ÿ1/6and solve

๐œ•๐‘Šeff

๐œ•๐œ†

=0. (4.21)

Arguing as before, we conclude ๐œ† ๐‘ 

= ๐‘Ÿ1/12 ๐‘ก1/2

(4.22) which implies

๐‘Šeff(๐น) =ร•

๐‘–

๐‘๐‘–

2 ๐‘ก ๐‘Ÿ1/6

+๐‘Ÿ1/3 ๐‘ก2

โˆ’3 ๐‘๐‘–

+ร•

๐‘—

๐‘‘๐‘—

2๐‘Ÿ1/6 ๐‘ก

+ ๐‘ก2 ๐‘Ÿ1/3

โˆ’3 ๐‘ž๐‘—

. (4.23) Note that this coincides with the expression for๐‘Šqcin๐‘€. However, for๐›ฟ =๐‘Ÿ1/6and ๐œ†according to (4.22),๐œ†, ๐›ฟ โˆˆ T if and only if 1 โ‰ค ๐‘ /๐‘ก1/2 โ‰ค ๐‘Ÿ1/4or๐‘ก โ‰ค ๐‘ 2 โ‰ค ๐‘Ÿ1/2๐‘ก. By assumption,๐‘ก > ๐‘Ÿ1/6. So this is the region ๐‘€. We conclude,

๐‘Šeff(๐น) =๐‘Šqc(๐น) in๐‘€ . (4.24)

Case 3: ๐‘ 2 > ๐‘Ÿ1/2๐‘ก , ๐‘ก > ๐‘Ÿ1/6. Note that this is the region ๐‘†. We set๐œ† =๐‘Ÿ1/3, ๐›ฟ = ๐‘Ÿ1/6, and it is easy to verify that

๐‘Šeff(๐น) =๐‘Šqc(๐น) in๐‘† . (4.25)

Constitutive relation

The effective or relaxed energy (4.8) is obtained by assuming that the microstructure evolves instantaneously to minimize the energy. However, microstructure evolves according to a kinetic process which is dissipative. Further, some domains may be locally pinned, and this introduces a hardening energy. Finally, there is viscosity associated with the polymer network. All of these considerations motivate the following constitutive relation. We describe this for the isothermal situation where the temperature is fixed. However, this is easily generalized to a general temperature- dependent situation.

We assume that the state of a non-ideal isotropic-genesis polydomain nematic elas- tomer is described by the deformation gradient F, internal variables ๐œ†, ๐›ฟ, and temperature๐‘‡. We postulate that the stored energy density of a non-ideal isotropic- genesis polydomain nematic elastomer is given by

๐‘Š(F, ๐œ†, ๐›ฟ, ๐‘‡) =๐‘ŠPNE(F, ๐œ†, ๐›ฟ, ๐‘‡) +๐‘Šh(๐œ†, ๐›ฟ, ๐‘‡), (4.26) where

๐‘ŠPNE(F, ๐œ†, ๐›ฟ, ๐‘‡) =ร•

๐‘–

๐‘๐‘– ๐‘ 2

๐œ†2

+ ๐‘ก2๐œ†2 ๐›ฟ2๐‘ 2

+ ๐›ฟ2 ๐‘ก2

โˆ’3 ๐‘๐‘–

+ร•

๐‘—

๐‘‘๐‘— ๐œ†2

๐‘ 2

+ ๐›ฟ2๐‘ 2 ๐‘ก2๐œ†2

+ ๐‘ก2 ๐›ฟ2

โˆ’3 ๐‘ž๐‘—

(4.27) as before, and

๐‘Šh(๐œ†, ๐›ฟ, ๐‘‡) =๐ถ

๐›ฟโˆ’1

(๐‘Ÿ1/6โˆ’๐›ฟ)๐‘˜ (4.28)

is the hardening energy. The form of the hardening is chosen to penalize๐›ฟ โ†’๐‘Ÿ1/6, i.e. the completion of the polydomain-to-monodomain transition. The moduli๐‘๐‘–, ๐‘‘๐‘– as well as the parameter๐‘Ÿ may depend on temperature.

The Cauchy stress is given by

ฯƒ(F, ๐œ†, ๐›ฟ) =โˆ’๐‘I+ ๐œ•๐‘ŠPNE

๐œ•F (F, ๐œ†, ๐›ฟ)F>+๐›ฝd, (4.29)

where๐‘is an unknown pressure,d= 12( ยคF Fโˆ’1+Fโˆ’>Fยค>)is the rate-of-deformation tensor, and ๐›ฝis the viscosity. The microstructure parameters๐œ†, ๐›ฟ evolve according to the equations

๏ฃฑ๏ฃด

๏ฃด๏ฃด

๏ฃด๏ฃด

๏ฃด

๏ฃฒ

๏ฃด๏ฃด

๏ฃด๏ฃด

๏ฃด๏ฃด

๏ฃณ

๐œ†ยค =โˆ’๐›ผ๐œ†

๐œ•

๐œ•๐œ†

(๐‘ŠPNE+๐‘Šh)

๐›ฟยค=โˆ’๐›ผ๐›ฟ

๐œ•

๐œ• ๐›ฟ

(๐‘ŠPNE+๐‘Šh)

subject to๐œ†, ๐›ฟ โˆˆ T. (4.30)

Note that๐‘Ÿ, and henceT, depends on temperature. It is convenient to introduce a rate-of-dissipation potential for the microstructure evolution

๐ท( ยค๐œ†,๐›ฟ, ๐‘‘ยค ) = 1 2

๐›ผ๐œ†| ยค๐œ†|2+๐›ผ๐›ฟ| ยค๐›ฟ|2

. (4.31)

If we discretize the evolution equation by a backward Euler (implicit) time dis- cretization, we can update the variables as

๐œ†๐‘›+1, ๐›ฟ๐‘›+1= argmin

๐œ†๐‘›+1,๐›ฟ๐‘›+1โˆˆT

๐‘ŠPNE(F, ๐œ†๐‘›+1, ๐›ฟ๐‘›+1, ๐‘‡) +๐‘Šh(๐œ†๐‘›+1, ๐›ฟ๐‘›+1, ๐‘‡)

+ฮ”๐‘ก ๐ท

๐œ†๐‘›+1โˆ’๐œ†๐‘› ฮ”๐‘ก

,

๐›ฟ๐‘›+1โˆ’๐›ฟ๐‘› ฮ”๐‘ก

.

(4.32)

Useful calculation It is useful to compute the rotation associated with the mini- mization in (4.8). Let๐œ†๐‘–be the principal values ofF with๐œ†1 โ‰ฅ๐œ†2 โ‰ฅ ๐œ†3. Let

C =F>F =

3

ร•

๐‘–=1

๐œ†2

๐‘–N๐‘– โŠ—N๐‘–, b=F F> =

3

ร•

๐‘–=1

๐œ†2

๐‘–n๐‘– โŠ—n๐‘–. (4.33) It follows that

๐น = ร•3

๐‘–=1

๐œ†๐‘–n๐‘– โŠ—N๐‘–. (4.34)

Set

G0=

3

ร•

๐‘–=1

๐œ‰๐‘–e๐‘– โŠ—e๐‘–, (4.35)

where๐œ‰1 โ‰ฅ ๐œ‰2 โ‰ฅ ๐œ‰3. Therefore, F>QGโˆ’10 Q>F =ร•

๐‘–, ๐‘— , ๐‘˜

๐œ†๐‘–๐œ†๐‘˜๐œ‰โˆ’1

๐‘— (n๐‘–ยทQe๐‘—) (n๐‘˜ ยทQe๐‘—)N๐‘– โŠ—N๐‘˜, (4.36) (F>QGโˆ’10 Q>F)โˆ’> =ร•

๐‘–, ๐‘— , ๐‘˜

๐œ†โˆ’1

๐‘– ๐œ†โˆ’1

๐‘˜ ๐œ‰๐‘—(n๐‘–ยทQe๐‘—) (n๐‘˜ ยทQe๐‘—)N๐‘–โŠ—N๐‘˜. (4.37)

Now, in light of (4.11), maximizing ๐‘“(A) overAis equivalent to maximizing the trace ofAand cof(A). Examining the above, we see that we maximize the trace of F>QGโˆ’10 F, cof(F>QGโˆ’10 F) =(F>QGโˆ’10 F)โˆ’>exactly when

n๐‘– =Qe๐‘–, ๐‘– =1,2,3. (4.38) Thus, the maximizingQis

Q= ร•3

๐‘–=1

n๐‘–โŠ—e๐‘– (4.39)

so that for the maximizingQ, G=

3

ร•

๐‘–=1

๐œ‰๐‘–n๐‘–โŠ—n๐‘–, (4.40)

i.e. Gshares an eigenbasis withband F>QGโˆ’01Q>F =

3

ร•

๐‘–=1

๐œ†2

๐‘–๐œ‰โˆ’1

๐‘– N๐‘– โŠ—N๐‘–, (4.41)

(F>QGโˆ’10 Q>F)โˆ’>= ร•3

๐‘–=1

๐œ†โˆ’2

๐‘– ๐œ‰๐‘–N๐‘–โŠ—N๐‘–. (4.42) 4.3 Validation of the model

We now validate the model against the experiments of Tokumoto, Takabe, and Urayama, as reported in Tokumotoet al. [71]. They subjected sheets of isotropic- genesis polydomain nematic elastomers to biaxial extension while leaving the faces of the sheet traction-free, i.e. deformations of the form

F =ยฉ

ยญ

ยญ

ยซ

๐œ†๐‘ฅ 0 0

0 ๐œ†๐‘ฆ 0

0 0 (๐œ†๐‘ฅ๐œ†๐‘ฆ)โˆ’1 ยช

ยฎ

ยฎ

ยฎ

ยฌ

(4.43)

where ๐œ†๐‘ฅ, ๐œ†๐‘ฆ are imposed stretches. In all their experiments ๐œ†๐‘ฅ๐œ†๐‘ฆ > 1, and we assume that๐œ†๐‘ฅ > ๐œ†๐‘ฆ. Therefore,

๐‘ =๐œ†๐‘ฅ, ๐‘ก=๐œ†๐‘ฅ๐œ†๐‘ฆ. (4.44)

We neglect viscosity (๐›ฝ=0), and so the Cauchy stressฯƒ is

ยฉ

ยญ

ยญ

ยญ

ยญ

ยซ

โˆ’๐‘+๐œ‡1๐‘ 

2

๐œ†2 +๐œ‡2

๐‘ 2๐›ฟ2 ๐‘ก2๐œ†2 + ๐‘ก2

๐›ฟ2

0 0

0 โˆ’๐‘+๐œ‡1๐‘ก

2๐œ†2 ๐‘ 2๐›ฟ2 +๐œ‡2

๐œ†2 ๐‘ 2 + ๐‘ก2

๐›ฟ2

0

0 0 โˆ’๐‘+๐œ‡1๐›ฟ

2

๐‘ก2 +๐œ‡2

๐œ†2 ๐‘ 2 + ๐‘ 2๐›ฟ2

๐‘ก2๐œ†2

ยช

ยฎ

ยฎ

ยฎ

ยฎ

ยฌ .

Since the faces of the sheet are traction-free,๐œŽ33 =0. It follows, ๐‘= ๐œ‡1

๐›ฟ2 ๐‘ก2

+๐œ‡2 ๐œ†2

๐‘ 2

+ ๐‘ 2๐›ฟ2 ๐‘ก2๐œ†2

, (4.45)

and the two non-zero components of stress are ๐œŽ11 =๐œ‡1

๐‘ 2 ๐œ†2

โˆ’ ๐›ฟ2 ๐‘ก2

+๐œ‡2 ๐‘ก2

๐›ฟ2

โˆ’ ๐œ†2 ๐‘ 2

(4.46) ๐œŽ22 =๐œ‡1

๐‘ก2๐œ†2 ๐‘ 2๐›ฟ2

โˆ’ ๐›ฟ2 ๐‘ก2

+๐œ‡2 ๐‘ก2

๐›ฟ2

โˆ’ ๐‘ 2๐›ฟ2 ๐‘ก2๐œ†2

. (4.47)

It remains to solve for the evolution of the internal variables ๐œ†, ๐›ฟ. We do so by implementing (4.32) usingMATLAB. We use the Bladon-Warner-Terentjev form (generalization of the neo-Hookean), where ๐‘1 = ๐œ‡1/2, ๐‘1 = 1 and ๐‘๐‘–, ๐‘‘๐‘— = 0 for ๐‘– > 1, ๐‘— โ‰ฅ 1. Table 4.1 summarizes the material parameters used. In MATLAB, a gradient descent code was implemented to fit the various parameters in the theoretical model to the experimental data.

Table 4.1: Material properties used inMATLABsimulations

Shear modulus ๐œ‡1= 4.93752ยท104Pa

LCE anisotropy parameter ๐‘Ÿ= 9.1393

Hardening coefficient ๐ถ= 298 Pa

Hardening exponent ๐‘˜ = 2

Dissipation property ๐›ผ๐›ฟ = 2.1838ยท107Pa Dissipation property ๐›ผ๐œ† = 100๐›ผ๐›ฟ = 2.1838ยท105Pa Exponent in dissipation potential๐ท ๐‘= 2

We explore four specific deformations in the following sections: uniaxial (U) exten- sion, planar extension (PE), equibiaxial (EB) extension, and unequal-biaxial (UB) extension. The general deformation gradient, following from Equation 4.43 and 4.44, isF =diag(๐‘ , ๐‘ก/๐‘ ,1/๐‘ก). Figs. 4.2 โ€“ 4.7 are plots for each individual deforma- tion with more detail. In each figure, the top left subplot depicts the stress-stretch curve, the top right plot shows the (red) path that the internal variables take through the (black) triangular regionT, the bottom left plot shows the internal variables as a function of stretch, and the bottom right plot shows the energy density as a function of stretch.

Uniaxial extension (U) In the uniaxial case, the body is subjected to uniaxial stress in the๐‘ฅ-direction and traction-free in the ๐‘ฆ- and ๐‘ง-directions. Thus, ๐œŽ22 =๐œŽ33 =0.

The relationship between the stretches is๐‘ก =โˆš

๐‘ . Thus, the deformation gradient is F =diag(๐‘ ,1/โˆš

๐‘ ,1/โˆš ๐‘ ).

Figure 4.2: Uniaxial extension.

Planar extension (PE) In the planar extension deformation, the stretch in the ๐‘ฆ-direction is fixed at a ratio of 1, yielding ๐œ†๐‘ฆ = 1, and the body is traction- free in the ๐‘ง-direction. Thus, we have ๐‘ก = ๐‘ , and the deformation gradient is F =diag(๐‘ ,1,1/๐‘ ).

Figure 4.3: Planar extension.

Equibiaxial extension (EB) In the equibiaxial deformation, the stretch in the๐‘ฅ- direction and ๐‘ฆ-direction are equal, and the body is traction-free in the๐‘ง-direction.

Thus,๐‘  = ๐‘ ๐‘ก or๐‘ก =๐‘ 2, and the deformation gradient isF =diag(๐‘ , ๐‘ ,1/๐‘ 2).

Figure 4.4: Equibiaxial extension.

Unequal biaxial extension (UB) In the case of the unequal-biaxial extension, the body is traction-free in the ๐‘ง-direction. The experiments are performed by fixing the ratio of ๐œ€๐œ€๐‘ฅ

๐‘ฆ

= ๐œ†๐œ†๐‘ฅโˆ’1

๐‘ฆโˆ’1 to be a constant๐›ฝ, where๐›ฝhas values equal to 5/3,5/2,5/1.

(Note that๐›ฝ =1 recovers the equibiaxial case.) This means that we have๐‘ก/๐‘ โˆ’๐‘ โˆ’11 = ๐›ฝ, so๐‘ก = ๐›ฝ๐‘ (๐‘ โˆ’1+๐›ฝ). Thus, the deformation gradient isF =diag

๐‘ ,

๐‘ โˆ’1+๐›ฝ ๐›ฝ ,

๐›ฝ ๐‘ (๐‘ โˆ’1+๐›ฝ)

. The figures can be seen in Figures 4.5โ€“4.7.

Figure 4.5: Unequal biaxial extension, ๐›ฝ=5/3.

Figure 4.6: Unequal biaxial extension, ๐›ฝ=5/2.

Figure 4.7: Unequal biaxial extension, ๐›ฝ=5/1.

Summary: liquid-like behavior Figures 4.8 and 4.9 show a comparison of the stress-stretch data, plotted for the experimental data from Urayamaโ€™s research group [71] and the theoretical model for various deformations.

Figure 4.8: Experimental stress, plotted as a function of๐œ†๐‘ง.

Figure 4.9: Theoretical stress, plotted as a function of๐œ†๐‘ง.

Hysteresis Finally, Figures 4.10a and 4.10b show the load/unload curve for the U and PE deformations. The model is able to capture energy dissipation between the load and unload curves, depicted by the hysteresis between the dashed and solid curves.

(a) (b)

Figure 4.10: Load/unload curves for the (a) PE deformation and (b) U deformation.