5.2 Extended Displacement Discontinuity Method and Fundamental
5.2.1 Fundamental Solutions for Unit Point Loading
In order to build the solution for general loading and crack geometry, solutions for displacement and temperature discontinuities can be constructed first as funda- mental solutions, which can then be used as Green’s functions for general loading and interface crack geometry.
Consider a penny-shaped crack with radiusalying at the interface of two bonded dissimilar materials as illustrated in Fig.5.1. The crack is located in the planexoy, and the two bonded solids are assumed to occupy the upper and lower half-space, respectively. Then the relation between the Cartesian and cylindrical coordinates can be expressed as
x¼rcos/;
y¼rsin/;
R2¼r2þz2¼x2þy2þz2: 8<
: ð5:4Þ
According to Zhao et al. [40] and Zhao and Liu [41], if the radius of the crack a approaches zero, one can obtain the fundamental solutions corresponding to a
unit, concentrated temperature discontinuity and displacement discontinuity satis- fying the governing equations of thermoelasticity and the following conditions
a!0lim Z
S
k k;u k k;v k k;w k kh
f gdS¼f1;0;0;0g; ð5:5aÞ
a!lim0
Z
S
k k;u k k;v k k;w k kh
f gdS¼f0;1;0;0g; ð5:5bÞ
a!lim0
Z
S
k k;u k k;v k k;w k kh
f gdS¼f0;0;1;0g; ð5:5cÞ
a!0lim Z
S
k k;u k k;v k k;w k kh
f gdS¼f0;0;0;1g: ð5:5dÞ
wherek k;u k k;v k k;w andk kh are the elastic displacement and temperature discon- tinuities across the crack face. In the following sections, we present the fundamental solutions for each unit point loading case, which would be readily used as weight functions for general loading cases of arbitrary crack shapes. It is worth mentioning that as the point solutions are independent of the original shape of the penny-shaped crack, these solutions can be used to build the solutions for any interface crack of arbitrary shape under various loading conditions. We will show a few examples later, where fundamental solutions have been extended and used to build analytical solutions for interface crack problems in piezoelectric, piezoelectromagnetic, and quasi-crystalline materials.
Interface z
x
o y a
r
S+
S
S-
Fig. 5.1 A penny-shaped crack with radius ofalying in the interface plane [39]
5.2 Extended Displacement Discontinuity Method and Fundamental… 175
5.2.1.1 Solution for Unit-Point Displacement Discontinuity in the Z-Direction of the Crack
In this case, the boundary condition in Eq. (5.5c) can be rewritten as:
uðn;gÞ
k k ¼0; kvðn;gÞk ¼0; kwðn;gÞk ¼dðn;gÞ; khðn;gÞk ¼0: ð5:6Þ where d(n,η) is the Dirac delta function. This is a non-torsional axisymmetric problem. Introducing the potential functions proposed by Hou et al. [42], and the relatively completed non-torsional axisymmetric general solution around thez-axis is expressed in the following form:
2lur ¼@w1
@r þz@w2
@r ; ð5:7aÞ
2lw¼@w1
@z ð34vÞw2þz@w2
@z þ4 1ð vÞw3; ð5:7bÞ rz¼@2w1
@z2 2 1ð vÞ@w2
@z þz@2w2
@z2 þ2 1ð vÞ@w3
@z ; ð5:7cÞ
rzr¼@2w1
@r@zð12vÞ@w2
@r þz@2w2
@r@z þ2 1ð vÞ@w3
@r ; ð5:7dÞ 2l
Ch¼@w3
@z ; ð5:7eÞ
hz¼ bC 2l
@2w3
@z2 ; ð5:7fÞ
whereC¼a2 1vðð1þvÞÞ.
Using the zero-order Hankel transformation technique, the potential functions can be expressed as
w1þ ¼ Z1
0
nA1enzJ0ð Þdn;nr ð5:8aÞ
w1 ¼ Z1
0
nA2enzJ0ð Þdn;nr ð5:8bÞ
w2þ ¼ Z1
0
nB1enzJ0ð Þdn;nr ð5:8cÞ
w2 ¼ Z1
0
nB2enzJ0ð Þdn;nr ð5:8dÞ
w3þ ¼ Z1
0
nC1enzJ0ð Þdn;nr ð5:8eÞ
w3 ¼ Z1
0
nC2enzJ0ð Þdnr n; ð5:8fÞ
where the superscript“+”and“_”denote the upper and lower domain, respectively.
When the unit displacement discontinuity inz-direction is applied on the interfacial crack, the corresponding boundary conditions are given in the cylindrical coordi- nate system as
urþðr;0Þ urðr;0Þ ¼0; wþðr;0Þ wðr;0Þ ¼dð Þ;r hþðr;0Þ hðr;0Þ ¼0; 8<
:
rzþðr;0Þ rzðr;0Þ ¼0; rzrþðr;0Þ rzrðr;0Þ ¼0; hzþðr;0Þ hzðr;0Þ ¼0: 8>
<
>: ð5:9Þ
where 0rabelongs to the crack region. After inserting Eq. (5.8) into Eq. (5.9), one can obtain
A1
l1¼Al2
2;
1
2l1½nA1ð34v1ÞB1þ4 1ð v1ÞC1 2l1
2½nA2ð34v2ÞB2þ4 1ð v2ÞC2 ¼2p1; Cl1
1C1¼Cl2
2C2; 8>
>>
<
>>
>:
ð5:10aÞ
nA1þ2 1ð v1ÞB12 1ð v1ÞC1 ¼nA22 1ð v2ÞB2þ2 1ð v2ÞC2; nA1þð12v1ÞB12 1ð v1ÞC1 ¼ nA2þð12v2ÞB22 1ð v2ÞC2;
C1b1
l1 C1¼Cl2b2
2 C2; 8<
:
ð5:10bÞ where the subscripts“1”and“2”denote the upper and lower domains, respectively.
Solving these six equations one can get
5.2 Extended Displacement Discontinuity Method and Fundamental… 177
C1¼C2¼0 ð5:11aÞ A1¼ l1ð23v13v2þ4v1v2Þ
3l2þl14l2v1
ð Þ lð 23l1þ4l1v2Þ 2 p 1 n¼A11
n ð5:11bÞ A2¼ l2ð23v13v2þ4v1v2Þ
3l2l1þ4l2v1
ð Þðl2þ3l14l1v2Þ 2 p 1 n¼A21
n ð5:11cÞ B1¼ l1l2
2ðl13l2þ4l2v1Þ 2
p¼ l1l2
p lð 1þk1l2Þ ð5:11dÞ B2¼ l1l2
2ðl2þ3l14l1v2Þ 2
p¼ l1l2
p lð 2þl1k2Þ ð5:11eÞ whereka¼34va,A1,A2,B1andB2are all constants, and the potential functions are obtained as:
w1þ ¼A11
R ð5:12aÞ
w1 ¼A21
R ð5:12bÞ
w2þ ¼B1
z
R3 ð5:12cÞ
w2 ¼ B2
z
R3 ð5:12dÞ
w3þ ¼0 ð5:12eÞ
w3 ¼0 ð5:12fÞ
where R¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi r2þz2
p . Then the corresponding displacements and stresses are obtained, for example, the stresses of an arbitrary point in the upper domain are obtained as:
rzþ ¼ l1l2
2p lð 1þk1l2Þ ð1þg2Þ 1
R3 þ3 5ð g2Þz2 R530z4
R7
ð5:13aÞ
rzrþ ¼ l1l2
2p lð 1þk1l2Þ 3 3ð g2Þrz
R530rz3 R7
ð5:13bÞ
and the forms of the stresses in the Cartesian coordinates are:
rzþ ¼ l1l2
2p lð 1þk1l2Þ ð1þg2Þ 1
R3 þ3 5ð g2Þz2 R530z4
R7
ð5:14aÞ
rzxþ ¼ l1l2
2p lð 1þk1l2Þ 3 3ð g2Þxz
R530xz3 R7
ð5:14bÞ
ryzþ ¼ l1l2
2p lð 1þk1l2Þ 3 3ð g2Þyz
R530yz3 R7
ð5:14cÞ
whereg2 ¼ll1þl2k1
2þl1k2.
5.2.1.2 Unit Point Temperature Discontinuity of the Crack
The boundary condition in Eq. (5.5d) can be rewritten as uðn;gÞ
k k ¼0; kvðn;gÞk ¼0; kwðn;gÞk ¼0; khðn;gÞk ¼dðn;gÞ: ð5:15Þ It is also a non-torsional axisymmetric problem. We can use the same form of potential functions in Eq. (5.7) and adopt the same zero-order Hankel transfor- mation in Eq. (5.8). When the unit temperature discontinuity is applied on the interface crack, the corresponding boundary conditions are as follows
urþðr;0Þ urðr;0Þ ¼0 wþðr;0Þ wðr;0Þ ¼0 hþðr;0Þ hðr;0Þ ¼dð Þr 8<
:
rzþðr;0Þ rzðr;0Þ ¼0 rzrþðr;0Þ rzrðr;0Þ ¼0 hzþðr;0Þ hzðr;0Þ ¼0 8>
<
>: ð5:16Þ
thus we can obtain
A1 l1¼Al2
1 2
l1½nA1ð34v1ÞB1þ4 1ð v1ÞC1 ¼l1
2½nA2ð34v2ÞB2þ4 1ð v2ÞC2 2lC1
1C12lC2
2C2¼2p11n 8>
<
>:
ð5:17aÞ nA1þ2 1ð v1ÞB12 1ð v1ÞC1 ¼nA22 1ð v2ÞB2þ2 1ð v2ÞC2
nA1þð12v1ÞB12 1ð v1ÞC1 ¼ nA2þð12v2ÞB22 1ð v2ÞC2 C1b1
l1 C1¼Cl2b2
2 C2
8<
:
ð5:17bÞ 5.2 Extended Displacement Discontinuity Method and Fundamental… 179
Solving these six equations, we can get
A1¼ðv11ÞC2b2l1ðl2þk2l1Þ ðv21ÞC1b1l2ðl1þk1l2Þ pC1C2ðb1þb2Þðl1þk1l2Þðl2þk2l1Þ
2l1 n2 ¼A1 1
n2 ð5:18aÞ A2¼ðv11ÞC2b2l1ðl2þk2l1Þ ðv21ÞC1b1l2ðl1þk1l2Þ
pC1C2ðb1þb2Þðl1þk1l2Þðl2þk2l1Þ
2l2 n2 ¼A2 1
n2 ð5:18bÞ B1¼ 4l1l2ðv11Þb2
pC1ðb1þb2Þðl1þk1l2Þ 1 n¼B11
n ð5:18cÞ
B2¼ 4l1l2ðv21Þb1 pC2ðb1þb2Þðl2þk2l1Þ
1 n¼B21
n ð5:18dÞ
C1¼ l1b2 pC1ðb1þb2Þ
1 n¼C11
n ð5:18eÞ
C2¼ l2b1 pC2ðb1þb2Þ
1 n¼C21
n ð5:18fÞ
where A1, A2, B1, B2, C1 and C2 are constants, and the potential functions are determined as:
w1þ ¼ A1lnðRþzÞ ð5:19aÞ w1 ¼ A2lnðRzÞ ð5:19bÞ
w2þ ¼B11
R ð5:19cÞ
w2 ¼B21
R ð5:19dÞ
w3þ ¼C11
R ð5:19eÞ
w3 ¼C21
R ð5:19fÞ
Furthermore, the corresponding displacements, stresses, temperature and heat flux caused by the unit temperature discontinuity can be obtained. For example, the stresses and heatflux of an arbitrary point in the upper domain are given as:
rzþ ¼ l1l2 2p lð 1þk1l2Þ
2½a2ð1þv2Þb1g2þa1ð1þv1Þb2 b1þb2
z
R312a1ð1þv1Þb2 b1þb2
z3 R5
ð5:20aÞ
rzrþ ¼ l1l2 2p lð 1þk1l2Þ
2½a2ð1þv2Þb1g2þa1ð1þv1Þb2 b1þb2
r
R312a1ð1þv1Þb2 b1þb2
rz2 R5
ð5:20bÞ hzþ ¼ b1b2
2p bð 1þb2Þ 1 R33z2
R5
ð5:20cÞ
In terms of the Cartesian coordinates, they are:
rzþ ¼ l1l2 2p lð 1þk1l2Þ
2½a2ð1þv2Þb1g2þa1ð1þv1Þb2 b1þb2
z
R312a1ð1þv1Þb2
b1þb2 z3 R5
ð5:21aÞ
rzxþ ¼ l1l2 2p lð 1þk1l2Þ
2½a2ð1þv2Þb1g2þa1ð1þv1Þb2 b1þb2
x
R312a1ð1þv1Þb2
b1þb2 xz2
R5
ð5:21bÞ
ryzþ ¼ l1l2 2p lð 1þk1l2Þ
2½a2ð1þv2Þb1g2þa1ð1þv1Þb2 b1þb2
y
R312a1ð1þv1Þb2
b1þb2 yz2
R5
ð5:21cÞ hzþ ¼ b1b2
2p bð 1þb2Þ 1 R33z2
R5
ð5:21dÞ
5.2.1.3 Unit-Point Displacement Discontinuity in the y-Direction of the Crack
The boundary condition in Eq. (5.5b) can be rewritten as:
uðn;gÞ
k k ¼0; kvðn;gÞk ¼dðn;gÞ; kwðn;gÞk ¼0; khðn;gÞk ¼0: ð5:22Þ Obviously this problem is no longer non-torsional axisymmetric, which requires a complete, general solution. The relatively completed, general solution around the z-axis is expressed in the following form [42]:
5.2 Extended Displacement Discontinuity Method and Fundamental… 181
2lur¼ @w0
r@/þ@w1
@r þz@w2
@r ; ð5:23aÞ
2lu/¼@w0
@r þ@w1
r@/þz@w2
r@/; ð5:23bÞ 2lw¼@w1
@z ð34vÞw2þz@w2
@z þ4 1ð vÞw3; ð5:23cÞ rz¼@2w1
@z2 2 1ð vÞ@w2
@z þz@2w2
@z2 þ2 1ð vÞ@w3
@z ; ð5:23dÞ
rzr ¼ 1 2r
@2w0
@/@zþ@2w1
@r@zð12vÞ@w2
@r þz@2w2
@r@z þ2 1ð vÞ@w3
@r ; ð5:23eÞ
rz/¼1 2
@2w0
@r@zþ1 r
@2w1
@/@zð12vÞ1 r
@w2
@/ þz r
@2w2
@/@zþ2 1ð vÞ1 r
@w3
@/ ; ð5:23fÞ 2l
Ch¼@w3
@z ; ð5:23gÞ
hz¼ bC 2l
@2w3
@z2 ; ð5:23hÞ
When the unit displacement discontinuity in y-direction is applied on the interfacial crack, the corresponding boundary conditions are:
urþðr;0Þ urðr;0Þ ¼dð Þr sin/; u/þðr;0Þ u/ðr;0Þ ¼dð Þr cos/; wþðr;0Þ wðr;0Þ ¼0; hþðr;0Þ hðr;0Þ ¼0; 8>
><
>>
:
rzþðr;0Þ rzðr;0Þ ¼0; rzrþðr;0Þ rzrðr;0Þ ¼0; rz/þðr;0Þ rz/ðr;0Þ ¼0; hzþðr;0Þ hzðr;0Þ ¼0: 8>
>>
><
>>
>>
:
ð5:24Þ
According to the boundary conditions, thefirst-order Hankel transformation is introduced, and the corresponding potential functions are:
w1þ ¼ Z1
0
nA1enzJ1ð Þdnnr sin/; ð5:25aÞ
w1 ¼ Z1
0
nA2enzJ1ð Þdnnr sin/; ð5:25bÞ
w2þ ¼ Z1
0
nB1enzJ1ð Þdnnr sin/; ð5:25cÞ
w2 ¼ Z1
0
nB2enzJ1ð Þdnnr sin/; ð5:25dÞ
w3þ ¼ Z1
0
nC1enzJ1ð Þdnnr sin/; ð5:25eÞ
w3 ¼ Z1
0
nC2enzJ1ð Þdnnr sin/; ð5:25fÞ
w0þ ¼ Z1
0
nD1enzJ1ð Þdnnr cos/; ð5:25gÞ
w0 ¼ Z1
0
nD2enzJ1ð Þdnnr cos/; ð5:25hÞ
where superscripts“+”and“_”denote the upper and lower domains, respectively.
Substituting Eq. (5.25) into the boundary conditions in Eq. (5.24) yields:
D1A1
l1 D2lA2
2 ¼0
D1þA1
2l1 D22lþA2
2 ¼pn1
1
l1½nA1ð34v1ÞB1þ4 1ð v1ÞC1 ¼l1
2½nA2ð34v2ÞB2þ4 1ð v2ÞC2 Cl1
1C1¼Cl2
2C2
8>
>>
><
>>
>>
:
ð5:26aÞ nA1þ2 1ð v1ÞB12 1ð v1ÞC1¼nA22 1ð v2ÞB2þ2 1ð v2ÞC2;
nðD1þ2A1Þ 2 1ð 2v1ÞB1þ4 1ð v1ÞC1¼nðD2þ2A2Þ 2 1ð 2v2ÞB2þ4 1ð v2ÞC2; nðD1þ2A1Þ þ2 1ð 2v1ÞB14 1ð v1ÞC1¼nðD22A2Þ þ2 1ð 2v2ÞB24 1ð v2ÞC2; C1b1
l1 C1¼C2b2 l2 C2; 8>
>>
>>
<
>>
>>
>:
ð5:26bÞ where subscripts “1”and“2” denote the upper and lower domains, respectively.
Solving Eq. (5.26), one can get
5.2 Extended Displacement Discontinuity Method and Fundamental… 183
A1¼ l2ð3þ4v1Þ þl1ð5þ6v1þ6v28v1v2Þ l1þl2k1
ð Þðl2þl1k2Þ
1 pn¼A11
n; ð5:27aÞ A2¼ l1ð34v2Þ þl2ð56v26v2þ8v1v2Þ
l1þl2k1
ð Þðl2þl1k2Þ
1 pn¼A21
n; ð5:27bÞ B1¼ l1l2
l23l1þ4l1v2
ð Þ
1
p¼ l1l2
p lð 2þl1k2Þ; ð5:27cÞ B2¼ l1l2
l13l2þ4l2v1
ð Þ
1
p¼ l1l2
p lð 1þl2k1Þ; ð5:27dÞ
C1¼C2¼0; ð5:27eÞ
D1¼ l1l2 l1þl2 1
pn¼D11
n; ð5:27fÞ
D2¼ l1l2 l1þl2 1
pn¼D21
n; ð5:27gÞ
whereka¼34va,A1,A2,D1,D2,B1 andB2 are all constants, and the potential functions are obtained as:
w0þ ¼D11 r 1z
R
cos/; ð5:28aÞ
w0 ¼D21 r 1þ z
R
cos/; ð5:28bÞ
w1þ ¼A11 r 1z
R
sin/; ð5:28cÞ
w1 ¼A21 r 1þ z
R
sin/; ð5:28dÞ
w2þ ¼B1
r
R3sin/; ð5:28eÞ
w2 ¼ B2
r
R3sin/; ð5:28fÞ
w3þ ¼0; ð5:28gÞ
w3 ¼0; ð5:28hÞ
where R¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi r2þz2
p . Then, the corresponding displacements and stresses are all obtained. For example, the stresses of an arbitrary point in the upper domain are obtained in the Cartesian coordinates:
rzþ ¼ l1l2 2p lð 1þk1l2Þ
3 1ð þg2Þyz
R5 30yz3 R7
; ð5:29aÞ
rzxþ ¼ l1l2 2p lð 1þk1l2Þ
3 1ð g1þg2Þxy
R5 30xyz2 R7
; ð5:29bÞ
ryzþ ¼ l1l2 2p lð 1þk1l2Þ
2g1g21
R3 þ3ð1g1þg2Þy2þð2g2Þz2
R5 30y2z2 R7
ð5:29cÞ
5.2.1.4 Unit Point Displacement Discontinuity in the x-Direction of the Crack
Similar to Sect.5.2.1.3, as the problem is symmetric about x and y-axis, under unit point displacement discontinuity in the x-direction, the stresses of an arbitrary point in the upper domain are obtained in the Cartesian coordinates
rzþ ¼ l1l2 2p lð 1þk1l2Þ
3 1ð þg2Þxz
R5 30xz3 R7
; ð5:30aÞ
rzxþ ¼ l1l2 2p lð 1þk1l2Þ
2g1g21
R3 þ3ð1g1þg2Þx2þð2g2Þz2
R5 30x2z2 R7
; ð5:30bÞ
ryzþ ¼ l1l2 2p lð 1þk1l2Þ
3 1ð g1þg2Þxy
R5 30xyz2 R7
ð5:30cÞ