• Tidak ada hasil yang ditemukan

Fundamental Solutions for Unit Point Loading

Dalam dokumen Zengtao Chen Abdolhamid Akbarzadeh (Halaman 183-194)

5.2 Extended Displacement Discontinuity Method and Fundamental

5.2.1 Fundamental Solutions for Unit Point Loading

In order to build the solution for general loading and crack geometry, solutions for displacement and temperature discontinuities can be constructed first as funda- mental solutions, which can then be used as Green’s functions for general loading and interface crack geometry.

Consider a penny-shaped crack with radiusalying at the interface of two bonded dissimilar materials as illustrated in Fig.5.1. The crack is located in the planexoy, and the two bonded solids are assumed to occupy the upper and lower half-space, respectively. Then the relation between the Cartesian and cylindrical coordinates can be expressed as

x¼rcos/;

y¼rsin/;

R2¼r2þz2¼x2þy2þz2: 8<

: ð5:4Þ

According to Zhao et al. [40] and Zhao and Liu [41], if the radius of the crack a approaches zero, one can obtain the fundamental solutions corresponding to a

unit, concentrated temperature discontinuity and displacement discontinuity satis- fying the governing equations of thermoelasticity and the following conditions

a!0lim Z

S

k k;u k k;v k k;w k kh

f gdS¼f1;0;0;0g; ð5:5aÞ

a!lim0

Z

S

k k;u k k;v k k;w k kh

f gdS¼f0;1;0;0g; ð5:5bÞ

a!lim0

Z

S

k k;u k k;v k k;w k kh

f gdS¼f0;0;1;0g; ð5:5cÞ

a!0lim Z

S

k k;u k k;v k k;w k kh

f gdS¼f0;0;0;1g: ð5:5dÞ

wherek k;u k k;v k k;w andk kh are the elastic displacement and temperature discon- tinuities across the crack face. In the following sections, we present the fundamental solutions for each unit point loading case, which would be readily used as weight functions for general loading cases of arbitrary crack shapes. It is worth mentioning that as the point solutions are independent of the original shape of the penny-shaped crack, these solutions can be used to build the solutions for any interface crack of arbitrary shape under various loading conditions. We will show a few examples later, where fundamental solutions have been extended and used to build analytical solutions for interface crack problems in piezoelectric, piezoelectromagnetic, and quasi-crystalline materials.

Interface z

x

o y a

r

S+

S

S-

Fig. 5.1 A penny-shaped crack with radius ofalying in the interface plane [39]

5.2 Extended Displacement Discontinuity Method and Fundamental 175

5.2.1.1 Solution for Unit-Point Displacement Discontinuity in the Z-Direction of the Crack

In this case, the boundary condition in Eq. (5.5c) can be rewritten as:

uðn;gÞ

k k ¼0; kvðn;gÞk ¼0; kwðn;gÞk ¼dðn;gÞ; khðn;gÞk ¼0: ð5:6Þ where d(n,η) is the Dirac delta function. This is a non-torsional axisymmetric problem. Introducing the potential functions proposed by Hou et al. [42], and the relatively completed non-torsional axisymmetric general solution around thez-axis is expressed in the following form:

2lur ¼@w1

@r þz@w2

@r ; ð5:7aÞ

2lw¼@w1

@z ð34vÞw2þz@w2

@z þ4 1ð vÞw3; ð5:7bÞ rz¼@2w1

@z2 2 1ð vÞ@w2

@z þz@2w2

@z2 þ2 1ð vÞ@w3

@z ; ð5:7cÞ

rzr¼@2w1

@r@zð12vÞ@w2

@r þz@2w2

@r@z þ2 1ð vÞ@w3

@r ; ð5:7dÞ 2l

Ch¼@w3

@z ; ð5:7eÞ

hz¼ bC 2l

@2w3

@z2 ; ð5:7fÞ

whereC¼a2 1vðð1þvÞÞ.

Using the zero-order Hankel transformation technique, the potential functions can be expressed as

w1þ ¼ Z1

0

nA1enzJ0ð Þdn;nr ð5:8aÞ

w1 ¼ Z1

0

nA2enzJ0ð Þdn;nr ð5:8bÞ

w2þ ¼ Z1

0

nB1enzJ0ð Þdn;nr ð5:8cÞ

w2 ¼ Z1

0

nB2enzJ0ð Þdn;nr ð5:8dÞ

w3þ ¼ Z1

0

nC1enzJ0ð Þdn;nr ð5:8eÞ

w3 ¼ Z1

0

nC2enzJ0ð Þdnr n; ð5:8fÞ

where the superscript“+”and“_”denote the upper and lower domain, respectively.

When the unit displacement discontinuity inz-direction is applied on the interfacial crack, the corresponding boundary conditions are given in the cylindrical coordi- nate system as

urþðr;0Þ urðr;0Þ ¼0; wþðr;0Þ wðr;0Þ ¼dð Þ;r hþðr;0Þ hðr;0Þ ¼0; 8<

:

rzþðr;0Þ rzðr;0Þ ¼0; rzrþðr;0Þ rzrðr;0Þ ¼0; hzþðr;0Þ hzðr;0Þ ¼0: 8>

<

>: ð5:9Þ

where 0rabelongs to the crack region. After inserting Eq. (5.8) into Eq. (5.9), one can obtain

A1

l1¼Al2

2;

1

2l1½nA1ð34v1ÞB1þ4 1ð v1ÞC1 2l1

2½nA2ð34v2ÞB2þ4 1ð v2ÞC2 ¼2p1; Cl1

1C1¼Cl2

2C2; 8>

>>

<

>>

>:

ð5:10aÞ

nA1þ2 1ð v1ÞB12 1ð v1ÞC1 ¼nA22 1ð v2ÞB2þ2 1ð v2ÞC2; nA1þð12v1ÞB12 1ð v1ÞC1 ¼ nA2þð12v2ÞB22 1ð v2ÞC2;

C1b1

l1 C1¼Cl2b2

2 C2; 8<

:

ð5:10bÞ where the subscripts“1”and“2”denote the upper and lower domains, respectively.

Solving these six equations one can get

5.2 Extended Displacement Discontinuity Method and Fundamental 177

C1¼C2¼0 ð5:11aÞ A1¼ l1ð23v13v2þ4v1v2Þ

3l2þl14l2v1

ð Þ lð 23l1þ4l1v2Þ 2 p 1 n¼A11

n ð5:11bÞ A2¼ l2ð23v13v2þ4v1v2Þ

3l2l1þ4l2v1

ð Þðl2þ3l14l1v2Þ 2 p 1 n¼A21

n ð5:11cÞ B1¼ l1l2

2ðl13l2þ4l2v1Þ 2

p¼ l1l2

p lð 1þk1l2Þ ð5:11dÞ B2¼ l1l2

2ðl2þ3l14l1v2Þ 2

p¼ l1l2

p lð 2þl1k2Þ ð5:11eÞ whereka¼34va,A1,A2,B1andB2are all constants, and the potential functions are obtained as:

w1þ ¼A11

R ð5:12aÞ

w1 ¼A21

R ð5:12bÞ

w2þ ¼B1

z

R3 ð5:12cÞ

w2 ¼ B2

z

R3 ð5:12dÞ

w3þ ¼0 ð5:12eÞ

w3 ¼0 ð5:12fÞ

where R¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi r2þz2

p . Then the corresponding displacements and stresses are obtained, for example, the stresses of an arbitrary point in the upper domain are obtained as:

rzþ ¼ l1l2

2p lð 1þk1l2Þ ð1þg2Þ 1

R3 þ3 5ð g2Þz2 R530z4

R7

ð5:13aÞ

rzrþ ¼ l1l2

2p lð 1þk1l2Þ 3 3ð g2Þrz

R530rz3 R7

ð5:13bÞ

and the forms of the stresses in the Cartesian coordinates are:

rzþ ¼ l1l2

2p lð 1þk1l2Þ ð1þg2Þ 1

R3 þ3 5ð g2Þz2 R530z4

R7

ð5:14aÞ

rzxþ ¼ l1l2

2p lð 1þk1l2Þ 3 3ð g2Þxz

R530xz3 R7

ð5:14bÞ

ryzþ ¼ l1l2

2p lð 1þk1l2Þ 3 3ð g2Þyz

R530yz3 R7

ð5:14cÞ

whereg2 ¼ll1þl2k1

2þl1k2.

5.2.1.2 Unit Point Temperature Discontinuity of the Crack

The boundary condition in Eq. (5.5d) can be rewritten as uðn;gÞ

k k ¼0; kvðn;gÞk ¼0; kwðn;gÞk ¼0; khðn;gÞk ¼dðn;gÞ: ð5:15Þ It is also a non-torsional axisymmetric problem. We can use the same form of potential functions in Eq. (5.7) and adopt the same zero-order Hankel transfor- mation in Eq. (5.8). When the unit temperature discontinuity is applied on the interface crack, the corresponding boundary conditions are as follows

urþðr;0Þ urðr;0Þ ¼0 wþðr;0Þ wðr;0Þ ¼0 hþðr;0Þ hðr;0Þ ¼dð Þr 8<

:

rzþðr;0Þ rzðr;0Þ ¼0 rzrþðr;0Þ rzrðr;0Þ ¼0 hzþðr;0Þ hzðr;0Þ ¼0 8>

<

>: ð5:16Þ

thus we can obtain

A1 l1¼Al2

1 2

l1½nA1ð34v1ÞB1þ4 1ð v1ÞC1 ¼l1

2½nA2ð34v2ÞB2þ4 1ð v2ÞC2 2lC1

1C12lC2

2C2¼2p11n 8>

<

>:

ð5:17aÞ nA1þ2 1ð v1ÞB12 1ð v1ÞC1 ¼nA22 1ð v2ÞB2þ2 1ð v2ÞC2

nA1þð12v1ÞB12 1ð v1ÞC1 ¼ nA2þð12v2ÞB22 1ð v2ÞC2 C1b1

l1 C1¼Cl2b2

2 C2

8<

:

ð5:17bÞ 5.2 Extended Displacement Discontinuity Method and Fundamental 179

Solving these six equations, we can get

A1¼ðv11ÞC2b2l1ðl2þk2l1Þ ðv21ÞC1b1l2ðl1þk1l2Þ pC1C2ðb1þb2Þðl1þk1l2Þðl2þk2l1Þ

2l1 n2 ¼A1 1

n2 ð5:18aÞ A2¼ðv11ÞC2b2l1ðl2þk2l1Þ ðv21ÞC1b1l2ðl1þk1l2Þ

pC1C2ðb1þb2Þðl1þk1l2Þðl2þk2l1Þ

2l2 n2 ¼A2 1

n2 ð5:18bÞ B1¼ 4l1l2ðv11Þb2

pC1ðb1þb2Þðl1þk1l2Þ 1 n¼B11

n ð5:18cÞ

B2¼ 4l1l2ðv21Þb1 pC2ðb1þb2Þðl2þk2l1Þ

1 n¼B21

n ð5:18dÞ

C1¼ l1b2 pC1ðb1þb2Þ

1 n¼C11

n ð5:18eÞ

C2¼ l2b1 pC2ðb1þb2Þ

1 n¼C21

n ð5:18fÞ

where A1, A2, B1, B2, C1 and C2 are constants, and the potential functions are determined as:

w1þ ¼ A1lnðRþzÞ ð5:19aÞ w1 ¼ A2lnðRzÞ ð5:19bÞ

w2þ ¼B11

R ð5:19cÞ

w2 ¼B21

R ð5:19dÞ

w3þ ¼C11

R ð5:19eÞ

w3 ¼C21

R ð5:19fÞ

Furthermore, the corresponding displacements, stresses, temperature and heat flux caused by the unit temperature discontinuity can be obtained. For example, the stresses and heatflux of an arbitrary point in the upper domain are given as:

rzþ ¼ l1l2 2p lð 1þk1l2Þ

2½a2ð1þv2Þb1g2þa1ð1þv1Þb2 b1þb2

z

R312a1ð1þv1Þb2 b1þb2

z3 R5

ð5:20aÞ

rzrþ ¼ l1l2 2p lð 1þk1l2Þ

2½a2ð1þv2Þb1g2þa1ð1þv1Þb2 b1þb2

r

R312a1ð1þv1Þb2 b1þb2

rz2 R5

ð5:20bÞ hzþ ¼ b1b2

2p bð 1þb2Þ 1 R33z2

R5

ð5:20cÞ

In terms of the Cartesian coordinates, they are:

rzþ ¼ l1l2 2p lð 1þk1l2Þ

2½a2ð1þv2Þb1g2þa1ð1þv1Þb2 b1þb2

z

R312a1ð1þv1Þb2

b1þb2 z3 R5

ð5:21aÞ

rzxþ ¼ l1l2 2p lð 1þk1l2Þ

2½a2ð1þv2Þb1g2þa1ð1þv1Þb2 b1þb2

x

R312a1ð1þv1Þb2

b1þb2 xz2

R5

ð5:21bÞ

ryzþ ¼ l1l2 2p lð 1þk1l2Þ

2½a2ð1þv2Þb1g2þa1ð1þv1Þb2 b1þb2

y

R312a1ð1þv1Þb2

b1þb2 yz2

R5

ð5:21cÞ hzþ ¼ b1b2

2p bð 1þb2Þ 1 R33z2

R5

ð5:21dÞ

5.2.1.3 Unit-Point Displacement Discontinuity in the y-Direction of the Crack

The boundary condition in Eq. (5.5b) can be rewritten as:

uðn;gÞ

k k ¼0; kvðn;gÞk ¼dðn;gÞ; kwðn;gÞk ¼0; khðn;gÞk ¼0: ð5:22Þ Obviously this problem is no longer non-torsional axisymmetric, which requires a complete, general solution. The relatively completed, general solution around the z-axis is expressed in the following form [42]:

5.2 Extended Displacement Discontinuity Method and Fundamental 181

2lur¼ @w0

r@/þ@w1

@r þz@w2

@r ; ð5:23aÞ

2lu/¼@w0

@r þ@w1

r@/þz@w2

r@/; ð5:23bÞ 2lw¼@w1

@z ð34vÞw2þz@w2

@z þ4 1ð vÞw3; ð5:23cÞ rz¼@2w1

@z2 2 1ð vÞ@w2

@z þz@2w2

@z2 þ2 1ð vÞ@w3

@z ; ð5:23dÞ

rzr ¼ 1 2r

@2w0

@/@zþ@2w1

@r@zð12vÞ@w2

@r þz@2w2

@r@z þ2 1ð vÞ@w3

@r ; ð5:23eÞ

rz/¼1 2

@2w0

@r@zþ1 r

@2w1

@/@zð12vÞ1 r

@w2

@/ þz r

@2w2

@/@zþ2 1ð vÞ1 r

@w3

@/ ; ð5:23fÞ 2l

Ch¼@w3

@z ; ð5:23gÞ

hz¼ bC 2l

@2w3

@z2 ; ð5:23hÞ

When the unit displacement discontinuity in y-direction is applied on the interfacial crack, the corresponding boundary conditions are:

urþðr;0Þ urðr;0Þ ¼dð Þr sin/; u/þðr;0Þ u/ðr;0Þ ¼dð Þr cos/; wþðr;0Þ wðr;0Þ ¼0; hþðr;0Þ hðr;0Þ ¼0; 8>

><

>>

:

rzþðr;0Þ rzðr;0Þ ¼0; rzrþðr;0Þ rzrðr;0Þ ¼0; rz/þðr;0Þ rz/ðr;0Þ ¼0; hzþðr;0Þ hzðr;0Þ ¼0: 8>

>>

><

>>

>>

:

ð5:24Þ

According to the boundary conditions, thefirst-order Hankel transformation is introduced, and the corresponding potential functions are:

w1þ ¼ Z1

0

nA1enzJ1ð Þdnnr sin/; ð5:25aÞ

w1 ¼ Z1

0

nA2enzJ1ð Þdnnr sin/; ð5:25bÞ

w2þ ¼ Z1

0

nB1enzJ1ð Þdnnr sin/; ð5:25cÞ

w2 ¼ Z1

0

nB2enzJ1ð Þdnnr sin/; ð5:25dÞ

w3þ ¼ Z1

0

nC1enzJ1ð Þdnnr sin/; ð5:25eÞ

w3 ¼ Z1

0

nC2enzJ1ð Þdnnr sin/; ð5:25fÞ

w0þ ¼ Z1

0

nD1enzJ1ð Þdnnr cos/; ð5:25gÞ

w0 ¼ Z1

0

nD2enzJ1ð Þdnnr cos/; ð5:25hÞ

where superscripts“+”and“_”denote the upper and lower domains, respectively.

Substituting Eq. (5.25) into the boundary conditions in Eq. (5.24) yields:

D1A1

l1 D2lA2

2 ¼0

D1þA1

2l1 D22lþA2

2 ¼pn1

1

l1½nA1ð34v1ÞB1þ4 1ð v1ÞC1 ¼l1

2½nA2ð34v2ÞB2þ4 1ð v2ÞC2 Cl1

1C1¼Cl2

2C2

8>

>>

><

>>

>>

:

ð5:26aÞ nA1þ2 1ð v1ÞB12 1ð v1ÞC1¼nA22 1ð v2ÞB2þ2 1ð v2ÞC2;

nðD1þ2A1Þ 2 1ð 2v1ÞB1þ4 1ð v1ÞC1¼nðD2þ2A2Þ 2 1ð 2v2ÞB2þ4 1ð v2ÞC2; nðD1þ2A1Þ þ2 1ð 2v1ÞB14 1ð v1ÞC1¼nðD22A2Þ þ2 1ð 2v2ÞB24 1ð v2ÞC2; C1b1

l1 C1¼C2b2 l2 C2; 8>

>>

>>

<

>>

>>

>:

ð5:26bÞ where subscripts “1”and“2” denote the upper and lower domains, respectively.

Solving Eq. (5.26), one can get

5.2 Extended Displacement Discontinuity Method and Fundamental 183

A1¼ l2ð3þ4v1Þ þl1ð5þ6v1þ6v28v1v2Þ l1þl2k1

ð Þðl2þl1k2Þ

1 pn¼A11

n; ð5:27aÞ A2¼ l1ð34v2Þ þl2ð56v26v2þ8v1v2Þ

l1þl2k1

ð Þðl2þl1k2Þ

1 pn¼A21

n; ð5:27bÞ B1¼ l1l2

l23l1þ4l1v2

ð Þ

1

p¼ l1l2

p lð 2þl1k2Þ; ð5:27cÞ B2¼ l1l2

l13l2þ4l2v1

ð Þ

1

p¼ l1l2

p lð 1þl2k1Þ; ð5:27dÞ

C1¼C2¼0; ð5:27eÞ

D1¼ l1l2 l1þl2 1

pn¼D11

n; ð5:27fÞ

D2¼ l1l2 l1þl2 1

pn¼D21

n; ð5:27gÞ

whereka¼34va,A1,A2,D1,D2,B1 andB2 are all constants, and the potential functions are obtained as:

w0þ ¼D11 r 1z

R

cos/; ð5:28aÞ

w0 ¼D21 r 1þ z

R

cos/; ð5:28bÞ

w1þ ¼A11 r 1z

R

sin/; ð5:28cÞ

w1 ¼A21 r 1þ z

R

sin/; ð5:28dÞ

w2þ ¼B1

r

R3sin/; ð5:28eÞ

w2 ¼ B2

r

R3sin/; ð5:28fÞ

w3þ ¼0; ð5:28gÞ

w3 ¼0; ð5:28hÞ

where R¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi r2þz2

p . Then, the corresponding displacements and stresses are all obtained. For example, the stresses of an arbitrary point in the upper domain are obtained in the Cartesian coordinates:

rzþ ¼ l1l2 2p lð 1þk1l2Þ

3 1ð þg2Þyz

R5 30yz3 R7

; ð5:29aÞ

rzxþ ¼ l1l2 2p lð 1þk1l2Þ

3 1ð g1þg2Þxy

R5 30xyz2 R7

; ð5:29bÞ

ryzþ ¼ l1l2 2p lð 1þk1l2Þ

2g1g21

R3 þ3ð1g1þg2Þy2þð2g2Þz2

R5 30y2z2 R7

ð5:29cÞ

5.2.1.4 Unit Point Displacement Discontinuity in the x-Direction of the Crack

Similar to Sect.5.2.1.3, as the problem is symmetric about x and y-axis, under unit point displacement discontinuity in the x-direction, the stresses of an arbitrary point in the upper domain are obtained in the Cartesian coordinates

rzþ ¼ l1l2 2p lð 1þk1l2Þ

3 1ð þg2Þxz

R5 30xz3 R7

; ð5:30aÞ

rzxþ ¼ l1l2 2p lð 1þk1l2Þ

2g1g21

R3 þ3ð1g1þg2Þx2þð2g2Þz2

R5 30x2z2 R7

; ð5:30bÞ

ryzþ ¼ l1l2 2p lð 1þk1l2Þ

3 1ð g1þg2Þxy

R5 30xyz2 R7

ð5:30cÞ

5.2.2 Boundary Integral-Differential Equations

Dalam dokumen Zengtao Chen Abdolhamid Akbarzadeh (Halaman 183-194)