• Tidak ada hasil yang ditemukan

Higher Berry curvature for 1d insulators of class A

Dalam dokumen Lev Spodyneiko (Halaman 162-166)

Chapter IX: Higher-dimensional generalizations of the Thouless charge pump 87

E.2 Higher Berry curvature for 1d insulators of class A

the system does not contribute to ๐น(2) and can be discarded. What remains is a system with a finite-dimensional Hilbert space. Since ๐‘“+โˆ’๐‘“โˆ’ =๐œƒ(๐‘โˆ’3๐ฟ)โˆ’๐œƒ(๐‘+3๐ฟ) and thus is equalโˆ’1 in the region[โˆ’2๐ฟ,2๐ฟ], we have

โˆ’๐น+โˆ’(2)(๐‘“+โˆ’ ๐‘“โˆ’)= ร•

๐‘โˆˆ[โˆ’2๐ฟ,2๐ฟ]

๐น+โˆ’(2)๐‘+๐‘‚(๐ฟโˆ’โˆž). (E.5) This is simply the Berry curvature of this finite-dimensional system. Therefore its integral over๐‘†2is an integer multiple of 2๐œ‹. We conclude that

โˆซ

๐‘†3

โ„Žโˆ—(ฮฉ(3)(๐‘“)) =2๐œ‹๐‘›+๐‘‚(๐ฟโˆ’โˆž), ๐‘›โˆˆZ. (E.6) Taking the limit ๐ฟโ†’ โˆžwe get the desired result.

In general we proceed by induction in๐ท. For๐ท > 1 the restriction to SRE systems is a nontrivial constraint on the kind of families we allow. Other than that, we can proceed in the same way as for ๐ท = 1. First we tensor with a suitable constant SRE system to reduce to the case of a family of systems in a trivial phase. Then we remove the north and south pole from๐‘†๐ท+2and define three families of gapped Hamiltonians ๐ป+[s], ๐ปโˆ’[s], and ๐ป+โˆ’[s] which are defined on ๐‘†๐‘๐ท+2, ๐‘†๐‘†๐ท+2 and ๐‘†๐ท๐‘+2ร‘๐‘†๐ท๐‘†+2, respectively. They approach๐ป(m0)on the far right, far left, and both far right and far left, respectively. By far right we mean the region ๐‘ฅ๐ท(๐‘) 0, while far left is the region๐‘ฅ๐ท(๐‘) 0. The same manipulations as before reduce the integral ofฮฉ(๐ท+2) over ๐‘†๐ท+2 to an integral of ฮฉ(๐ท+1) over the equatorial ๐‘†๐ท+1 up to terms of order๐ฟโˆ’โˆž. This completes the inductive step.

An interpolation between๐ป(m)and๐ป(m0)can also be viewed as a gapped boundary condition for ๐ป(m). Given a smooth family of gapped boundary conditions for ๐ป[s] defined on some open subset๐‘ˆ โŠ‚ ๐‘†3(not necessarily arising from a smooth interpolation as above), one can writeฮฉ(๐ท+2)(๐‘“1, . . . , ๐‘“๐ท)|๐‘ˆ as an exact form. This is done in exactly the same way as above. Therefore if the cohomology class of ฮฉ(๐ท+2)is non-trivial, it is impossible to find a family of gapped boundary conditions for ๐ป[s] which is defined on the whole ๐‘†3and varies smoothly with s. For ๐ท =0 the analogous statement is that the cohomology class of the Berry curvature is an obstruction to finding a family of ground states on the whole parameter space which depends continuously on the parameters.

A). Then we specialize to the case of translationally-invariant systems and compare with forms constructed out of the Bloch-Berry connection.

We start with the many-body expression for the 3-form๐น๐‘๐‘ž(3) divided by 2๐œ‹: ๐น๐‘๐‘ž(3)

2๐œ‹ =โˆ’ ๐‘– 12๐œ‹

โˆฎ

๐‘ง=๐ธ0

๐‘‘๐‘ง

2๐œ‹๐‘–Tr(2๐บ๐‘‘๐ป๐บ2๐‘‘๐ป๐‘๐บ๐‘‘๐ป๐‘ž

+๐บ๐‘‘๐ป๐บ๐‘‘๐ป๐‘๐บ2๐‘‘๐ป๐‘ž) โˆ’ (๐‘ โ†”๐‘ž).

(E.7)

We will consider the following many-body Hamiltonian:

๐ป๐‘ = 1 2

ร•

๐‘šโˆˆฮ›

๐‘Žโ€ ๐‘โ„Ž(๐‘, ๐‘š)๐‘Ž๐‘š +๐‘Žโ€ ๐‘šโ„Ž(๐‘š, ๐‘)๐‘Ž๐‘

. (E.8)

Here โ„Ž(๐‘, ๐‘ž) is an Hermitian matrix โ„Ž(๐‘, ๐‘ž)โˆ— = โ„Ž(๐‘ž, ๐‘). The fermionic creation- annihilation operators๐‘Žโ€ ๐‘, ๐‘Ž๐‘satisfy canonical anti-commutation relations

{๐‘Žโ€ ๐‘, ๐‘Ž๐‘ž} =๐›ฟ๐‘๐‘ž,

{๐‘Ž๐‘, ๐‘Ž๐‘ž} ={๐‘Žโ€ ๐‘, ๐‘Žโ€ ๐‘ž} =0, (E.9) where๐›ฟ๐‘๐‘ž is the Kronecker delta.

Since all relevant operators are sums of single particle operators, matrix elements h๐‘š|๐ด|๐‘›ivanish unless many-body states๐‘›and๐‘šdiffer by exactly one single-particle excitation. The above expression can be written in terms of one-particle quantities as follows:

๐น๐‘๐‘ž(3)

2๐œ‹ =โˆ’ ๐‘– 12๐œ‹

โˆฎ ๐‘‘๐‘ง

2๐œ‹๐‘–t๐‘Ÿ(2๐‘”๐‘‘โ„Ž๐‘”2๐‘‘โ„Ž๐‘๐‘”๐‘‘โ„Ž๐‘ž+๐‘”๐‘‘โ„Ž๐‘”๐‘‘โ„Ž๐‘๐‘”2๐‘‘โ„Ž๐‘ž) โˆ’ (๐‘ โ†”๐‘ž). (E.10) Here the contour of integration encloses all states below Fermi level and all lower case letters denote the corresponding single-particle operators acting on the single- particle Hilbert spaceโ„“2(ฮ›). Naively, this integral contains additional contributions compared to (E.7) where a fermion jumps from an empty state or jumps into a filled state. But these contributions cancel each other and the result coincides with (E.7).

Hamiltonian density at a point ๐‘can be written asโ„Ž๐‘ = 12(๐›ฟ๐‘โ„Ž+โ„Ž๐›ฟ๐‘), where๐›ฟ๐‘is Kroneckerโ€™s delta (equal 1 on ๐‘and 0 on other cites) and functions are understood as operators on the one-particle Hilbert space acting by multiplication. Contracting ๐น๐‘๐‘ž(3) with the cochain ๐‘“(๐‘ž) โˆ’ ๐‘“(๐‘)we find

1

2๐œ‹h๐น(3), ๐›ฟ ๐‘“i=โˆ’ ๐‘– 24๐œ‹

โˆฎ ๐‘‘๐‘ง 2๐œ‹๐‘–tr

[๐‘‘โ„Ž, ๐‘“](๐‘”๐‘‘โ„Ž๐‘”๐‘‘โ„Ž๐‘”2โˆ’๐‘”2๐‘‘โ„Ž๐‘”๐‘‘โ„Ž๐‘”)

โˆ’2[โ„Ž, ๐‘“](๐‘”๐‘‘โ„Ž๐‘”2๐‘‘โ„Ž๐‘”๐‘‘โ„Ž๐‘”โˆ’๐‘”๐‘‘โ„Ž๐‘”๐‘‘โ„Ž๐‘”2๐‘‘โ„Ž๐‘”) .

(E.11)

Note that multiplication by ๐‘“ is not a trace class operator, since it acts on infinitely many sites. Therefore traces containing them are not guaranteed to exist. On the other hand, commutators like[๐‘‘โ„Ž, ๐‘“]are supported only on a finite number of sites, and therefore traces containing them are well-defined.

On the other hand, given a gapped 1d system of free fermions with translational symmetry which depends on three parameters๐œ†1, ๐œ†2, ๐œ†3, one may consider the Bloch bundle of filled states over the product of the Brillouin zone ๐‘†1 and the parameter spaceฮฃ. It carries the non-Abelian Bloch-Berry connection, and one can consider various Chern-Weil forms on๐‘†1ร—ฮฃconstructed out of this connection. In particular, one can consider the degree-4 component of the Chern character of the Berry-Bloch connection and its integral over๐‘†1ร—ฮฃ:

โˆซ

๐‘†1ร—ฮฃCh(F ) =โˆ’ 1 8๐œ‹2

โˆซ

๐‘†1ร—ฮฃTr(F โˆง F ). (E.12) Here F is the non-Abelian curvature 2-form of the Bloch-Berry connection and trace is taken over filled bands. It can be shown (see Sec. IIIA in [46]) that this quantity can be expressed in terms of the one-particle Greenโ€™s function as follows:

โˆ’ 1 8๐œ‹2

โˆซ

๐‘†1ร—ฮฃTr(F โˆง F ) = ๐œ‹2 15๐œ–๐œ‡๐œˆ๐œŒ๐œŽ๐œ

โˆฎ ๐‘‘๐‘ง 2๐œ‹๐‘–

โˆซ

๐‘†1

๐‘‘๐‘˜ 2๐œ‹

โˆซ

ฮฃ

๐‘‘3๐œ† (2๐œ‹)3

ร—tr0 ๐‘”๐œ•๐‘”โˆ’1

๐œ•๐‘ž๐œ‡ ๐‘”๐œ•๐‘”โˆ’1

๐œ•๐‘ž๐œˆ ๐‘”๐œ•๐‘”โˆ’1

๐œ•๐‘ž๐œŒ ๐‘”๐œ•๐‘”โˆ’1

๐œ•๐‘ž๐œŽ ๐‘”๐œ•๐‘”โˆ’1

๐œ•๐‘ž๐œ ,

(E.13)

where ๐‘ž๐œ‡ = (๐‘ง, ๐‘˜, ๐œ†1, ๐œ†2, ๐œ†3). The first integral encloses filled levels, the second integral is over the Brillouin zone, and the last integral is over the parameter space ฮฃ. The trace t๐‘Ÿ0is taken over subspace with fixed momentum ๐‘˜. In translationally invariant system we can interpret โˆซ

๐‘†1

๐‘‘๐‘˜2๐œ‹ as part of the trace t๐‘Ÿ over the whole one-particle Hilbert space and substitute ๐œ•๐‘”๐œ•๐‘˜โˆ’1 = โˆ’๐œ•โ„Ž๐œ•๐‘˜ = โˆ’๐‘–[โ„Ž, ๐‘“]. Expanding the derivatives๐œ•/๐œ•๐‘ž๐œ‡and combining parameter derivatives into forms,ร

๐‘–

๐œ•โ„Ž

๐œ•๐œ†๐‘–๐‘‘๐œ†๐‘– =๐‘‘โ„Ž, we find

โˆ’ 1 8๐œ‹2

โˆซ

๐‘†1ร—ฮฃTr(F โˆง F ) = ๐‘– 24๐œ‹

โˆฎ ๐‘‘๐‘ง 2๐œ‹๐‘–

โˆซ

ฮฃt๐‘Ÿ

๐‘”2[โ„Ž, ๐‘“]๐‘”๐‘‘โ„Ž๐‘”๐‘‘โ„Ž๐‘”๐‘‘โ„Ž

โˆ’๐‘”2๐‘‘โ„Ž๐‘”[โ„Ž, ๐‘“]๐‘”๐‘‘โ„Ž๐‘”๐‘‘โ„Ž+๐‘”2๐‘‘โ„Ž๐‘”๐‘‘โ„Ž๐‘”[โ„Ž, ๐‘“]๐‘”๐‘‘โ„Žโˆ’๐‘”2๐‘‘โ„Ž๐‘”๐‘‘โ„Ž๐‘”๐‘‘โ„Ž๐‘”[โ„Ž, ๐‘“]

. (E.14) One can see that the integrand of this expression differs from (E.11) by a total derivative proportional to

๐‘‘

โˆฎ ๐‘‘๐‘ง 2๐œ‹๐‘–tr

[โ„Ž, ๐‘“](๐‘”๐‘‘โ„Ž๐‘”๐‘‘โ„Ž๐‘”2โˆ’๐‘”2๐‘‘โ„Ž๐‘”๐‘‘โ„Ž๐‘”)

. (E.15)

Since ฮฃ was an arbitrary three-dimensional submanifold of the parameter space, we have shown that the first higher Berry 3-form divided by 2๐œ‹ is in the same cohomology class as โˆซ

๐‘†1ร—ฮฃCh(F ). We conjecture that more generally for class A insulators in๐ท dimensions the formฮฉ(๐ท+2) is in the same cohomology class as the integral of the degree 2๐ท+2 component of the Chern character of the Bloch-Berry connection over the Brillouin zone.

An example of a free 1d fermion system with a non-trivial integralโˆซ

๐‘†1ร—ฮฃCโ„Ž(F )can be constructed using the 4d Chern insulator (see sec. IIIB of [46]). The Hamiltonian is

๐ป =ร•

๐‘˜๐‘ฅ

๐œ“โ€ ๐‘˜

๐‘ฅ๐‘‘๐‘Ž(๐‘˜๐‘ฅ,๐œ†ยฎ)ฮ“๐‘Ž๐œ“๐‘˜๐‘ฅ, (E.16) whereฮ“๐‘Žare five Dirac matrices generating a Clifford algebra, and

๐‘‘๐‘Ž(๐‘˜๐‘ฅ,๐œ†ยฎ) =

"

(๐‘š+๐‘+cos๐‘˜๐‘ฅ+๐‘ ร•3

๐‘–=1

cos๐œ†๐‘–),sin๐‘˜๐‘ฅ,sin๐œ†1,sin๐œ†2,sin๐œ†3

#

. (E.17) It was shown in Ref. [46] that if we choseฮฃ to be 3-torus๐‘†1ร—๐‘†1ร—๐‘†1defined by identification๐œ†๐‘– โˆผ ๐œ†๐‘–+2๐œ‹ this model has a non-zero integer value of the integral

โˆซ

๐‘†1ร—๐‘†1ร—๐‘†1ร—๐‘†1Cโ„Ž(F ) for a particular choice of ๐‘š and ๐‘. One can think about this family of 1d models as a "dimensional reduction" of the 4d Chern insulator where we treat three out of four components of momentum as parameters.

Note that the Atiyah-Singer index theorem [3] implies that the integral of the Chern character of a vector bundle over a four-torus is an integer. Therefore the integral ofฮฉ(3) over the parameter space๐‘‡3is 2๐œ‹ times an integer, despite the fact that the parameter space is a torus rather than a sphere.

A p p e n d i x F

APPENDICES TO CHAPTER IX

Dalam dokumen Lev Spodyneiko (Halaman 162-166)