Chapter VI: Thermoelectric Hall Effects
6.2 Microscopic formulas for thermoelectric coefficients
Derivations here are analogous to the ones for electric and thermal effects.
In order to find the thermoelectric coefficient coefficientππ₯π¦we deform the Hamil- tonian density by
Ξπ»π =π ππ π‘ β’π(π)π»π, (6.1) whereβ’π(π)is a hat-shaped function as in Fig. 5.1b,π is an infinitesimal parameter, andπ is a small positive number which controls how fast the perturbation is turned on. We will consider the so-called fast regime [39] in which the characteristic time 1/π is large but not large enough in order for the two slopes of the hatβ’π(π)to come into equilibrium.
The change in the electric current across a vertical lineπ₯ =πis Ξhπ½π(πΏ π)i =hΞπ½π(πΏ π)i +π π½
β« β
0 ππ‘πβπ π‘hhπ½π(πΏ π , π‘);π½πΈ(πΏβ’π)ii, (6.2) where π(π) =π(πβπ₯(π))is a step function. The explicit variation of the current is
hΞπ½π(πΏ π)i = ππ 2
Γ
π,πβΞ
β’
π(π)[π»π, ππ] ββ’π(π)[π»π, ππ]
(π(π) β π(π))
= π 4
Γ
π,πβΞ
hπ½πππi(β’π(π) +β’π(π))(π(π) β π(π)) + ππ
4 Γ
π,πβΞ
h[π»π, ππ] + [π»π, ππ](π(π) β π(π))(β’π(π) ββ’π(π))i,
(6.3)
where in the last line we separated the result into two contribution formally skew- symmetric and symmetric in π ,β’π. The second term depends only on difference of values of β’π at different sites as expected for a transport current. On the other hand, the first term depends on the value ofβ’π and does not seem to be of the form expected for a transport current. As was explained in [14] this contribution is related to magnetization currents. Indeed we can rewrite
π 4
Γ
π,πβΞ
hπ½πππ i(β’π(π) +β’π(π))(π(π) β π(π))
= Γ
π,π,πβΞ
πππππ (π(π) β π(π))(β’π(π) ββ’π(π)), (6.4) where we used skew-symmetry of πππππ .
Written in this form, the response is proportional to the differences of π at different points and therefore receives appreciable contributions only from regionsπΌandπΌ πΌin Fig. 5.1d. However, transformation (6.4) contains an important subtlety. The right- hand side hand side contains magnetization which is ambiguously defined while left-hand side is unambiguous. There is no contradiction because the ambiguity in the regionπΌwill compensate the one in the region πΌ πΌ. Moreover, in a homogeneous system the response will be zero, because these two regions compensate each other exactly. One way to deal with it is to introduce a boundary somewhere in between the two regions and enforce magnetization π to be 0 outside of the sample. This approach is used in [14] in the continuum case. However, an explicit boundary introduces additional computational challenges and makes the bulk nature of the Nernst effect obscure.
Instead of introducing a sharp boundary, we will make one parameter of the Hamil- tonian πto have slightly different values in regions πΌ and πΌ πΌ (see Fig. 5.1d). We can write the hat-shaped function β’π as a difference of two functions ππΌ and ππΌ πΌ,
β’π(π) = ππΌ πΌ(π) βππΌ(π), each of which is a translate of the function π(π) which depends only onπ¦(π)and is shown in Fig. 5.1c. The functionsππΌ,πΌ πΌare non-constant only in regions πΌ and πΌ πΌ respectively. Then the magnetization contribution can be rewritten as
π(ππΌ πΌ βππΌ)πππ(πΏπβͺπΏ π) +π((ππΌ πΌ βππΌ)2), (6.5) whereπππππ,π = π ππππ πππ , and we introduced a notation
πππ(πΏ π1βͺπΏ π2) = 1 6
Γ
π,π,πβΞ
πππππ,π(π1(π) β π2(π))(π2(π) β π2(π)). (6.6) Combining this with other contributions we find
πΏhπ½π(πΏ π)i βπ(ππΌ πΌ βππΌ) ( π
ππ hπ½
β« β
0 ππ‘πβπ π‘hhπ½π(πΏ π , π‘);π½πΈ(πΏπ)ii +π(πΏ π , πΏπ)i
+πππ(πΏπβͺπΏ π) )
,
(6.7)
where
π(πΏ π , πΏπ)= π 4
Γ
π,πβΞ
h[π»π, ππ] + [π»π, ππ](π(π) β π(π))(π(π) βπ(π))i. (6.8) The functionπas in Fig. 5.1c is not compactly supported and thus it takes an infinite time for the system to equilibrate. Therefore, one can take the limit π β 0 while
staying in the βfastβ regime. From eqs. (3.24,3.25) one finds that electric current after perturbation by gravitational potentialππ(π)is equal to the current generated by
π(π)=ππ(π)π0, (6.9)
π(π)=ππ(π)π0. (6.10)
From continuum phenomenological equation (2.1) one finds the current acrossπ₯ =π line to be
βππ0
β« β
ββ
ππ₯π¦ππ¦πππ¦βπ π0
β« β
ββ
ππ₯π¦ππ¦πππ¦=ππ0
β« ππΌ πΌ
ππΌ
πππ₯π¦
ππ ππ+π π0
β« ππΌ πΌ
ππΌ
πππ₯π¦
ππ ππ.
(6.11) Comparing it to (6.7) we find
πππ₯π¦ =πh π½2lim
π β0
β« β
0 ππ‘πβπ π‘hhπ½π(πΏ π , π‘);π½Q(πΏπ)ii +π½π(πΏ π , πΏπ)i
β π½ππ(πΏ π βͺπΏπ), (6.12) where we introduced the notation π½Q = π½πΈ β ππ½π for the heat current, inverse temperature π½ = π1, we dropped the subscript 0 from π0 and π0 since this for- mula contains correlation functions of the unperturbed system in equilibrium.
We combined differential with respect to parameter into the differential form ππ(πΏ π βͺπΏπ) = πππ(πΏ π βͺπΏπ)ππ and the derivation can be straightforwardly ex- tended to involve several parameters. The exterior derivativeπ =Γ
βπππππβ acts on the parameter space.
Since rescaling the temperature is equivalent to rescaling the Hamiltonian, we can extend this exact 1-form to the enlarged parameter space which includesπ. Then we can define the difference of coefficientsππ₯π¦ for any two 2d materials, regardless of the temperature. Explicitly, let us define the rescaled Hamiltonian π»π0 = π0π», where we introduced an additional scaling parameterπ0. Then
π π
ππ + π0 π
ππ0 π
0=1
!
ππ₯π¦(π0, π) =0. (6.13) Therefore we can define theπ-component of the 1-form on the enlarged parameter space as follows:
πππ₯π¦
ππ = π
ππ
π½2
β« β
0 ππ‘πβπ π‘hhπ½π(πΏ π , π‘);π½Q(πΏπ)ii +π½π(πΏ π , πΏπ)
βπ½2ππ(πΏ πβͺπΏπ), (6.14)
whereππ(πΏ π βͺπΏπ)is given by eq. (6.6) withππππ replaced with
πππππ = π½hhπ»π;π½πππii +π½hhπ»π;π½πππii +π½hhπ»π;π½π ππii, (6.15) which is obtained fromππ by replacingππ»πwithβπ»π.
Ettingshausen effect
One can derive a formula for the coefficientππ₯π¦in a similar way. In this section, we will display only the key steps, since all arguments are the same.
In order to find the coefficient we deform the Hamiltonian density by
Ξπ»π =π ππ π‘ β’π(π)ππ, (6.16) whereβ’π(π) is a hat-shaped function ofπ¦(π) as in Fig. 5.1b.
The change in the energy current across a vertical lineπ₯ =πis Ξhπ½πΈ(πΏ π)i = hΞπ½πΈ(πΏ π)i +π π½
β« β
0 ππ‘πβπ π‘hhπ½πΈ(πΏ π , π‘);π½π(πΏβ’π)ii, (6.17) where π =π(πβπ₯(π)). The explicit variation of the current is
hΞπ½πΈ(πΏ π)i = ππ 2
Γ
π,πβΞ
β’
π(π)[π»π, ππ] ββ’π(π)[π»π, ππ]
(π(π) β π(π))
= π 4
Γ
π,πβΞ
hπ½πππ i(β’π(π) +β’π(π))(π(π) β π(π)) βπ(πΏ π , πΏβ’π). (6.18) The first term can be expressed in terms of magnetization as in (6.4). We write
β’π(π)as a differenceβ’π(π) =ππΌ πΌ(π) βππΌ(π), whereππΌ,πΌ πΌare translates of a smeared step-functionπ(π). Then we rewrite the response as a difference of conductivities of different materials:
πΏhπ½πΈ(πΏ π)i βπ(ππΌ πΌ βππΌ) ( π
ππ hπ½
β« β
0 ππ‘πβπ π‘hhπ½πΈ(πΏ π , π‘);π½π(πΏπ)ii
βπ(πΏ π , πΏπ)i
+πππ(πΏπβͺπΏ π) )
.
(6.19)
On the other hand, from the continuum phenomenological equation (2.2) one finds the current across the lineπ₯ =πto be
βπ
β« β
ββ
ππ₯π¦ππ¦πππ¦βπ π
β« β
ββ
ππ₯π¦ππ¦πππ¦=π
β« ππΌ πΌ
ππΌ
πππ₯π¦
ππ ππ+π π
β« ππΌ πΌ
ππΌ
πππ₯π¦
ππ ππ, (6.20)
where the second term originates from the contribution ofπjπ tojπΈ. Comparing it to (6.19) we find
πππ₯π¦ =πh π½lim
π β0
β« β
0 ππ‘πβπ π‘hhπ½Q(πΏ π , π‘);π½π(πΏπ)ii βπ(πΏ π , πΏπ)i
βπ½ππ(πΏ π βͺπΏπ). (6.21) This 1-form can be extended to include temperature as a parameter using the scaling relation
π π
ππ + π0 π
ππ0 π
0=1
! ππ₯π¦(π0, π)
π =0. (6.22)
Therefore we can define theπ-component of the 1-form on the enlarged parameter space as follows:
π ππ
ππ₯π¦ π = π
ππ
π½2
β« β
0 ππ‘πβπ π‘hhπ½Q(πΏ π , π‘);π½π(πΏπ)ii βπ½π(πΏ π , πΏπ)
βπ½2ππ(πΏ πβͺπΏπ), (6.23) whereππ is given by (6.15).
Symmetric parts of transport coefficients
Note that the 1-formsππ(πΏ π βͺπΏπ) andππ(πΏ π βͺπΏπ) are formally skew-symmetric under the exchange of π andπ. To make use of this symmetry, we need to argue that π can be replaced with a smeared step-function in theπ₯direction. This can be argued as follows. Replacing π with a smeared step-function changes the operatorsπ½π(πΏ π) andπ½πΈ(πΏ π)byπ½π(πΏβ’π)andπ½πΈ(πΏβ’π). The latter operators can be equivalently written as ππ(
β’
π)
ππ‘ and ππ»(
β’
π)
ππ‘ , where π(β’π) =Γ
π
β’π(π)ππ, π»(β’π)=Γ
π
β’π(π)π»π, (6.24)
andβ’π(π) is a hat-shaped function which depends only on π₯(π). The expectation value of these observables in the NESS that we are considering must be zero for any finiteπ and thus zero also in the limitπ β0. Thus we can replace π with a smeared step-function in theπ₯-direction without affectingππ₯π¦orππ₯π¦.
After this has been done, exchanging π andπis equivalent to exchangingπ₯ and π¦. Thus ππ(πΏ π βͺπΏπ) does not enter the microscopic formulas for the symmetrized
thermoelectric coefficients. These formulas then can be integrated, giving ππ₯π¦π = π½2
2 lim
π β0
β« β
0 ππ‘πβπ π‘ h
hhπ½π(πΏ π , π‘);π½Q(πΏπ)ii + hhπ½π(πΏπ, π‘);π½Q(πΏ π)iii +π½π(πΏ π , πΏπ),
(6.25) πππ₯π¦ = π½
2 lim
π β0
β« β
0 ππ‘πβπ π‘ h
hhπ½Q(πΏ π , π‘);π½π(πΏπ)ii + hhπ½Q(πΏπ, π‘);π½π(πΏ π)iii
βπ(πΏ π , πΏπ).
(6.26)
As we show in Appendix C.2, the two terms on the right-hand side of these equation are not separately invariant under Hamiltonian density redefinition, but the full transport coefficients are invariant. The correction term π(πΏ π , πΏπ) is zero for fermionic systems with only density-dependent interactions (see Appendix C.3 for more details).
Skew-symmetric parts of transport coefficients
In a similar way one can find skew-symmetric parts of transport coefficients πππ΄= πhπ½2
2 lim
π β0
β« β
0 ππ‘πβπ π‘
hhπ½π(πΏ π , π‘);π½Q(πΏπ) β hhπ½π(πΏπ, π‘);π½Q(πΏ πii i
β π½ππ(πΏ π βͺπΏπ),
(6.27) πππ΄= πhπ½
2 lim
π β0
β« β
0 ππ‘πβπ π‘
hhπ½Q(πΏ π , π‘);π½π(πΏπ)ii β hhπ½Q(πΏπ, π‘);π½π(πΏ π)ii i
β π½ππ(πΏ π βͺπΏπ).
(6.28) These formulas give only derivatives of transport coefficients with respect to pa- rameters. Integration of these formulas over parameters or temperature gives the difference of relative transport coefficients at different values of parameters. It is natural to define relative transport coefficients of a trivial insulator to be zero. De- termination of the relative transport coefficient in this case would correspond to integration over a path in the parameter space from a trivial insulator to the material of interest.