• Tidak ada hasil yang ditemukan

Invariance under Hamiltonian density redefinition

Dalam dokumen Lev Spodyneiko (Halaman 144-150)

Chapter IX: Higher-dimensional generalizations of the Thouless charge pump 87

C.2 Invariance under Hamiltonian density redefinition

For a given Hamiltonian, there are many ways to define a Hamiltonian density. A typical example of this is the ambiguity in splitting an interaction term between two sites𝑝andπ‘žinto𝐻𝑝and/orπ»π‘ž. In this appendix, we will show that our microscopic formulas for physically observable transport coefficients are independent of the choice of the Hamiltonian density, even though individual terms in the microscopic formulas are not invariant. For some systems this can be used to simplify the microscopic formulas.

Invariance of the electric current

Consider the following change of the Hamiltonian density 𝐻𝑝 →𝐻𝑝+Γ•

π‘ŸβˆˆΞ›

π΄π‘Ÿ 𝑝, (C.5)

where π΄π‘Ÿ 𝑝 is skew-symmetric inπ‘Ÿ, 𝑝. We want the final Hamiltonian to beπ‘ˆ(1)- invariant. Therefore, we have to impose

[𝑄,Γ•

π‘ŸβˆˆΞ›

π΄π‘Ÿ 𝑝] =0. (C.6)

For a general choice of π΄π‘π‘ž a stronger condition

[𝑄, π΄π‘π‘ž] =0, (C.7)

will not hold. However, one can always redefine π΄π‘π‘ž (by subtracting theπ‘ˆ(1)-non- invariant part) in such a way that (C.7) holds without affecting𝐻𝑝. In the following we will assume this was done and (C.7) is true.

Under the transformation (C.5) the electric current changes as π½π‘π‘žπ‘ β†’ π½π‘π‘žπ‘ +𝑖Õ

π‘ŸβˆˆΞ›

[π΄π‘Ÿπ‘ž, 𝑄𝑝] βˆ’ [π΄π‘Ÿ 𝑝, π‘„π‘ž]

. (C.8)

Even though the current density changes, the net current through any section is invariant. Indeed,

𝐽𝑁(𝛿 𝑓) →𝐽𝑁(𝛿 𝑓) + 𝑖 2

Γ•

𝑝,π‘ž,π‘ŸβˆˆΞ›

[π΄π‘Ÿπ‘ž, 𝑄𝑝] βˆ’ [π΄π‘Ÿ 𝑝, π‘„π‘ž]

(𝑓(π‘ž) βˆ’ 𝑓(𝑝)), (C.9)

and the last term is zero since Γ•

𝑝,π‘ž,π‘ŸβˆˆΞ›

[π΄π‘Ÿπ‘ž, 𝑄𝑝] βˆ’ [π΄π‘Ÿ 𝑝, π‘„π‘ž]

(𝑓(π‘ž) βˆ’ 𝑓(𝑝))

= Γ•

𝑝,π‘ž,π‘ŸβˆˆΞ›

[π΄π‘Ÿπ‘ž, 𝑄𝑝] + [π΄π‘π‘Ÿ, π‘„π‘ž] + [π΄π‘ž 𝑝, π‘„π‘Ÿ]

(𝑓(π‘ž) βˆ’ 𝑓(𝑝))

= 1 3

Γ•

𝑝,π‘ž,π‘ŸβˆˆΞ›

[π΄π‘Ÿπ‘ž, 𝑄𝑝] + [π΄π‘π‘Ÿ, π‘„π‘ž] + [π΄π‘ž 𝑝, π‘„π‘Ÿ]

Γ— (𝑓(π‘ž) βˆ’ 𝑓(𝑝) + 𝑓(𝑝) βˆ’ 𝑓(π‘Ÿ) + 𝑓(π‘Ÿ) βˆ’ 𝑓(π‘ž))=0, (C.10) where we have used (C.7) and the skew-symmetry of [π΄π‘Ÿπ‘ž, 𝑄𝑝] + [π΄π‘π‘Ÿ, π‘„π‘ž] + [π΄π‘ž 𝑝, π‘„π‘Ÿ].

Covariance of the energy current

Let us now consider the effect of the redefinition of the Hamiltonian density on the energy current. Imposing an energy analog of (C.6) or (C.7)

[𝐻,Γ•

π‘ŸβˆˆΞ›

π΄π‘Ÿ 𝑝] =? 0, or [𝐻, π΄π‘π‘ž] =? 0, (C.11) is far too restrictive, since it would only allow changes of the Hamiltoniain density by conserved quantities. For example, the difference between putting the interaction term between the two sites 𝑝 and π‘ž either into 𝐻𝑝 or into π»π‘ž corresponds to π΄π‘π‘ž equal to the interaction term. Obviously, interaction terms are not integrals of motion in general. Because of this we will not impose either of the equations in (C.11).

Under the redefinition of the Hamiltonian density (C.5) the energy current changes as

π½π‘π‘žπΈ β†’ π½π‘π‘žπΈ +𝑖Õ

π‘ŸβˆˆΞ›

[π΄π‘Ÿπ‘ž, 𝐻𝑝] + [π»π‘ž, π΄π‘Ÿ 𝑝]

, (C.12)

while the net current transforms as 𝐽𝐸(𝛿 𝑓) →𝐽𝐸(𝛿 𝑓) + 𝑖

2 Γ•

𝑝,π‘ž,π‘ŸβˆˆΞ›

[π΄π‘Ÿπ‘ž, 𝐻𝑝] + [π»π‘ž, π΄π‘Ÿ 𝑝]

(𝑓(π‘ž) βˆ’ 𝑓(𝑝)). (C.13)

The last term can be rewritten as 𝑖

2 Γ•

𝑝,π‘ž,π‘ŸβˆˆΞ›

[π΄π‘Ÿπ‘ž, 𝐻𝑝] + [π»π‘ž, π΄π‘Ÿ 𝑝]

(𝑓(π‘ž) βˆ’ 𝑓(𝑝))

= 𝑖 2

Γ•

𝑝,π‘ž,π‘ŸβˆˆΞ›

[π΄π‘Ÿπ‘ž, 𝐻𝑝] + [π΄π‘π‘Ÿ, π»π‘ž] + [π΄π‘ž 𝑝, π»π‘Ÿ]

(𝑓(π‘ž) βˆ’ 𝑓(𝑝))

βˆ’π‘– 2

Γ•

𝑝,π‘ž,π‘ŸβˆˆΞ›

[π΄π‘ž 𝑝, π»π‘Ÿ](𝑓(π‘ž) βˆ’π‘“(𝑝)) = 𝑖 6

Γ•

𝑝,π‘ž,π‘ŸβˆˆΞ›

[π΄π‘Ÿπ‘ž, 𝐻𝑝] + [π΄π‘π‘Ÿ, π»π‘ž] + [π΄π‘ž 𝑝, π»π‘Ÿ]

Γ— (𝑓(π‘ž) βˆ’ 𝑓(𝑝) + 𝑓(𝑝) βˆ’ 𝑓(π‘Ÿ) + 𝑓(π‘Ÿ) βˆ’ 𝑓(π‘ž)) βˆ’ 𝑖 2

Γ•

𝑝,π‘žβˆˆΞ›

[𝐻, π΄π‘π‘ž](𝑓(π‘ž) βˆ’ 𝑓(𝑝))

=βˆ’ €𝐴(𝛿 𝑓), where we have defined

𝐴(𝛿 𝑓)= 1 2

Γ•

𝑝,π‘žβˆˆΞ›

π΄π‘π‘ž(𝑓(π‘ž) βˆ’ 𝑓(𝑝)). (C.14)

We find that the net energy current transforms as follows under a redefinition of the Hamiltonian density:

𝐽𝐸(𝛿 𝑓) β†’ 𝐽𝐸(𝛿 𝑓) βˆ’ €𝐴(𝛿 𝑓). (C.15) But this should be expected since a redefinition of the energy density changes how we define the energy of sub-regions and therefore should affect the net energy current.

Indeed, one can see that (C.13) is exactly the transformation needed in order to satisfy the energy conservation law

𝐻€𝑝=βˆ’Γ•

π‘žβˆˆΞ›

π½πΈπ‘π‘ž β†’ 𝐻€𝑝+Γ•

π‘žβˆˆΞ›

π΄Β€π‘ž 𝑝 =βˆ’Γ•

π‘žβˆˆΞ›

π½πΈπ‘π‘ž+Γ•

π‘žβˆˆΞ›

π΄Β€π‘ž 𝑝 (C.16) for the new energy density 𝐻𝑝+Í

π‘žβˆˆΞ› π΄π‘ž 𝑝. By summing this transformation law over𝑝 weighted by a function 𝑓(𝑝)with a compact support we find that

Β€

𝐻(𝑓) =βˆ’π½πΈ(𝛿 𝑓) β†’ 𝐻€𝑝+ €𝐴(𝛿 𝑓) =βˆ’π½πΈ(𝛿 𝑓) + €𝐴(𝛿 𝑓), (C.17) which reproduces (C.15). Here we used an identity

Γ•

𝑝,π‘žβˆˆΞ›

π΄π‘π‘žπ‘“(π‘ž) = 1 2

Γ•

𝑝,π‘žβˆˆΞ›

π΄π‘π‘ž(𝑓(π‘ž) βˆ’ 𝑓(𝑝)) = 𝐴(𝛿 𝑓) (C.18) which is true for any 𝑓 with a compact support.

From the above discussion, one can see that energy current is not invariant but covariant under energy density redefinitions. If we choose 𝑓(𝑝) to be 1 when𝑝 is in some compact set𝐡 and zero otherwise, the physical meaning of (C.15) is very clear. It corresponds to ambiguities in the energy currents due to interaction terms along the boundary of 𝐡. Depending on how we distribute the interaction terms among𝐻𝑝we can change the energy stored in the region𝐡as well as energy current through its boundary.

Invariance of the microscopic formulas for thermoelectic coefficients

In this section we will show that the coefficients 𝜈π‘₯𝑦 and πœ‚π‘₯𝑦 are invariant under a redefinition of the Hamiltonian density. We will start with skew-symmetric coefficients

π‘‘πœˆπ΄ = 1 2𝑑

𝜈Kubo(𝛿 𝑓 , 𝛿𝑔) βˆ’πœˆKubo(𝛿𝑔, 𝛿 𝑓)

βˆ’ 𝛽2πœ‡π‘(𝛿 𝑓 βˆͺ𝛿𝑔), (C.19) π‘‘πœ‚π΄ = 1

2𝑑

πœ‚Kubo(𝛿 𝑓 , 𝛿𝑔) βˆ’πœ‚Kubo(𝛿𝑔, 𝛿 𝑓)

βˆ’ π›½πœ‡π‘(𝛿 𝑓 βˆͺ𝛿𝑔). (C.20) Here we defined the Kubo parts as

𝜈Kubo(𝛿 𝑓 , 𝛿𝑔)= 𝛽2lim

𝑠→0

∫ ∞

0 π‘‘π‘‘π‘’βˆ’π‘ π‘‘hh𝐽𝑁(𝛿 𝑓 , 𝑑);𝐽Q(𝛿𝑔)ii, (C.21) πœ‚Kubo(𝛿 𝑓 , 𝛿𝑔)= 𝛽lim

𝑠→0

∫ ∞

0 π‘‘π‘‘π‘’βˆ’π‘ π‘‘hh𝐽Q(𝛿 𝑓 , 𝑑);𝐽𝑁(𝛿𝑔)ii. (C.22) Under Hamiltonian density redefinition the Kubo parts transform as

𝜈Kubo(𝛿 𝑓 , 𝛿𝑔) β†’ 𝜈Kubo(𝛿 𝑓 , 𝛿𝑔) βˆ’π›½2lim

𝑠→0

∫ ∞

0 π‘‘π‘‘π‘’βˆ’π‘ π‘‘hh𝐽𝑁(𝛿 𝑓 , 𝑑);𝐴€(𝛿𝑔)ii

=𝜈Kubo(𝛿 𝑓 , 𝛿𝑔) βˆ’π›½2hh𝐽𝑁(𝛿 𝑓);𝐴(𝛿𝑔)ii,

(C.23) πœ‚Kubo(𝛿 𝑓 , 𝛿𝑔) β†’πœ‚Kubo(𝛿 𝑓 , 𝛿𝑔) βˆ’π›½lim

𝑠→0

∫ ∞

0 π‘‘π‘‘π‘’βˆ’π‘ π‘‘hh €𝐴(𝛿 𝑓 , 𝑑);𝐽𝑁(𝛿𝑔);ii

=𝜈Kubo(𝛿 𝑓 , 𝛿𝑔) +𝛽hh𝐴(𝛿 𝑓);𝐽𝑁(𝛿𝑔)ii,

(C.24) where we used properties of the Kubo pairing.

Before finding the variation of the magnetization term it is useful to rewrite it

slightly:

πœ‡π‘(𝛿 𝑓 βˆͺ𝛿𝑔)

= 1 2

Γ•

𝑝,π‘žβˆˆΞ›

"

1 3

Γ•

π‘ŸβˆˆΞ›

πœ‡π‘π‘žπ‘Ÿ(𝑔𝑝+π‘”π‘ž+π‘”π‘Ÿ) βˆ’ 1 2

Γ•

π‘ŸβˆˆΞ›

πœ‡π‘π‘žπ‘Ÿ(𝑔(𝑝) +𝑔(π‘ž))

#

(𝑓(π‘ž) βˆ’ 𝑓(𝑝))

= 1 2

Γ•

𝑝,π‘žβˆˆΞ›

"

1 3

Γ•

π‘ŸβˆˆΞ›

πœ‡π‘π‘žπ‘Ÿ(𝑔𝑝+π‘”π‘ž+π‘”π‘Ÿ) βˆ’ 1

2𝑑hπ½π‘π‘π‘ži(𝑔(𝑝) +𝑔(π‘ž))

#

(𝑓(π‘ž) βˆ’ 𝑓(𝑝)). (C.25) Note that one cannot expand the square brackets, since the two resulting sums over 𝑝, π‘žwill not converge separately.

Let us find the variation of 1

2hπ½π‘π‘π‘ži(𝑔(𝑝) + 𝑔(π‘ž)) under a Hamiltonian density redefinition. It reads

1

2hπ½π‘π‘žπ‘ i(𝑔(𝑝) +𝑔(π‘ž)) β†’ 1

2hπ½π‘π‘žπ‘i(𝑔(𝑝) +𝑔(π‘ž)) + 𝑖

2 Γ•

π‘ŸβˆˆΞ›

h[π΄π‘Ÿπ‘ž, 𝑄𝑝] βˆ’ [π΄π‘Ÿ 𝑝, π‘„π‘ž]i(𝑔(𝑝) +𝑔(π‘ž)). (C.26) The last term can be rewritten as follows:

𝑖 2

Γ•

π‘ŸβˆˆΞ›

h[π΄π‘Ÿπ‘ž, 𝑄𝑝] βˆ’ [π΄π‘Ÿ 𝑝, π‘„π‘ž]i(𝑔(𝑝) +𝑔(π‘ž))

= 𝛽 2

Γ•

π‘ŸβˆˆΞ›

hh𝑔(𝑝) €𝑄𝑝;π΄π‘Ÿπ‘žii + 𝛽 2

Γ•

π‘ŸβˆˆΞ›

hh €𝑄𝑝;𝑔(π‘ž)π΄π‘Ÿπ‘žii βˆ’ (𝑝 ↔ π‘ž), (C.27) where we used the properties of the Kubo pairing. The first term in this expression can be rewritten as

Γ•

π‘ŸβˆˆΞ›

hh𝑔(𝑝) €𝑄𝑝;π΄π‘Ÿπ‘žii βˆ’ (𝑝↔ π‘ž)=βˆ’1 2

Γ•

𝑠,π‘ŸβˆˆΞ›

hh𝐽𝑠𝑝(𝑔(𝑠) +𝑔(𝑝));π΄π‘Ÿπ‘žii βˆ’ (𝑝 β†”π‘ž)

=βˆ’1 2

Γ•

𝑠,π‘ŸβˆˆΞ›

hh𝐽𝑠𝑝𝑁(𝑔(𝑠)+𝑔(𝑝))+𝐽𝑝𝑠𝑁(𝑔(𝑠)βˆ’π‘”(𝑝));π΄π‘Ÿπ‘žiiβˆ’(𝑝↔ π‘ž)= hh𝐽𝑁(𝛿𝑔);π΄π‘ž 𝑝ii

βˆ’ 1 2

Γ•

π‘Ÿ,π‘ βˆˆΞ›

"

hhπ½π‘Ÿ 𝑝𝑁(𝑔(π‘Ÿ) +𝑔(𝑝));π΄π‘ π‘žii + hh𝐽𝑝𝑠𝑁(𝑔(𝑠) βˆ’π‘”(𝑝));π΄π‘Ÿπ‘žii +2 perms

# , (C.28)

where "2 perms" means the two cyclic permutations in 𝑝, π‘ž, π‘Ÿ. Note that the term in square brackets is skew-symmetric in 𝑝, π‘ž, π‘Ÿ. The second term can be rewritten as

Γ•

π‘ŸβˆˆΞ›

hh €𝑄𝑝;𝑔(π‘ž)π΄π‘Ÿπ‘žii βˆ’ (𝑝↔ π‘ž)=βˆ’ Γ•

𝑠,π‘ŸβˆˆΞ›

hh𝐽𝑠𝑝𝑁;𝑔(π‘ž)π΄π‘Ÿπ‘žii βˆ’ (𝑝 β†”π‘ž)

=βˆ’1 2

Γ•

𝑠,π‘ŸβˆˆΞ›

hh𝐽𝑠𝑝𝑁;π΄π‘Ÿπ‘ž(𝑔(π‘ž)+𝑔(π‘Ÿ))+π΄π‘žπ‘Ÿ(𝑔(π‘Ÿ)βˆ’π‘”(π‘ž))iiβˆ’(𝑝 ↔ π‘ž) = hhπ½π‘π‘π‘ž;𝐴(𝛿𝑔)ii

βˆ’ 1 2

Γ•

𝑠,π‘ŸβˆˆΞ›

hhh𝐽𝑠𝑝𝑁;π΄π‘Ÿπ‘ž(𝑔(π‘ž) +𝑔(π‘Ÿ))ii + hhπ½π‘Ÿ 𝑝𝑁;π΄π‘žπ‘Ÿ(𝑔(π‘Ÿ) βˆ’π‘”(π‘ž))ii +2 permsi . (C.29) Note that term in square brackets is skew-symmetric in𝑝, π‘ž, π‘Ÿ

By combining equations (C.25-C.29) we find that the magnetization contribution changes under a redefinition of the Hamiltonian density as follows:

πœ‡π‘(𝛿 𝑓 βˆͺ𝛿𝑔) β†’ πœ‡π‘(𝛿 𝑓 βˆͺ𝛿𝑔) βˆ’ 𝛽

2𝑑hh𝐽𝑁(𝛿 𝑓);𝐴(𝛿𝑔)ii + 𝛽

2𝑑hh𝐽𝑁(𝛿𝑔);𝐴(𝛿 𝑓)ii + 1

2 Γ•

𝑝,π‘ž,π‘ŸβˆˆΞ›

πΆπ‘π‘žπ‘Ÿ(𝑓(π‘ž) βˆ’ 𝑓(𝑝)),

(C.30) whereπΆπ‘π‘žπ‘Ÿ is a skew-symmetric function of 𝑝, π‘ž, π‘Ÿ which is combination of skew- symmetric parts (and their derivatives) in the right-hand sides of Eqs. (C.25-C.29).

Due to its skew-symmetry we find that 1

2 Γ•

𝑝,π‘ž,π‘ŸβˆˆΞ›

πΆπ‘π‘žπ‘Ÿ(𝑓(π‘ž) βˆ’ 𝑓(𝑝))

= 1 6

Γ•

𝑝,π‘ž,π‘ŸβˆˆΞ›

πΆπ‘π‘žπ‘Ÿ(𝑓(π‘ž) βˆ’ 𝑓(𝑝) + 𝑓(𝑝) βˆ’ 𝑓(𝑠) + 𝑓(𝑠) βˆ’ 𝑓(π‘ž)) =0.

(C.31)

We see that the variation of the magnetization exactly compensates the variation of the Kubo parts. Thus the skew-symmetric parts of the thermoelectric tensors are invariant under a redefinition of the Hamiltonian density.

Now let us consider the symmetric parts πœˆπ‘†π‘₯𝑦 = 1

2

𝜈Kubo(𝛿 𝑓 , 𝛿𝑔) +𝜈Kubo(𝛿𝑔, 𝛿 𝑓)

+π›½π‘ˆ(𝛿 𝑓 , 𝛿𝑔), (C.32) πœ‚π‘†π‘₯𝑦 = 1

2

πœ‚Kubo(𝛿 𝑓 , 𝛿𝑔) +πœ‚Kubo(𝛿𝑔, 𝛿 𝑓)

βˆ’π‘ˆ(𝛿 𝑓 , 𝛿𝑔). (C.33)

The variation of Kubo parts were already determined before, so we focus on the transformation ofπ‘ˆ. Under (C.5) it transforms as follows:

π‘ˆ(𝛿 𝑓 , 𝛿𝑔) β†’π‘ˆ(𝛿 𝑓 , 𝛿𝑔) + 𝑖

4 Γ•

𝑝,π‘žβˆˆΞ›

h[πœ• π΄π‘ž, 𝑄𝑝] + [πœ• 𝐴𝑝, π‘„π‘ž]i(𝑓(π‘ž) βˆ’ 𝑓(𝑝))(𝑔(π‘ž) βˆ’π‘”(𝑝)). (C.34) We can rewrite this equation by noticing that

𝑖

2h[πœ• π΄π‘ž, 𝑄𝑝] + [πœ• 𝐴𝑝, π‘„π‘ž]i(𝑔(π‘ž) βˆ’π‘”(𝑝))=βˆ’π›½

2hh𝑔(𝑝) €𝑄𝑝;πœ• π΄π‘žii + 𝛽

2hh €𝑄𝑝;πœ•π‘”(π‘ž)π΄π‘žii βˆ’ (𝑝 ↔ π‘ž). (C.35)

Then using eqs. (C.28, C.29) we find π‘ˆ(𝛿 𝑓 , 𝛿𝑔) β†’π‘ˆ(𝛿 𝑓 , 𝛿𝑔) + 𝛽

2hh𝐽𝑁(𝛿 𝑓);𝐴(𝛿𝑔)ii + 𝛽

2hh𝐽𝑁(𝛿𝑔);𝐴(𝛿 𝑓)ii (C.36) We see that the variation of this term cancels the varitions of the Kubo parts.

One can do the same checks for the thermal Hall conductivity and verify that the microscopic formula for it is in invariant under a redefinition of the Hamiltonian density. To linear order inπ΄π‘π‘ž all the manipulations are almost the same except for the replacement𝑄𝑝 β†’ 𝐻𝑝and𝐽𝑁 β†’ 𝐽𝐸.

Dalam dokumen Lev Spodyneiko (Halaman 144-150)