Chapter XI: Key Theorem for Constructing the Jacquet-Langlands Transfer . 64
11.2 Key Theorem
The following theorem is an analogue of [XZ17, Theorem 6.0.1].
Theorem 11.2.1. Letπ1, π2 β Rep(πΊΛ) be two projective Ξ-modules. Then there exists the following map
Sπ1,π2 : Hom
CohπΊΛ(πΊ πΛ )(πe1,πe2) ββCorrShtloc(π(πe1), π(πe2)), (11.6) which is compatible with the natural composition maps in the source and target.
We prove this theorem in the rest of this section.
We give an explicit construction of Sπ1,π2. Consider the following canonical iso- morphisms
HomCohπΊΛ(πΊ π)Λ (πe1,πe2) (11.7) HomOπΊ πΛ (OπΊ πΛ βπ1,OπΊ πΛ βπ2)πΊΛ
Hom(π1,OπΊ πΛ βπ2)πΊΛ (πβ
1 β OΛ
πΊ π βπ2)πΊΛ.
Let π β RepΞ(πΊΛΞ) be a projective Ξ-module with Ξ-basis {ππ}π and dual basis {πβ
π}π. We construct the map Ξπ : HomπΊΛ
Ξ(π1, ππββπ2βπ) HomπΊΛ(π1,Hom(ππβπβ, π2)) βHom
CohπΊΛ(πΊ πΛ )(πe1,πe2), by sendinga βHomπΊΛ
Ξ(π1, ππβ βπ2βπ)to theπβ
1 βπ2-valued functionΞπ(a) on ΛπΊ πdefined by
(Ξπ(a) (π)) (π£1) :=Γ
π
(a(π£1)) (π πβ
π βππ). It suffices to construct the map
Cπ : HomπΊΛ(π1, ππβ βπ βπ2) βCorrShtloc(π(πe1), π(πe2)).
for every π β RepΞ(πΊΛΞ). Let a β HomπΊΛ(π1, ππβ β π β π2). We have the following coevaluation and evaluation maps:
πΏππ :1βππββ ππ , ππ :π βπβ β1.
Choose a quadruple (π1, π1, π2, π2) of (π1 βπ2βπ)πβ-large integers. Then the mapCloc(π1,π1) defined in (11.3)sendsato the cohomological correspondence Cloc(π1,π1)(a) :π(πe1)loc(π1,π1) ββ π(ππfβ(πe2βπe))loc(π1,π1). (11.8) The partial Frobenius morphism(11.4)gives rise to the cohomological correspon- dence (cf.[XZ17, A.2.3])
DΞβ
πΉβ1
(πβπ2)πβ :π(ππfβ(πe2βπe))loc(π1,π1) ββπ( (πe2βπe)πfβ)loc(π2,π2). (11.9) Finally,Cloc(π2,π2) sends idβππ to the cohomological correspondence
Cloc(π2,π2)(idβππ) :π( (πe2βπe)πfβ)loc(π2,π2) ββ π(πe2)loc(π2,π2). (11.10)
The composition of cohomological correspondences (11.8), (11.9), and (11.10) yields a cohomological correspondence
Cπ(a) βCorr
Shtπ ,π loc(π1, π1)
1|π2
(π(πe1)loc(π1,π1), π(πe2)loc(π2,π2)).
The construction of the mapSπ1,π2 can be summarized in the following diagram
HomCohπΊΛ(πΊ πΛ )(πe1,πe2) CorrShtloc(π(πe1), π(πe2))
HomπΊΛ(π1, ππβ βπ2βπ) .
Sπ1,π2
Ξπ
Cπ
We prove that the cohomological correspondence constructed in the previous section is well-defined and can be composed.
Leta0 denote the image ofa under the canonical isomorphism HomπΊΛ(π1, ππβ β π2βπ) HomπΊΛ(ππ βπ1βπβ, π2).
Lemma 11.2.2. Let π , π , π1, π2, π0
1, π0
2 be representations of πΊΛ, and π1 β π2 : π1βπ2βπ0
1βπ0
2be aπΊΛΓπΊΛ-module homomorphism. LetbβHomπΊΛ(π , ππ1β π βπ2)andb0 βHomπΊΛ(π βπ0
2βπ0
1, π). We omit choosing appropriate integers (ππ, ππ)for simplicity. Then we have
C (b0β¦ (idβπ2βπ1)) β¦DΞβ
πΉβ1β¦C (b) =C (b0) β¦DΞβ
πΉβ1β¦C ( (π π1β¦idβπ2) β¦b). (11.11) In particular, the cohomological correspondenceSπ1,π2(a)equals to the composition of the following cohomological correspondences:
C (πΏππ βidπ1): π(πe1) ββπ(ππfβ(ππe βπe1)), DΞβ
πΉβ1
(πβπ1)πβ :π(ππfβ(ππe βπe1)) ββπ( (ππe βπe1)πfβ) C (a0) :π( (ππe βπe1)πfβ) ββπ(πe2).
Proof. Consider the following diagram
π(πe) π(Βππ1βπeβπf2) π(eπ βπf2βπf1)
π(Βππ0
1βπeβπf0
2) π(eπ βπf0
2βπf0
1) π(eπ)
C (b)
C ( (π π2β¦idβπ1)β¦b)
DΞπΉβ1
C (π π1βidβπ2)
C (b0β¦(idβπ2βπ1)) C (idβπ2βπ1)
DΞπΉβ1
C (b0)
.
(11.12)
The bent triangles on the left and right are clearly commutative by Corollary 8.0.15.
It suffices to prove that the rectangle in the middle is commutative. But this is a direct consequence of [XZ17, Lemma 6.1.13].
Let π = π1, π = 1, π1 = π0
1 = πβ, π2 = ππ βπ1, π0
2 = π β π2. Write a00 for the image ofa under the canonical isomorphism Hom(ππ βπ1 βπβ, π2) Hom(ππβπ1, πβπ2). Takeb=πΏππβid, π1=id, and π2 =a00. Then the second assertion follows from the above commutative diagram.
Lemma 11.2.3. For anyπΌ β HomπΊΛ(πe1,πe2), the construction ofSπ1,π2 is indepen- dent from the choice of
(1) projectiveΞ-modulesπ βRepΞ(πΊΛΞ),
(2) aβHomπΊΛ(π1, ππββπ2βπ), such thatΞπ(a) =πΌ, (3) (π1βπ2) βππβ-acceptable integers(π1, π1, π2, π2).
Proof. The proof is completely similar to that of [XZ17, Lemma 6.2.5], and we briefly discuss it here.
We start by proving the independence of (3). Choose another quadruple of (π1β π2) βππβ-acceptable integers (π0
1, π0
1, π0
2, π0
2) β₯ (π1, π1, π2, π2). We have the following diagram of Hecke correspondences
Shtloc(π
0 1,π0
1)
π1 Shtπ,loc(π
0 1,π0
1)
π1|π2 Shtloc(π
0 2,π0
2) π2
Shtπloc(π1,π1)
1 Shtππ,loc(π1,π1)
1|π2 Shtπloc(π2,π2)
2
.
res
π0 1π0
1 π1, π
1 res
π0 1π0
1 π1, π
1 res
π0 2π0
2 π2, π 2
This is the upper face of diagram (10.5). As we discussed in Β§10, all the vertical maps are smooth, the two squares are commutative, and the left square is Cartesian.
ThenCloc(π
0 1,π0
1)
π (a)equals the pullback of Cloc(π1,π1)
π (a)along the vertical maps.
Next, we prove the independence of (1) and (2) simultaneously. Consider that ΛπΊ acts on the filtration of OπΊ by right regular representation. Then OπΊ is realized as an ind-object in RepΞ(πΊΛ). Letπ β RepΞ(πΊΛ) be a projective object and we denote byπ the underlineπΈ-module ofπ equipped with the trivial ΛπΊ-action. Consider the following ΛπΊ-equivariant maps
aπ : π β OπΊ β π , π₯ β¦β aπ(π₯) (π) :=ππ₯ ,
ππ : πβ β π β OπΊ, (π₯β, π₯) β¦β ππ(π₯β, π₯) (π) :=π₯β(ππ₯),
where we identifyOπΊ βπas the space ofπ-valued functions on ΛπΊin the definition of aπ andππ. Taking π =π, we have the following ΛπΊΓπΊΛ-module maps
ππββπ2βπ
aπ πβ
βββββπββπOπΊ βπ2βπ
ππ
ββββ πOπΊ βπ2β OπΊ.
The map ΛπΊΓπΊΛ β πΊ π,Λ (π1, π2) β¦β π(π1)β1π(π2)π induces a natural map ππ : πΈ[πΊ πΛ ] β πOπΊ β OπΊ which intertwines the π-twisted conjugation action on πΈ[πΊ πΛ ]and the diagonal action of ΛπΊonπOπΊβOπΊ. For anyπΌβHomπΊΛ(π1,OπΊβπ2), denote byπΌ0the image ofπΌunder the following map
HomπΊΛ(π1,OπΊ βπ2) βββππ HomπΊΛ(π1, πOπΊ βπ2β OπΊ). Direct computation yields the followings
(ππ β¦aππβ) β¦a0=ππ(πΌ0):π1β πOπΊ βπ2β OπΊ, and
idπ2 βππ =ev(1,1) β¦ (ππ β¦ππβ) :π2βπ βπβ βπ2,
where ev(1,1) denotes the evaluation at (1,1) β πΊΛ Γ πΊΛ. In Lemma 11.2.2, let π1 βπ2 := π βπβ, π0
1 βπ0
2 := OπΊ β OπΊ, π1β π2 := ππ β¦ππβ, b := a0, and b0:=ev(1,1). Then we have
Cπ(a) =C (idπ2 β ππ) β¦DΞβ
πΉβ1
(π
2βπ)πβ
β¦ C (a0)
=C (ev(1,1)) β¦DΞβ
πΉβ1
(π
2β OπΊ)OπΊ
β¦ C (ππ(πΌ0)).
We see from the last equality in the above that Cπ(a) depends only on πΌ and the
lemma is thus proved.
We claim that our construction of Sπ1,π2 is compatible with the composition of morphisms. More precisely, we have the following lemma.
Lemma 11.2.4. For any representationsπ1, π2, π3, letπ1, π2, π3 β RepΞ(πΊΛΞ) be projectiveΞ-modules, and we have the following commutative diagram
HomCohπΊΛ(πΊ πΛ )(πe1,πe2) βHom
CohπΊΛ(πΊ πΛ )(πe2,πe3) Hom
CohπΊΛ(πΊ πΛ )(πe1,πe3) HomπΊΛ(π π1βπ1β πβ
2, π2) βHomπΊΛ(π π2βπ2β πβ
2, π3) HomπΊΛ(π π2βπ π1βπ1β πβ
1βπβ
2, π3) CorrShtloc(π(πe1), π(πe2)) βCorrShtloc(π(πe2), π(πe3)) CorrShtloc(π(πe1), π(πe3)).
π
Cπ 1βCπ
2
π0
Cπ 1βπ
2
π00
(11.13)
Here
β’ the unlabelled vertical arrows are given by the Peter-Weyl theorem
β’ πis the compositions of morphisms inCohπΊΛ(πΊ πΛ )
β’ π00 is the composition described in Β§10.2
β’ π0(a1βa2)is defined to be the homomorphism
π π2βπ π1βπ1βπβ
1β πβ
2
idπ π2βa1βidπβ
ββββββββββββ2 π π2βπ2β πβ
2 a2
ββπ3. Proof. The lemma can be proved following the same idea in the proof of [XZ17,
Lemma 6.2.7].
We study the endomorphism ring of the unit object in P(ShtlocΒ―
π
,Ξ). This will be used to prove the "π=π" theorem for Shimura sets in Β§12.3.
Let πΏ1 denote the intersection cohomology sheaf IC0 on Shtloc(0 π,π). The group theoretic description of the moduli of restricted local Shtukas (cf. [XZ17, Β§5.3.2]) implies that Shtloc0 (π,π) is perfectly smooth. ThusπΏ1may be realized as
πΏ
π,π
1 := Ξh(πβπ)dimπΊi β P(Shtloc(π,π)0 ,Ξ) for everyπ β₯ π. Fix a square rootπ1/2.
Corollary 11.2.5. (1) There is a natural isomorphism CorrShtloc(πΏ1, πΏ1) ' HπΊ ,πΈ
whereHπΊ ,πΈ denotes the Hecke algebraπΆβ
π (πΊ(O)\πΊ(πΉ)/πΊ(O), πΈ). (2) We denote the map
SO
[πΊ πΛ /πΊΛ],O[πΊ πΛ /πΊΛ] : End
CohπΊΛ(πΊ πΛ )(O[πΊ πΛ /πΊΛ]) βCorrShtloc(πΏ1, πΏ1)
bySOfor simplicity. Under the isomorphism in(1), the mapSOβidπΈ[πβ1/2,π1/2]
coincides with the classical Satake isomorphism.
Proof. Recall the definition of the Borel-Moore homology HBMπ (π) for a perfect pfp algebraic space which is defined over an algebraically closed field (cf. [XZ17, A.1.3]). Assume π1andπ2to be perfectly smooth algebraic spaces of pure dimen- sion. Letπ1β πΆ β π2be a correspondence. Then
CorrπΆ (π1, πΈhπ1i),(π2, πΈhπ2i)
(11.14)
=Homπ·π
π(πΆ ,πΈ) πΈhπ1i, ππΆhπ2β2 dimπ2
=HBM2 dimπ
2+π1βπ2(πΆ).
Then if 2 dimπΆ = 2 dimπ2+ π1 βπ2, the cohomological correspondences from (π1, πΈhπ1i)to(π2, πΈhπ2i)can be identified as the set of irreducible components of πΆof maximal dimension.
For a perfect pfp algebraic space π of dimension π, define πΌ to be the set of top- dimensional irreducible components of π. Then HBMπ (πΌ) is the free πΈ-module generated by the π-dimensional irreducible components of π, and thus can be identified with the space πΆ(πΌ , πΈ) of πΈ-valued functions on πΌ. The map π β¦β
Γ
πΆπβπΌ π(πΆπ) [πΆπ] establishes a bijection
πΆ(πΌ , πΈ) =HBMπ (π). (11.15) With the above preparations, we get an isomorphism
HπΊ ,πΈ 'CorrShtloc(πΏ1, πΏ1), (11.16) via a similar argument as for [XZ17, Proposition 5.4.4], and we finish the proof of (1).
To prove part (2), we first note that the statement holds for πΈ = Qβ by [XZ17, Theorem 6.0.1(2)]. We sketch the proof here. Let π be a central minuscule dominant coweight, and π be a dominant coweight such that π(π) = π. Choose (π1, π1, π2, π2) to be(π+π, π)-acceptable. Takeaβ HomπΊΛ(ππ βππ βππβ, ππ)to be the map induced by the evaluation mapeπ :ππβππβ β1. Consider the following diagram
pt πΊ πβ€πβ Ξ πΊ πβ€πβ ΓπΊ πβ€πβ πΓid πΊ ππβΓπΊ πβ€πβ Ξ πΊ πβ€πβ pt. Recall the cohomological correspondencesπΏIcπβandπIcπβdefined in [XZ17, Β§A.2.3.4].
Then Cloc(π1,π1)
ππ
(a) = πΏICπβ β¦ΞπΓidβ β¦πIcπβ β HBM0 (πΊ ππβ(π)), and the cohomologi- cal correspondenceCloc(π1,π1)
ππ
(a) can be identified with the function π onπΊ ππβ(π)
whose value at π₯ βπΊ ππβ(π) is given by tr(ππ₯ | Sat(ππβ)π₯Β―). Then up to a choice of π1/2, the map πO,O βQβ idQβ[π1/2,πβ1/2] coincides with the classical Satake isomor- phism.
Now we come back to the case πΈ = Zβ. Write π for Qβ[π1/2, πβ1/2]. The above argument shows that
SO βπ : End
CohπΊΛ(πΊ π)Λ (O[πΊ π/Λ πΊ]Λ ) βZ
β
πβ CorrShtloc(πΏ1, πΏ1) βZ
β
π
coincide with the classical Satake isomorphism. Note that EndCohπΊΛ(πΊ π)Λ (O[πΊ π/Λ Λ
πΊ]) βZβ π 'Zβ[πΊΛ]πΊΛ βZβ π ,
where ΛπΊ acts on ΛπΊ by theπ-twisted conjugation. Considering the Satake transfer of the image ofZβ-basis of Zβ[πΊΛ](πΊΛ) inZβ[πΊΛ](πΊΛ) βZβπ, we conclude the proof of
(2).
C h a p t e r 12
COHOMOLOGICAL CORRESPONDENCES BETWEEN SHIMURA VARIETIES
In this section, we adapt the machinery developed in previous sections and apply it to the study of the cohomological correspondences between different Hodge type Shimura varieties following the idea of [XZ17].
12.1 Preliminaries
Let (πΊ , π) be a Shimura datum and πΈ be its reflex field (cf. [Mil05]). Let πΎ β πΊ(Aπ) be a (sufficiently small) open compact subgroup and denote by ShπΎ(πΊ , π) the corresponding Shimura variety defined overπΈ. Fix a prime π >2 such thatπΎπ is a hyperspecial subgroup ofπΊ(Qπ). We write πΊ for the reductive group which extends πΊ to Z(π) and such thatπΊ(Zπ) = πΎπ. Choose π to be a place of πΈ lying over π. We write OπΈ ,(π) for the localization of OπΈ at π. Results of Kisin [Kis10]
and Vasiu [Vas07] state that for any Hodge type Shimura datum (πΊ , π), there is a smooth integral canonical modelSπΎ(πΊ , π) of ShπΎ(πΊ , π), which is defined over OπΈ ,(π). Let ππ denote the residue field ofOπΈ ,π and fix an algebraic closure Β―ππ of ππ. We denote by Shπ,πΎ :=(SπΎ(πΊ , π) βππ)pfthe perfection of the special fiber of SπΎ(πΊ , π). The perfection of mod πfibre of Shimura varieties and moduli of local Shtukas are related by a map locπ : Shπ,πΎ β Shtlocπ . The construction of locπis via aπΊ-torsor over the crystalline cite (SπΎ , ππ/OπΈ ,π)CRISand we refer to [XZ17, Β§7.2.1]
for a detailed discussion. In the Siegel case, it may be understood as the perfection of the morphism sending an abelian variety to its underlying π-divisible group. We need the following result of Xiao-Zhu [XZ17, Proposition 7.2.4] for our proof of the main theorem.
Proposition 12.1.1. Let(π, π) be a pair ofπ-large integers. The morphism locπ(π, π) :=resπ,πβ¦locπ : Shπ βShtloc(π π,π)
is perfectly smooth.
Γtale Local Systems onShπ,πΎ
Let β β π be a prime number. Assume that π : πΊ β πΊ πΏ
Qβ(π) is a Qβ- representation of πΊ. If πΎ β πΊ(Aπ) is sufficiently small, we associate an Γ©tale
local system Lβ,π on Shπ,πΎ to π following the idea of [LZ17, Β§4] and [Mil90,
Β§III.6] as follows.
WriteπΎ =πΎβπΎβ withπΎβ β πΊ(Qβ)andπΎβ β πΊ(Aβπ). The representationπrestricts to a representation
ππΎ
β : πΎ(Qβ) βπΊ(Qβ) βπΊ πΏ(π
Qβ). Note thatπΎ(Qβ)is compact, and there exists a latticeΞπ ,β β π
Qβ fixed byπΎ(Qβ). Now we vary the levels atβ. Define
πΎ(
π)
β :=πΎββ©πβ1
πΎ(Qβ)({π βπΊ πΏ(Ξπ ,β) | πβ‘ 1 mod βπ}).
Then we get a system of open neighborhoods of 1 β πΊ(Qβ). For each π, the construction ofπΎ(π)
β gives rise to a representation ππ
πΎβ :πΎβ/πΎ(π)
β βπΊ πΏ(Ξπ ,β/βπΞπ ,β). The natural projection map Sh
π,πΎ(
π)
β πΎβ β Shπ,πΎβπΎβ is a finite Γ©tale cover with the group of deck transformations being πΎβ/πΎ(
π)
β . Then the trivial Γ©taleZ/βπZ-local system Shπ,πΎ(π)
β
πΎβ ΓΞπ ,β/βπΞπ ,β on Shπ,πΎ(π)
β
πΎβ gives rise to the Γ©taleZ/βπZ-local system
Lπ ,β,π :=Shπ,πΎ(π)
β
πΎβ ΓπΎβ/πΎβ(π) Ξπ ,β/βπΞπ ,β. Let
Lπ ,Zβ :=lim
βββ
π
Lπ ,β,π. (12.1)
This is an Γ©taleZβ-local system on Shπ,πΎ. It can be checked thatLπ ,Qβ :=Lπ ,ZββQ is an Γ©taleQβ-local system on Shπ,πΎ which is independent of the choice ofΞβ. 12.2 Main Theorem
Let(πΊ1, π1) and(πΊ2, π2)be two Hodge type Shimura data (cf. [Mil05]) equipped with an isomorphism π : πΊ1,
Aπ ' πΊ2,
Aπ. Let {ππ} denote the conjugacy class of Hodge cocharacters determined by ππ and consider them as dominant characters of Λπ. In particular, π1 and π2 are both minuscule. Then [XZ17, Corollary 2.1.5]
implies that there is a canonical inner twistΞ¨R:πΊ1β πΊ2overC. Recall notations in Β§1.3. We defineππ,ad to be the composition ofππwith the quotientπΊ β πΊadand consider it as a character of Λπsc. We assume that
π1,ad |
π(πΊΛ
ΞQ
sc )= π2,ad |
π(πΊΛ
ΞQ sc ) .
It follows from [XZ17, Corollary 2.1.6] thatΞ¨Rcomes from a unique global inner twistΞ¨ : πΊ
1 Β―Q β πΊ
2 Β―Q such thatΞ¨ = Int(β) β¦π, for some π : πΊ1,
Aπ ' πΊ2,
Aπ and ββπΊ2,ad(AΒ―π).
We assume thatπΎπ β πΊ(Aπ) to be sufficiently small such thatπ πΎ1=πΎ2. Choose a prime πsuch thatπΎ1, π (and therefore πΎ2, π) is hyperspecial. LetπΊπ be the integral model ofπΊπ,
QπoverZπdetermined byπΎπ, π. ThenπΊ1 'πΊ2, and we can thus identify their Langlands dual groups (πΊ ,Λ π΅,Λ πΛ). Choose an isomorphism π : C ' QΒ―π. Let π | π be a place of the compositum of reflex fields of (πΊπ, ππ) determined by our choice of isomorphismπ. We write Shππfor the mod πfibre of the canonical integral model of ShπΎπ(πΊπ, ππ) base change toππ. We make the following assumption
π1 |
π(πΊΛ
ΞQπ)= π2 |
π(πΊΛ
ΞQπ) . (12.2)
The assumption guarantees the existence of the ind-scheme Shπ1|π2 which fits into the following commutative diagram
Shπ1,πΎ1 Shπ1|π2 Shπ2,πΎ2
Shtlocπ1 Shtlocπ
1|π2 Shtlocπ2
ββ βπ
1
locπ
β
β βπ
2
locπ
ββ βloc
π1
β
β βloc
π2
, (12.3)
and makes both squares to be Cartesian.
Remark 12.2.1. In the case that(πΊ1, π1)= (πΊ2, π2),Shπ1|π2is the perfection of the mod p fibre of a natural integral model of some Hecke correspondence. If(πΊ1, π1) β (πΊ2, π2), thenShπ1|π2can be regarded as βexotic Hecke correspondencesβ between mod p fibres of different Shimura varieties. We refer to [XZ17, Β§7.3.3, Β§7.3.4] for a detailed discussion.
Let (πΊπ, ππ) π = 1,2,3 be three Hodge type Shimura data, together with the iso- morphismsππ, π :πΊπ,
Aπ 'πΊπ ,
Aπ satisfying the natural cocycle condition. Choose a common level πΎ using the isomorphismππ, π. Let π be an unramified prime, such that the assumption(12.2)holds for each pair of( (πΊπ, ππ),(πΊπ, ππ)). Choose a half Tate twistQβ(1/2).
Let ππ := ππ
π be the highest weight representation of ΛπΊ
Qβ of highest weight ππ. Write πeπ β CohπΊΛQβ(πΊΛ
Qβπ) for the vector bundle associated to ππ analogous to
Β§11.4. Recall fromΒ§12.1 that, to each representationπ ofπΊ
Qβ, we can attach the Γ©tale local systemLπ ,Qβ on Shππ. Letππ =h2π, ππi=dim ShπΎ(πΊπ, ππ). Denote the global section of the structure sheaf on the quotient stack [πΊ πΛ /πΊΛ] by J, and the prime-to-π Hecke algebra byHπ.
Theorem 12.2.2. There exists a map Spc : Hom
CohπΊΛQβ(πΊΛ
Qβπ)(πe1,πe2) βHomHπβJ(Hβπ(Shπ1,Lπ ,Qβhπ1i),Hβπ(Shπ2,Lπ ,Qβhπ2i), (12.4)
which is compatible with compositions on the source and target.
Proof. Choose a latticeΞπ βRepZ
β(πΊΛ
Zβ)inππ. We denote byΞeπ βCohπΊΛZβ(πΊΛ
Zβπ) the coherent sheaf which corresponds toΞπ as in Β§11.1. Then
HomCohπΊΛQβ(πΊΛ
Qβπ)(πe1,πe2) 'HomπΊΛ
Qβ
(π1, π2βQβ[πΊΛ]) (12.5) 'HomπΊΛ
Qβ
(Ξ1βZ
βQβ,(Ξ2βZ
β Zβ[πΊΛ]) βZ
βQβ) 'HomπΊΛ
Zβ
(Ξ1,Ξ2βZβ Zβ[πΊΛ]) βZβ Qβ 'Hom
CohπΊΛZβ(πΊΛ
Zβπ)(fΞ1,Ξf2) βZβQβ. By Theorem 11.2.1, we get a map
SΞ1,Ξ2 : Hom
CohπΊΛZβ(πΊΛ
Zβπ)(Ξf1,Ξf2) βCorrShtloc(π(Ξf1), π(Ξf2)). (12.6) Combining(12.5)with(12.6), we get the following map
HomCohπΊΛQβ(πΊΛ
Qβπ)(πe1,πe2) βCorrShtloc(π(Ξf1), π(Ξf2)) βZβ Qβ. (12.7) Choose a dominant coweightπand a quadruple (π1, π1, π2, π2)that is (π1+π, π)- acceptable and(π2+π, π)-acceptable. We have the following diagram
Shπ1 Shππ
1|π2 Shπ2
Shtlocπ1 Shtπ,loc
π1|π2 Shtlocπ2
Shtloc(π1 π1,π1) Shtπ,πloc(π1,π1)
1|π2 Shtloc(π2 π2,π2)
ββ βπ
1
locπ locππ
β
β βπ
2
locπ
ββ βloc
π1
resπ1, π1
β
β βloc
π2
resππ1, π1 resπ2, π2
ββ βloc(π1
, π1) π1
β
β βloc(π2
, π2) π2
, (12.8)
where
β’ all squares are commutative (discussions on diagram (10.5) and diagram (12.3),
β’ except for the square at the down right corner, and the other three squares are Cartesian (discussions on diagram(12.3)and diagram (12.5),
β’ the morphismββ βπ
1 is perfectly proper ([XZ17, Lemma 5.2.12]),
β’ the morphisms locπ(ππ, ππ) are perfectly smooth (Proposition 12.1.1).
Then the morphism locππ(π1, π1) := resππ1,π1 β¦locππ is also perfectly proper. Thus we can pullback the cohomological correspondences (cf. [XZ17, A.2.11)]) on the right hand side of (12.6) along locππ(π1, π1)to obtain a map
locππ(π1, π1)β : CorrShtloc(π(Ξf1), π(Ξf2)) β CorrShπ
π|π(locπ(π1, π1)β π(fΞ1),locπ(π2, π2)β (π(Ξf2)). Note that ππ are minuscule, then theβ -pullback ofπ(Ξeπ)along locπ(ππ, ππ)equals
Zβhππi. Next, we construct a natural map βπ : CorrShπ
π1|π 2
(Shπ1,Zβhπ1i),(Shπ2,Zβhπ2i)
βCorrShπ
π1|π 2
(Shπ1,Lπ ,Zβhπ1i),(Shπ2,Lπ ,Zβhπ2i) . (12.9)
For eachπ βZ+, we note that there exists an ind-scheme Sh(π)
π1|π2 which fits into the following commutative diagram such that both squares are Cartesian
Shπ1,πΎ(π)
β πΎβ Shπ,(π)
π1|π2 Sh
π2,πΎ(π)
β πΎβ
Shπ1 Shππ
1|π2 Shπ2.
ββ βπ(π)
1
ππ
1
β
β β(π)π
2
ππ ππ
2
ββ βπ
1
β
β βπ
2
Here the three vertical maps are the natural quotients by the finite groupπΎβ/πΎπ
β and are thus Γ©tale.
Let (ππ)π : (ββ βπ
1)β(Z/βπZhπ1i)π β (ββ βπ
2)!(Z/βπZhπ2i)π be a cohomological cor- respondence in CorrShπ
π1|π2
(Shπ1,Zβhπ1i),(Shπ2,Zβhπ2i)
. For each π β Z+, the shifted pullback (cf. [XZ17, A.2.12]) of ππgives rise to a cohomological correspon- dence
Λ ππ: (ββ
β(
π)
π1 )β(Z/βπZhπ1i) β (ββ β(
π)
π2)!(Z/βπZhπ2i)
in CorrShπ ,(π)
π1|π2
(Shπ
1,πΎ(
π) β
πΎβ
,Z/βπZhπ1i),(Shπ
2,πΎ(
π) β
πΎβ
,Z/βπZhπ2i)
. For any repre- sentationπofπΊ
Qβ, recall theZ/βπZmoduleΞπ ,β/βπΞπ ,βconstructed in Β§12.2. The cohomological correspondence Λππgives rise to a cohomological correspondence
Λ
ππβCorr
Shπ ,(π)π
1|π2
(Shπ1,πΎ(π)
β
πΎβ ΓΞπ ,β/βπΞπ ,βhπ1i,Sh
π2,πΎ(π)
β
πΎβ ΓΞπ ,β/βπΞπ ,βhπ2i). In addition, the cohomological correspondence Λππ isπΎβ/πΎ(π)
β -equivariant. Then it follows that the cohomological correspondence Λππ is alsoπΎβ/πΎ(
π)
β -equivariant and descends to a cohomological correspondence
ππ βCorrShπ
π1|π2
( (Shπ1,Lπ ,β,πhπ1i),(Shπ2,Lπ ,β,πhπ2i)). Definingβπ( (ππ)π) :=(ππ)πcompletes the construction ofβπ. Compose the maps we previously construct,
CorrShtπ ,πloc(π1, π1)
1|π2
(Shtlocπ1(π1,π1), π(fΞ1)loc(π1,π1)),(Shtlocπ1(π2,π2), π(Ξf2)loc(π2,π2)) (12.10)
locππ(π1,π1)β
βββββββββββCorrShπ
π1|π2
( (Shπ1,Zβhπ1i),(Shπ2,Zβhπ2i))
βπ
ββββCorrShπ
π1|π 2
( (Shπ1,Lπ ,Zβhπ1i),(Shπ2,Lπ ,Zβhπ2i))
Hβπ
βββHomHπ(Hβπ(Shπ1,Lπ ,Zβhπ1i),Hβπ(Shπ2,Lπ ,Zβhπ2i)).
We justify that the composition of maps in(12.11)factors through CorrShtloc(π(πe1), π(πe2)).
Note that the proof of Lemma 11.2.3.(3) and the definition of locππ(π1, π1)β imply that for a quadruple (π0
1, π0
1, π0
2, π0
2) of (π1 + π, π)-acceptable and (π2 + π, π)- acceptable integers, the functor locππ(π1, π1)β commutes with the connecting mor- phism in(10.12)(withπ1,π2,πfixed). Letπ β€ π0and(π0
1, π0
1, π0
2, π0
2)be a quadruple of non-negative integers satisfying appropriate acceptance conditions. The proper smooth base change shows that locππ(π0
1, π0
1)β commutes with enlargingπ toπ0. In addition, the proper smooth base change together with the construction ofβπ show that the following diagram commutes:
CorrShπ
π1|π 2
( (Shπ1,Zβhπ1i),(Shπ2,Zβhπ2i)) CorrShπ
π1|π 2
( (Shπ1,Lπ ,Zβhπ1i),(Shπ2,Lπ ,Zβhπ2i))
CorrShπ0
π1|π2
( (Shπ1,Zβhπ1i),(Shπ2,Zβhπ2i)) CorrShπ0
π1|π2
( (Shπ1,Lπ ,Zβhπ1i),(Shπ2,Lπ ,Zβhπ2i)).
βπ
πβ πβ
βπ
Thus the map βπ is compatible with the enlargement of π. Finally, by [XZ17, Lemma A.2.8], the composition of maps Hβπβ¦βπ commutes with enlargingπtoπ0. We complete the proof of the statement at the beginning of this paragraph.
Composing(12.7)with(12.11), we get a canonical map HomCohπΊΛQβ(πΊΛ
Qβπ)(πe1,πe2) βHomHπ(Hβπ(Shπ1,Lπ ,Qβhπ1i),Hβπ(Shπ2,Lπ ,Qβhπ2i)). (12.11) The fact that (12.9) is compatible with the compositions of the source and target can be proved in an analogous way as [XZ17, Lemma 7.3.12], and we omit the details. Then the action of J naturally translates to the right hand side of (12.9) and upgrades it to our desired map
Spc : Hom
CohπΊΛ(πΊ πΛ )(πe1,πe2) βHomHπβJ(Hβπ(Shπ1,Lπ ,Qβhπ1i),Hβπ(Shπ2,Lπ ,Qβhπ2i)). As discussed in loc.cit, the action of J on Hβπ(Shππ,Lπ ,Qβhππi) is expected to coincide with the usual Hecke algebra action, which may be understood as the Shimura variety analogue of V. Lafforgueβs "π = π" theorem (cf. [Laf18]). We prove this in the case of Shimura sets.
Proposition 12.2.3. LetShπΎ(πΊ , π) be a zero-dimensional Shimura variety. Then the action ofJonHβπ(Shππ,Lπ ,Qβhππi)is given by the classical Satake isomorphism.
Proof. Let π β J. Since the Shimura variety we consider is zero-dimensional, it follows from [XZ17, A.2.3(5)] that the cohomological correspondence locβ π(SO(π)) can be identified with a Zβ-valued function on Shπ|π. By our construction of the map Spc, this function is given by the pullback of a function π0 on Shtlocπ|π = πΊ(Zπ)\πΊ(Qπ)/πΊ(Zπ). Corollary 11.2.5(2) thus implies that the function π0 is exactly the function SO(π) β π»
πΊ ,πΈ[πβ1/2, π1/2] which is the image of π under the classical Satake isomorphism.
For any π β Z+, takeπ = Zπβ. Recall our construction ofβπ, the cohomological correspondence Λππis given by a finite direct sum of the function locβ π(SO(π))since the Shimura variety we consider is a set of discrete points. Then the action of Spc(π) on Hβπ(Shππ,Lπ ,Qβhππi) is given by the classical Satake isomorphism. For generalπ, we take resolutions of it as in (12.10), and the statement follows from
the caseπ =Zπβ.
12.3 Non-Vanishing of the Geometric Jacquet-Langlands Transfer In Theorem 12.2.2, we constructed the geometric Jacquet-Langlands transfer Spc : Hom
CohπΊΛQβ(πΊΛ
Qβπ)(πe1,πe2) βHomHπβJ(Hβπ(Shπ1,Lπ ,Qβhπ1i),Hβπ(Shπ2,Lπ ,Qβhπ2i). It is natural to ask when this transfer map is nonzero. We discuss this issue in this
section. The idea essentially follows from the discussion in [XZ17, Β§7.4], and we briefly sketch it here.
Assume that Shπ1,πΎ1(πΊ1, π1) is a zero dimensional Shimura variety. The Jacquet- Langlands transfer map induces the following map
JL1,2(a): H0π(Shπ1,Lπ ,Qβ) βHβπ(Shπ2,Lπ ,Qβhπ2i), fora βHom
CohπΊΛQβ(πΊΛ
Qβππ)(πe1,πe2). Leta0 βHom
CohπΊΛQβ(πΊΛ
Qβππ)(πe2,πe1)be the mor- phism such that the induced map
JL2,1(a0) : Hβπ(Shπ2,Lπ ,Qβhπ2i) βH0π(Shπ1,Lπ ,Qβ)
is dual to JL1,2(a) when viewing it as a cohomological correspondence (cf. [XZ17,
Β§A.2.18]).
The composition map JL2,1(a0) β¦JL1,2(a) gives rise to an endomorphism ofπgπ
1 β CohπΊΛQβ(πΊΛ
Qβππ). By [XZ17, Theorem 1.4.1], the hom spaces Hom
CohπΊΛQβ(πΊΛ
Qβπ)(πe1,πe2) and Hom
CohπΊΛQβ(πΊΛ
Qβπ)(πe2,πe1)are both finite projective J-modules. Thus it makes sense to consider the determinant of the pairing
HomCohπΊΛQβ(πΊΛ
Qβππ)(πe2,πe1) βHom
CohπΊΛQβ(πΊΛ
Qβππ)(πe1,πe2) β J. (12.12) In particular, this determinant can be regarded as a regular function on the stack [πΊΛ
Qβππ/πΊΛ
Qβ]; for a detailed discussion on the pairing(12.12), see [XZ19].
By Theorem 6.1.2 inloc.cit, we conclude the following result:
Theorem 12.3.1. Letππ be an irreducibleHπΎ-module, and let
H0π(Shπ1,Lπ ,Qβ) [ππ] :=HomHπΎ(ππ,H0π(Shπ1,Lπ ,Qβ)) βππ denote theππ-isotypical component. Then, the map
JL1,2(a) : H0π(Shπ1,Lπ ,Qβ) βHππ(Shπ2,Lπ ,Qβ)
restricted to H0π(Shπ1,Lπ ,Qβ) [ππ] is injective if the Satake parameters of ππ is general with respect toππ
2 in the sense of [XZ17].
BIBLIOGRAPHY
[BD91] Alexander Beilinson and Vladimir Drinfeld. Quantization of Hitchinβs integrable system and Hecke eigensheaves. 1991.
[BR18] Pierre Baumann and Simon Riche. βNotes on the geometric Satake equivalenceβ. In:Relative aspects in Representation Theory, Langlands Functoriality and Automorphic Forms. Springer, 2018, pp. 1β134.
[BS17] Bhargav Bhatt and Peter Scholze. βProjectivity of the Witt vector affine Grassmannianβ. In: Inventiones mathematicae 209.2 (2017), pp. 329β
423.
[DG14] Vladimir Drinfeld and Dennis Gaitsgory. βOn a theorem of Bradenβ. In:
Transformation groups19.2 (2014), pp. 313β358.
[DM82] Pierre Deligne and James S Milne. βTannakian categoriesβ. In: Hodge cycles, motives, and Shimura varieties. Springer, 1982, pp. 101β228.
[Ghi03] Alexandru Ghitza. βSiegel modular forms (mod p) and algebraic modular formsβ. In:arXiv preprint math/0306224(2003).
[Ghi05] Alexandru Ghitza. βAll Siegel Hecke eigensystems (mod p) are cuspi- dalβ. In:arXiv preprint math/0511728(2005).
[Gin95] Victor Ginzburg. βPerverse sheaves on a loop group and Langlandsβ
dualityβ. In:arXiv preprint alg-geom/9511007(1995).
[Hel+10] David Helm et al. βTowards a geometric Jacquet-Langlands correspon- dence for unitary Shimura varietiesβ. In: Duke Mathematical Journal 155.3 (2010), pp. 483β518.
[Hel12] David Helm. βA geometric Jacquet-Langlands correspondence for U (2) Shimura varietiesβ. In:Israel Journal of Mathematics187.1 (2012), pp. 37β80.
[Kis10] Mark Kisin. βIntegral models for Shimura varieties of abelian typeβ. In:
Journal of the American Mathematical Society(2010).
[Laf18] Vincent Lafforgue. βChtoucas pour les groupes rΓ©ductifs et paramΓ©trisa- tion de Langlands globaleβ. In: Journal of the American Mathematical Society31.3 (2018), pp. 719β891.
[Lus] G Lusztig. βSingularities, character formulas, and a q-analogue of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981)β. In:AstΓ©risque(), pp. 101β102.
[LZ17] Ruochuan Liu and Xinwen Zhu. βRigidity and a RiemannβHilbert cor- respondence for p-adic local systemsβ. In: Inventiones mathematicae 207.1 (2017), pp. 291β343.