• Tidak ada hasil yang ditemukan

Chapter XI: Key Theorem for Constructing the Jacquet-Langlands Transfer . 64

11.2 Key Theorem

The following theorem is an analogue of [XZ17, Theorem 6.0.1].

Theorem 11.2.1. Let𝑉1, 𝑉2 ∈ Rep(𝐺ˆ) be two projective Ξ›-modules. Then there exists the following map

S𝑉1,𝑉2 : Hom

Coh𝐺ˆ(𝐺 πœŽΛ† )(𝑉e1,𝑉e2) βˆ’β†’CorrShtloc(𝑆(𝑉e1), 𝑆(𝑉e2)), (11.6) which is compatible with the natural composition maps in the source and target.

We prove this theorem in the rest of this section.

We give an explicit construction of S𝑉1,𝑉2. Consider the following canonical iso- morphisms

HomCoh𝐺ˆ(𝐺 𝜎)Λ† (𝑉e1,𝑉e2) (11.7) HomO𝐺 πœŽΛ† (O𝐺 πœŽΛ† βŠ—π‘‰1,O𝐺 πœŽΛ† βŠ—π‘‰2)𝐺ˆ

Hom(𝑉1,O𝐺 πœŽΛ† βŠ—π‘‰2)𝐺ˆ (π‘‰βˆ—

1 βŠ— OΛ†

𝐺 𝜎 βŠ—π‘‰2)𝐺ˆ.

Let π‘Š ∈ RepΞ›(𝐺ˆΛ) be a projective Ξ›-module with Ξ›-basis {𝑒𝑖}𝑖 and dual basis {π‘’βˆ—

𝑖}𝑖. We construct the map Ξ˜π‘Š : Hom𝐺ˆ

Ξ›(𝑉1, πœŽπ‘Šβˆ—βŠ—π‘‰2βŠ—π‘Š) Hom𝐺ˆ(𝑉1,Hom(πœŽπ‘ŠβŠ—π‘Šβˆ—, 𝑉2)) β†’Hom

Coh𝐺ˆ(𝐺 πœŽΛ† )(𝑉e1,𝑉e2), by sendinga ∈Hom𝐺ˆ

Ξ›(𝑉1, πœŽπ‘Šβˆ— βŠ—π‘‰2βŠ—π‘Š)to theπ‘‰βˆ—

1 βŠ—π‘‰2-valued functionΞ˜π‘Š(a) on ˆ𝐺 𝜎defined by

(Ξ˜π‘Š(a) (𝑔)) (𝑣1) :=Γ•

𝑖

(a(𝑣1)) (𝑔 π‘’βˆ—

𝑖 βŠ—π‘’π‘–). It suffices to construct the map

Cπ‘Š : Hom𝐺ˆ(𝑉1, πœŽπ‘Šβˆ— βŠ—π‘Š βŠ—π‘‰2) β†’CorrShtloc(𝑆(𝑉e1), 𝑆(𝑉e2)).

for every π‘Š ∈ RepΞ›(𝐺ˆΛ). Let a ∈ Hom𝐺ˆ(𝑉1, πœŽπ‘Šβˆ— βŠ— π‘Š βŠ— 𝑉2). We have the following coevaluation and evaluation maps:

π›ΏπœŽπ‘Š :1β†’πœŽπ‘Šβˆ—βŠ— πœŽπ‘Š , π‘’π‘Š :π‘Š βŠ—π‘Šβˆ— β†’1.

Choose a quadruple (π‘š1, 𝑛1, π‘š2, 𝑛2) of (𝑉1 βŠ—π‘‰2βŠ—π‘Š)π‘Šβˆ—-large integers. Then the mapCloc(π‘š1,𝑛1) defined in (11.3)sendsato the cohomological correspondence Cloc(π‘š1,𝑛1)(a) :𝑆(𝑉e1)loc(π‘š1,𝑛1) βˆ’β†’ 𝑆(πœŽπ‘Šfβˆ—(𝑉e2βŠ—π‘Še))loc(π‘š1,𝑛1). (11.8) The partial Frobenius morphism(11.4)gives rise to the cohomological correspon- dence (cf.[XZ17, A.2.3])

DΞ“βˆ—

πΉβˆ’1

(π‘ŠβŠ—π‘‰2)π‘Šβˆ— :𝑆(πœŽπ‘Šfβˆ—(𝑉e2βŠ—π‘Še))loc(π‘š1,𝑛1) βˆ’β†’π‘†( (𝑉e2βŠ—π‘Še)π‘Šfβˆ—)loc(π‘š2,𝑛2). (11.9) Finally,Cloc(π‘š2,𝑛2) sends idβŠ—π‘’π‘Š to the cohomological correspondence

Cloc(π‘š2,𝑛2)(idβŠ—π‘’π‘Š) :𝑆( (𝑉e2βŠ—π‘Še)π‘Šfβˆ—)loc(π‘š2,𝑛2) βˆ’β†’ 𝑆(𝑉e2)loc(π‘š2,𝑛2). (11.10)

The composition of cohomological correspondences (11.8), (11.9), and (11.10) yields a cohomological correspondence

Cπ‘Š(a) ∈Corr

Shtπ‘Š ,𝑉 loc(π‘š1, 𝑛1)

1|𝑉2

(𝑆(𝑉e1)loc(π‘š1,𝑛1), 𝑆(𝑉e2)loc(π‘š2,𝑛2)).

The construction of the mapS𝑉1,𝑉2 can be summarized in the following diagram

HomCoh𝐺ˆ(𝐺 πœŽΛ† )(𝑉e1,𝑉e2) CorrShtloc(𝑆(𝑉e1), 𝑆(𝑉e2))

Hom𝐺ˆ(𝑉1, πœŽπ‘Šβˆ— βŠ—π‘‰2βŠ—π‘Š) .

S𝑉1,𝑉2

Ξ˜π‘Š

Cπ‘Š

We prove that the cohomological correspondence constructed in the previous section is well-defined and can be composed.

Leta0 denote the image ofa under the canonical isomorphism Hom𝐺ˆ(𝑉1, πœŽπ‘Šβˆ— βŠ— 𝑉2βŠ—π‘Š) Hom𝐺ˆ(πœŽπ‘Š βŠ—π‘‰1βŠ—π‘Šβˆ—, 𝑉2).

Lemma 11.2.2. Let 𝑋 , π‘Œ , π‘Š1, π‘Š2, π‘Š0

1, π‘Š0

2 be representations of 𝐺ˆ, and 𝑓1 βŠ— 𝑓2 : π‘Š1βŠ—π‘Š2β†’π‘Š0

1βŠ—π‘Š0

2be a𝐺ˆ×𝐺ˆ-module homomorphism. Letb∈Hom𝐺ˆ(𝑋 , πœŽπ‘Š1βŠ— π‘Œ βŠ—π‘Š2)andb0 ∈Hom𝐺ˆ(π‘Œ βŠ—π‘Š0

2βŠ—π‘Š0

1, π‘Œ). We omit choosing appropriate integers (π‘šπ‘–, 𝑛𝑖)for simplicity. Then we have

C (b0β—¦ (idβŠ—π‘“2βŠ—π‘“1)) β—¦DΞ“βˆ—

πΉβˆ’1β—¦C (b) =C (b0) β—¦DΞ“βˆ—

πΉβˆ’1β—¦C ( (𝜎 𝑓1β—¦idβŠ—π‘“2) β—¦b). (11.11) In particular, the cohomological correspondenceS𝑉1,𝑉2(a)equals to the composition of the following cohomological correspondences:

C (π›ΏπœŽπ‘Š βŠ—id𝑉1): 𝑆(𝑉e1) βˆ’β†’π‘†(πœŽπ‘Šfβˆ—(πœŽπ‘Še βŠ—π‘‰e1)), DΞ“βˆ—

πΉβˆ’1

(π‘ŠβŠ—π‘‰1)π‘Šβˆ— :𝑆(πœŽπ‘Šfβˆ—(πœŽπ‘Še βŠ—π‘‰e1)) βˆ’β†’π‘†( (πœŽπ‘Še βŠ—π‘‰e1)π‘Šfβˆ—) C (a0) :𝑆( (πœŽπ‘Še βŠ—π‘‰e1)π‘Šfβˆ—) βˆ’β†’π‘†(𝑉e2).

Proof. Consider the following diagram

𝑆(𝑋e) 𝑆(ΒπœŽπ‘Š1βŠ—π‘ŒeβŠ—π‘Šf2) 𝑆(eπ‘Œ βŠ—π‘Šf2βŠ—π‘Šf1)

𝑆(ΒπœŽπ‘Š0

1βŠ—π‘ŒeβŠ—π‘Šf0

2) 𝑆(eπ‘Œ βŠ—π‘Šf0

2βŠ—π‘Šf0

1) 𝑆(eπ‘Œ)

C (b)

C ( (𝜎 𝑓2β—¦idβŠ—π‘“1)β—¦b)

DΞ“πΉβˆ’1

C (𝜎 𝑓1βŠ—idβŠ—π‘“2)

C (b0β—¦(idβŠ—π‘“2βŠ—π‘“1)) C (idβŠ—π‘“2βŠ—π‘“1)

DΞ“πΉβˆ’1

C (b0)

.

(11.12)

The bent triangles on the left and right are clearly commutative by Corollary 8.0.15.

It suffices to prove that the rectangle in the middle is commutative. But this is a direct consequence of [XZ17, Lemma 6.1.13].

Let 𝑋 = 𝑉1, π‘Œ = 1, π‘Š1 = π‘Š0

1 = π‘Šβˆ—, π‘Š2 = πœŽπ‘Š βŠ—π‘‰1, π‘Š0

2 = π‘Š βŠ— 𝑉2. Write a00 for the image ofa under the canonical isomorphism Hom(πœŽπ‘Š βŠ—π‘‰1 βŠ—π‘Šβˆ—, 𝑉2) Hom(πœŽπ‘ŠβŠ—π‘‰1, π‘ŠβŠ—π‘‰2). Takeb=π›ΏπœŽπ‘ŠβŠ—id, 𝑓1=id, and 𝑓2 =a00. Then the second assertion follows from the above commutative diagram.

Lemma 11.2.3. For any𝛼 ∈ Hom𝐺ˆ(𝑉e1,𝑉e2), the construction ofS𝑉1,𝑉2 is indepen- dent from the choice of

(1) projectiveΞ›-modulesπ‘Š ∈RepΞ›(𝐺ˆΛ),

(2) a∈Hom𝐺ˆ(𝑉1, πœŽπ‘Šβˆ—βŠ—π‘‰2βŠ—π‘Š), such thatΞ˜π‘Š(a) =𝛼, (3) (𝑉1βŠ—π‘‰2) βŠ—π‘Šπ‘Šβˆ—-acceptable integers(π‘š1, 𝑛1, π‘š2, 𝑛2).

Proof. The proof is completely similar to that of [XZ17, Lemma 6.2.5], and we briefly discuss it here.

We start by proving the independence of (3). Choose another quadruple of (𝑉1βŠ— 𝑉2) βŠ—π‘Šπ‘Šβˆ—-acceptable integers (π‘š0

1, 𝑛0

1, π‘š0

2, 𝑛0

2) β‰₯ (π‘š1, 𝑛1, π‘š2, 𝑛2). We have the following diagram of Hecke correspondences

Shtloc(π‘š

0 1,𝑛0

1)

𝑉1 Shtπœ†,loc(π‘š

0 1,𝑛0

1)

𝑉1|𝑉2 Shtloc(π‘š

0 2,𝑛0

2) 𝑉2

Sht𝑉loc(π‘š1,𝑛1)

1 Shtπ‘‰πœ†,loc(π‘š1,𝑛1)

1|𝑉2 Sht𝑉loc(π‘š2,𝑛2)

2

.

res

π‘š0 1𝑛0

1 π‘š1, 𝑛

1 res

π‘š0 1𝑛0

1 π‘š1, 𝑛

1 res

π‘š0 2𝑛0

2 π‘š2, 𝑛 2

This is the upper face of diagram (10.5). As we discussed in Β§10, all the vertical maps are smooth, the two squares are commutative, and the left square is Cartesian.

ThenCloc(π‘š

0 1,𝑛0

1)

π‘Š (a)equals the pullback of Cloc(π‘š1,𝑛1)

π‘Š (a)along the vertical maps.

Next, we prove the independence of (1) and (2) simultaneously. Consider that ˆ𝐺 acts on the filtration of O𝐺 by right regular representation. Then O𝐺 is realized as an ind-object in RepΞ›(𝐺ˆ). Let𝑋 ∈ RepΞ›(𝐺ˆ) be a projective object and we denote by𝑋 the underline𝐸-module of𝑋 equipped with the trivial ˆ𝐺-action. Consider the following ˆ𝐺-equivariant maps

a𝑋 : 𝑋 β†’ O𝐺 βŠ— 𝑋 , π‘₯ ↦→ a𝑋(π‘₯) (𝑔) :=𝑔π‘₯ ,

π‘šπ‘‹ : π‘‹βˆ— βŠ— 𝑋 β†’ O𝐺, (π‘₯βˆ—, π‘₯) ↦→ π‘šπ‘‹(π‘₯βˆ—, π‘₯) (𝑔) :=π‘₯βˆ—(𝑔π‘₯),

where we identifyO𝐺 βŠ—π‘‹as the space of𝑋-valued functions on ˆ𝐺in the definition of a𝑋 andπ‘šπ‘‹. Taking 𝑋 =π‘Š, we have the following ˆ𝐺×𝐺ˆ-module maps

πœŽπ‘Šβˆ—βŠ—π‘‰2βŠ—π‘Š

a𝜎 π‘Šβˆ—

βˆ’βˆ’βˆ’βˆ’β†’π‘Šβˆ—βŠ—πœŽO𝐺 βŠ—π‘‰2βŠ—π‘Š

π‘šπ‘Š

βˆ’βˆ’βˆ’β†’ 𝜎O𝐺 βŠ—π‘‰2βŠ— O𝐺.

The map ˆ𝐺×𝐺ˆ β†’ 𝐺 𝜎,Λ† (𝑔1, 𝑔2) ↦→ 𝜎(𝑔1)βˆ’1𝜎(𝑔2)𝜎 induces a natural map π‘‘πœŽ : 𝐸[𝐺 πœŽΛ† ] β†’ 𝜎O𝐺 βŠ— O𝐺 which intertwines the 𝜎-twisted conjugation action on 𝐸[𝐺 πœŽΛ† ]and the diagonal action of ˆ𝐺on𝜎OπΊβŠ—O𝐺. For anyπ›ΌβˆˆHom𝐺ˆ(𝑉1,OπΊβŠ—π‘‰2), denote by𝛼0the image of𝛼under the following map

Hom𝐺ˆ(𝑉1,O𝐺 βŠ—π‘‰2) βˆ’βˆ’β†’π‘‘πœŽ Hom𝐺ˆ(𝑉1, 𝜎O𝐺 βŠ—π‘‰2βŠ— O𝐺). Direct computation yields the followings

(π‘šπ‘Š β—¦aπœŽπ‘Šβˆ—) β—¦a0=π‘‘πœŽ(𝛼0):𝑉1β†’ 𝜎O𝐺 βŠ—π‘‰2βŠ— O𝐺, and

id𝑉2 βŠ—π‘’π‘Š =ev(1,1) β—¦ (π‘šπ‘Š β—¦π‘Žπ‘Šβˆ—) :𝑉2βŠ—π‘Š βŠ—π‘Šβˆ— →𝑉2,

where ev(1,1) denotes the evaluation at (1,1) ∈ 𝐺ˆ Γ— 𝐺ˆ. In Lemma 11.2.2, let π‘Š1 βŠ—π‘Š2 := π‘Š βŠ—π‘Šβˆ—, π‘Š0

1 βŠ—π‘Š0

2 := O𝐺 βŠ— O𝐺, 𝑓1βŠ— 𝑓2 := π‘šπ‘Š β—¦π‘Žπ‘Šβˆ—, b := a0, and b0:=ev(1,1). Then we have

Cπ‘Š(a) =C (id𝑉2 βŠ— π‘’π‘Š) β—¦DΞ“βˆ—

πΉβˆ’1

(𝑉

2βŠ—π‘Š)π‘Šβˆ—

β—¦ C (a0)

=C (ev(1,1)) β—¦DΞ“βˆ—

πΉβˆ’1

(𝑉

2βŠ— O𝐺)O𝐺

β—¦ C (π‘‘πœŽ(𝛼0)).

We see from the last equality in the above that Cπ‘Š(a) depends only on 𝛼 and the

lemma is thus proved.

We claim that our construction of S𝑉1,𝑉2 is compatible with the composition of morphisms. More precisely, we have the following lemma.

Lemma 11.2.4. For any representations𝑉1, 𝑉2, 𝑉3, let𝑆1, 𝑆2, 𝑆3 ∈ RepΞ›(𝐺ˆΛ) be projectiveΞ›-modules, and we have the following commutative diagram

HomCoh𝐺ˆ(𝐺 πœŽΛ† )(𝑉e1,𝑉e2) βŠ—Hom

Coh𝐺ˆ(𝐺 πœŽΛ† )(𝑉e2,𝑉e3) Hom

Coh𝐺ˆ(𝐺 πœŽΛ† )(𝑉e1,𝑉e3) Hom𝐺ˆ(𝜎 𝑆1βŠ—π‘‰1βŠ— π‘†βˆ—

2, 𝑉2) βŠ—Hom𝐺ˆ(𝜎 𝑆2βŠ—π‘‰2βŠ— π‘†βˆ—

2, 𝑉3) Hom𝐺ˆ(𝜎 𝑆2βŠ—πœŽ 𝑆1βŠ—π‘‰1βŠ— π‘†βˆ—

1βŠ—π‘†βˆ—

2, 𝑉3) CorrShtloc(𝑆(𝑉e1), 𝑆(𝑉e2)) βŠ—CorrShtloc(𝑆(𝑉e2), 𝑆(𝑉e3)) CorrShtloc(𝑆(𝑉e1), 𝑆(𝑉e3)).

πœ™

C𝑆 1βŠ—C𝑆

2

πœ™0

C𝑆 1βŠ—π‘†

2

πœ™00

(11.13)

Here

β€’ the unlabelled vertical arrows are given by the Peter-Weyl theorem

β€’ πœ™is the compositions of morphisms inCoh𝐺ˆ(𝐺 πœŽΛ† )

β€’ πœ™00 is the composition described in Β§10.2

β€’ πœ™0(a1βŠ—a2)is defined to be the homomorphism

𝜎 𝑆2βŠ—πœŽ 𝑆1βŠ—π‘‰1βŠ—π‘†βˆ—

1βŠ— π‘†βˆ—

2

id𝜎 𝑆2βŠ—a1βŠ—idπ‘†βˆ—

βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’β†’2 𝜎 𝑆2βŠ—π‘‰2βŠ— π‘†βˆ—

2 a2

βˆ’β†’π‘‰3. Proof. The lemma can be proved following the same idea in the proof of [XZ17,

Lemma 6.2.7].

We study the endomorphism ring of the unit object in P(ShtlocΒ―

π‘˜

,Ξ›). This will be used to prove the "𝑆=𝑇" theorem for Shimura sets in Β§12.3.

Let 𝛿1 denote the intersection cohomology sheaf IC0 on Shtloc(0 π‘š,𝑛). The group theoretic description of the moduli of restricted local Shtukas (cf. [XZ17, Β§5.3.2]) implies that Shtloc0 (π‘š,𝑛) is perfectly smooth. Thus𝛿1may be realized as

𝛿

π‘š,𝑛

1 := Ξ›h(π‘šβˆ’π‘›)dim𝐺i ∈ P(Shtloc(π‘š,𝑛)0 ,Ξ›) for everyπ‘š β‰₯ 𝑛. Fix a square rootπ‘ž1/2.

Corollary 11.2.5. (1) There is a natural isomorphism CorrShtloc(𝛿1, 𝛿1) ' H𝐺 ,𝐸

whereH𝐺 ,𝐸 denotes the Hecke algebra𝐢∞

𝑐 (𝐺(O)\𝐺(𝐹)/𝐺(O), 𝐸). (2) We denote the map

SO

[𝐺 πœŽΛ† /𝐺ˆ],O[𝐺 πœŽΛ† /𝐺ˆ] : End

Coh𝐺ˆ(𝐺 πœŽΛ† )(O[𝐺 πœŽΛ† /𝐺ˆ]) β†’CorrShtloc(𝛿1, 𝛿1)

bySOfor simplicity. Under the isomorphism in(1), the mapSOβŠ—id𝐸[π‘žβˆ’1/2,π‘ž1/2]

coincides with the classical Satake isomorphism.

Proof. Recall the definition of the Borel-Moore homology HBM𝑖 (𝑋) for a perfect pfp algebraic space which is defined over an algebraically closed field (cf. [XZ17, A.1.3]). Assume 𝑋1and𝑋2to be perfectly smooth algebraic spaces of pure dimen- sion. Let𝑋1← 𝐢 β†’ 𝑋2be a correspondence. Then

Corr𝐢 (𝑋1, 𝐸h𝑑1i),(𝑋2, 𝐸h𝑑2i)

(11.14)

=Hom𝐷𝑐

𝑏(𝐢 ,𝐸) 𝐸h𝑑1i, πœ”πΆh𝑑2βˆ’2 dim𝑋2

=HBM2 dim𝑋

2+𝑑1βˆ’π‘‘2(𝐢).

Then if 2 dim𝐢 = 2 dim𝑋2+ 𝑑1 βˆ’π‘‘2, the cohomological correspondences from (𝑋1, 𝐸h𝑑1i)to(𝑋2, 𝐸h𝑑2i)can be identified as the set of irreducible components of 𝐢of maximal dimension.

For a perfect pfp algebraic space 𝑋 of dimension 𝑑, define 𝐼 to be the set of top- dimensional irreducible components of 𝑋. Then HBM𝑑 (𝐼) is the free 𝐸-module generated by the 𝑑-dimensional irreducible components of 𝑋, and thus can be identified with the space 𝐢(𝐼 , 𝐸) of 𝐸-valued functions on 𝐼. The map 𝑓 ↦→

Í

πΆπ‘–βˆˆπΌ 𝑓(𝐢𝑖) [𝐢𝑖] establishes a bijection

𝐢(𝐼 , 𝐸) =HBM𝑑 (𝑋). (11.15) With the above preparations, we get an isomorphism

H𝐺 ,𝐸 'CorrShtloc(𝛿1, 𝛿1), (11.16) via a similar argument as for [XZ17, Proposition 5.4.4], and we finish the proof of (1).

To prove part (2), we first note that the statement holds for 𝐸 = Qβ„“ by [XZ17, Theorem 6.0.1(2)]. We sketch the proof here. Let πœ‡ be a central minuscule dominant coweight, and 𝜈 be a dominant coweight such that 𝜎(𝜈) = 𝜈. Choose (π‘š1, 𝑛1, π‘š2, 𝑛2) to be(𝜈+πœ‡, 𝜈)-acceptable. Takea∈ Hom𝐺ˆ(π‘‰πœˆ βŠ—π‘‰πœ‡ βŠ—π‘‰πœˆβˆ—, π‘‰πœ‡)to be the map induced by the evaluation mape𝜈 :π‘‰πœˆβŠ—π‘‰πœˆβˆ— β†’1. Consider the following diagram

pt 𝐺 π‘Ÿβ‰€πœˆβˆ— Ξ” 𝐺 π‘Ÿβ‰€πœˆβˆ— ×𝐺 π‘Ÿβ‰€πœˆβˆ— πœŽΓ—id 𝐺 π‘Ÿπœ‡βˆ—Γ—πΊ π‘Ÿβ‰€πœ‡βˆ— Ξ” 𝐺 π‘Ÿβ‰€πœˆβˆ— pt. Recall the cohomological correspondences𝛿Icπœˆβˆ—and𝑒Icπœˆβˆ—defined in [XZ17, Β§A.2.3.4].

Then Cloc(π‘š1,𝑛1)

π‘‰πœˆ

(a) = 𝛿ICπœˆβˆ— β—¦Ξ“πœŽΓ—idβˆ— ◦𝑒Icπœˆβˆ— ∈ HBM0 (𝐺 π‘Ÿπœˆβˆ—(π‘˜)), and the cohomologi- cal correspondenceCloc(π‘š1,𝑛1)

π‘‰πœˆ

(a) can be identified with the function 𝑓 on𝐺 π‘Ÿπœˆβˆ—(π‘˜)

whose value at π‘₯ ∈𝐺 π‘Ÿπœˆβˆ—(π‘˜) is given by tr(πœ™π‘₯ | Sat(π‘‰πœˆβˆ—)π‘₯Β―). Then up to a choice of π‘ž1/2, the map 𝑆O,O βŠ—Qβ„“ idQβ„“[π‘ž1/2,π‘žβˆ’1/2] coincides with the classical Satake isomor- phism.

Now we come back to the case 𝐸 = Zβ„“. Write 𝑄 for Qβ„“[π‘ž1/2, π‘žβˆ’1/2]. The above argument shows that

SO βŠ—π‘„ : End

Coh𝐺ˆ(𝐺 𝜎)Λ† (O[𝐺 𝜎/Λ† 𝐺]Λ† ) βŠ—Z

β„“

𝑄→ CorrShtloc(𝛿1, 𝛿1) βŠ—Z

β„“

𝑄

coincide with the classical Satake isomorphism. Note that EndCoh𝐺ˆ(𝐺 𝜎)Λ† (O[𝐺 𝜎/Λ† Λ†

𝐺]) βŠ—Zβ„“ 𝑄 'Zβ„“[𝐺ˆ]𝐺ˆ βŠ—Zβ„“ 𝑄 ,

where ˆ𝐺 acts on ˆ𝐺 by the𝜎-twisted conjugation. Considering the Satake transfer of the image ofZβ„“-basis of Zβ„“[𝐺ˆ](𝐺ˆ) inZβ„“[𝐺ˆ](𝐺ˆ) βŠ—Zℓ𝑄, we conclude the proof of

(2).

C h a p t e r 12

COHOMOLOGICAL CORRESPONDENCES BETWEEN SHIMURA VARIETIES

In this section, we adapt the machinery developed in previous sections and apply it to the study of the cohomological correspondences between different Hodge type Shimura varieties following the idea of [XZ17].

12.1 Preliminaries

Let (𝐺 , 𝑋) be a Shimura datum and 𝐸 be its reflex field (cf. [Mil05]). Let 𝐾 βŠ‚ 𝐺(A𝑓) be a (sufficiently small) open compact subgroup and denote by Sh𝐾(𝐺 , 𝑋) the corresponding Shimura variety defined over𝐸. Fix a prime 𝑝 >2 such that𝐾𝑝 is a hyperspecial subgroup of𝐺(Q𝑝). We write 𝐺 for the reductive group which extends 𝐺 to Z(𝑝) and such that𝐺(Z𝑝) = 𝐾𝑝. Choose 𝜈 to be a place of 𝐸 lying over 𝑝. We write O𝐸 ,(𝜈) for the localization of O𝐸 at 𝜈. Results of Kisin [Kis10]

and Vasiu [Vas07] state that for any Hodge type Shimura datum (𝐺 , 𝑋), there is a smooth integral canonical modelS𝐾(𝐺 , 𝑋) of Sh𝐾(𝐺 , 𝑋), which is defined over O𝐸 ,(𝜈). Let π‘˜πœˆ denote the residue field ofO𝐸 ,𝜈 and fix an algebraic closure Β―π‘˜πœˆ of π‘˜πœˆ. We denote by Shπœ‡,𝐾 :=(S𝐾(𝐺 , 𝑋) βŠ—π‘˜πœˆ)pfthe perfection of the special fiber of S𝐾(𝐺 , 𝑋). The perfection of mod 𝑝fibre of Shimura varieties and moduli of local Shtukas are related by a map loc𝑝 : Shπœ‡,𝐾 β†’ Shtlocπœ‡ . The construction of loc𝑝is via a𝐺-torsor over the crystalline cite (S𝐾 , π‘˜πœˆ/O𝐸 ,𝜈)CRISand we refer to [XZ17, Β§7.2.1]

for a detailed discussion. In the Siegel case, it may be understood as the perfection of the morphism sending an abelian variety to its underlying 𝑝-divisible group. We need the following result of Xiao-Zhu [XZ17, Proposition 7.2.4] for our proof of the main theorem.

Proposition 12.1.1. Let(π‘š, 𝑛) be a pair ofπœ‡-large integers. The morphism loc𝑝(π‘š, 𝑛) :=resπ‘š,𝑛◦loc𝑝 : Shπœ‡ β†’Shtloc(πœ‡ π‘š,𝑛)

is perfectly smooth.

Γ‰tale Local Systems onShπœ‡,𝐾

Let β„“ β‰  𝑝 be a prime number. Assume that 𝜌 : 𝐺 β†’ 𝐺 𝐿

Qβ„“(π‘Š) is a Qβ„“- representation of 𝐺. If 𝐾 βŠ‚ 𝐺(A𝑓) is sufficiently small, we associate an Γ©tale

local system Lβ„“,π‘Š on Shπœ‡,𝐾 to π‘Š following the idea of [LZ17, Β§4] and [Mil90,

Β§III.6] as follows.

Write𝐾 =𝐾ℓ𝐾ℓ with𝐾ℓ βŠ‚ 𝐺(Qβ„“)and𝐾ℓ βŠ‚ 𝐺(Aℓ𝑓). The representation𝜌restricts to a representation

𝜌𝐾

β„“ : 𝐾(Qβ„“) →𝐺(Qβ„“) →𝐺 𝐿(π‘Š

Qβ„“). Note that𝐾(Qβ„“)is compact, and there exists a latticeΞ›π‘Š ,β„“ βŠ‚ π‘Š

Qβ„“ fixed by𝐾(Qβ„“). Now we vary the levels atβ„“. Define

𝐾(

𝑛)

β„“ :=πΎβ„“βˆ©πœŒβˆ’1

𝐾(Qβ„“)({𝑔 ∈𝐺 𝐿(Ξ›π‘Š ,β„“) | 𝑔≑ 1 mod ℓ𝑛}).

Then we get a system of open neighborhoods of 1 ∈ 𝐺(Qβ„“). For each 𝑛, the construction of𝐾(𝑛)

β„“ gives rise to a representation πœŒπ‘›

𝐾ℓ :𝐾ℓ/𝐾(𝑛)

β„“ →𝐺 𝐿(Ξ›π‘Š ,β„“/β„“π‘›Ξ›π‘Š ,β„“). The natural projection map Sh

πœ‡,𝐾(

𝑛)

β„“ 𝐾ℓ β†’ Shπœ‡,𝐾ℓ𝐾ℓ is a finite Γ©tale cover with the group of deck transformations being 𝐾ℓ/𝐾(

𝑛)

β„“ . Then the trivial Γ©taleZ/ℓ𝑛Z-local system Shπœ‡,𝐾(𝑛)

β„“

𝐾ℓ Γ—Ξ›π‘Š ,β„“/β„“π‘›Ξ›π‘Š ,β„“ on Shπœ‡,𝐾(𝑛)

β„“

𝐾ℓ gives rise to the Γ©taleZ/ℓ𝑛Z-local system

Lπ‘Š ,β„“,𝑛 :=Shπœ‡,𝐾(𝑛)

β„“

𝐾ℓ ×𝐾ℓ/𝐾ℓ(𝑛) Ξ›π‘Š ,β„“/β„“π‘›Ξ›π‘Š ,β„“. Let

Lπ‘Š ,Zβ„“ :=lim

β†βˆ’βˆ’

𝑛

Lπ‘Š ,β„“,𝑛. (12.1)

This is an Γ©taleZβ„“-local system on Shπœ‡,𝐾. It can be checked thatLπ‘Š ,Qβ„“ :=Lπ‘Š ,Zβ„“βŠ—Q is an Γ©taleQβ„“-local system on Shπœ‡,𝐾 which is independent of the choice ofΞ›β„“. 12.2 Main Theorem

Let(𝐺1, 𝑋1) and(𝐺2, 𝑋2)be two Hodge type Shimura data (cf. [Mil05]) equipped with an isomorphism πœƒ : 𝐺1,

A𝑓 ' 𝐺2,

A𝑓. Let {πœ‡π‘–} denote the conjugacy class of Hodge cocharacters determined by 𝑋𝑖 and consider them as dominant characters of ˆ𝑇. In particular, πœ‡1 and πœ‡2 are both minuscule. Then [XZ17, Corollary 2.1.5]

implies that there is a canonical inner twistΞ¨R:𝐺1β†’ 𝐺2overC. Recall notations in Β§1.3. We defineπœ‡π‘–,ad to be the composition ofπœ‡π‘–with the quotient𝐺 β†’ 𝐺adand consider it as a character of ˆ𝑇sc. We assume that

πœ‡1,ad |

𝑍(𝐺ˆ

Ξ“Q

sc )= πœ‡2,ad |

𝑍(𝐺ˆ

Ξ“Q sc ) .

It follows from [XZ17, Corollary 2.1.6] thatΨRcomes from a unique global inner twistΨ : 𝐺

1 Β―Q β†’ 𝐺

2 Β―Q such thatΞ¨ = Int(β„Ž) β—¦πœƒ, for some πœƒ : 𝐺1,

A𝑓 ' 𝐺2,

A𝑓 and β„ŽβˆˆπΊ2,ad(A¯𝑓).

We assume that𝐾𝑖 βŠ‚ 𝐺(A𝑓) to be sufficiently small such thatπœƒ 𝐾1=𝐾2. Choose a prime 𝑝such that𝐾1, 𝑝 (and therefore 𝐾2, 𝑝) is hyperspecial. Let𝐺𝑖 be the integral model of𝐺𝑖,

Q𝑝overZ𝑝determined by𝐾𝑖, 𝑝. Then𝐺1 '𝐺2, and we can thus identify their Langlands dual groups (𝐺 ,Λ† 𝐡,Λ† 𝑇ˆ). Choose an isomorphism πœ„ : C ' Q¯𝑝. Let 𝜈 | 𝑝 be a place of the compositum of reflex fields of (𝐺𝑖, 𝑋𝑖) determined by our choice of isomorphismπœ„. We write Shπœ‡π‘–for the mod 𝑝fibre of the canonical integral model of Sh𝐾𝑖(𝐺𝑖, 𝑋𝑖) base change toπ‘˜πœˆ. We make the following assumption

πœ‡1 |

𝑍(𝐺ˆ

Ξ“Q𝑝)= πœ‡2 |

𝑍(𝐺ˆ

Ξ“Q𝑝) . (12.2)

The assumption guarantees the existence of the ind-scheme Shπœ‡1|πœ‡2 which fits into the following commutative diagram

Shπœ‡1,𝐾1 Shπœ‡1|πœ‡2 Shπœ‡2,𝐾2

Shtlocπœ‡1 Shtlocπœ‡

1|πœ‡2 Shtlocπœ‡2

β†βˆ’ β„Žπœ‡

1

loc𝑝

βˆ’

β†’ β„Žπœ‡

2

loc𝑝

β†βˆ’ β„Žloc

πœ‡1

βˆ’

β†’ β„Žloc

πœ‡2

, (12.3)

and makes both squares to be Cartesian.

Remark 12.2.1. In the case that(𝐺1, 𝑋1)= (𝐺2, 𝑋2),Shπœ‡1|πœ‡2is the perfection of the mod p fibre of a natural integral model of some Hecke correspondence. If(𝐺1, 𝑋1) β‰  (𝐺2, 𝑋2), thenShπœ‡1|πœ‡2can be regarded as β€œexotic Hecke correspondences” between mod p fibres of different Shimura varieties. We refer to [XZ17, Β§7.3.3, Β§7.3.4] for a detailed discussion.

Let (𝐺𝑖, 𝑋𝑖) 𝑖 = 1,2,3 be three Hodge type Shimura data, together with the iso- morphismsπœƒπ‘–, 𝑗 :𝐺𝑖,

A𝑓 '𝐺𝑗 ,

A𝑓 satisfying the natural cocycle condition. Choose a common level 𝐾 using the isomorphismπœƒπ‘–, 𝑗. Let 𝑝 be an unramified prime, such that the assumption(12.2)holds for each pair of( (𝐺𝑖, 𝑋𝑖),(𝐺𝑗, 𝑋𝑗)). Choose a half Tate twistQβ„“(1/2).

Let 𝑉𝑖 := π‘‰πœ‡

𝑖 be the highest weight representation of ˆ𝐺

Qβ„“ of highest weight πœ‡π‘–. Write 𝑉e𝑖 ∈ Coh𝐺ˆQβ„“(𝐺ˆ

Qβ„“πœŽ) for the vector bundle associated to 𝑉𝑖 analogous to

Β§11.4. Recall fromΒ§12.1 that, to each representationπ‘Š of𝐺

Qβ„“, we can attach the Γ©tale local systemLπ‘Š ,Qβ„“ on Shπœ‡π‘–. Let𝑑𝑖 =h2𝜌, πœ‡π‘–i=dim Sh𝐾(𝐺𝑖, 𝑋𝑖). Denote the global section of the structure sheaf on the quotient stack [𝐺 πœŽΛ† /𝐺ˆ] by J, and the prime-to-𝑝 Hecke algebra byH𝑝.

Theorem 12.2.2. There exists a map Spc : Hom

Coh𝐺ˆQβ„“(𝐺ˆ

Qβ„“πœŽ)(𝑉e1,𝑉e2) β†’HomHπ‘βŠ—J(Hβˆ—π‘(Shπœ‡1,Lπ‘Š ,Qβ„“h𝑑1i),Hβˆ—π‘(Shπœ‡2,Lπ‘Š ,Qβ„“h𝑑2i), (12.4)

which is compatible with compositions on the source and target.

Proof. Choose a latticeΛ𝑖 ∈RepZ

β„“(𝐺ˆ

Zβ„“)in𝑉𝑖. We denote byΞ›e𝑖 ∈Coh𝐺ˆZβ„“(𝐺ˆ

Zβ„“πœŽ) the coherent sheaf which corresponds toΛ𝑖 as in Β§11.1. Then

HomCoh𝐺ˆQβ„“(𝐺ˆ

Qβ„“πœŽ)(𝑉e1,𝑉e2) 'Hom𝐺ˆ

Qβ„“

(𝑉1, 𝑉2βŠ—Qβ„“[𝐺ˆ]) (12.5) 'Hom𝐺ˆ

Qβ„“

(Ξ›1βŠ—Z

β„“Qβ„“,(Ξ›2βŠ—Z

β„“ Zβ„“[𝐺ˆ]) βŠ—Z

β„“Qβ„“) 'Hom𝐺ˆ

Zβ„“

(Ξ›1,Ξ›2βŠ—Zβ„“ Zβ„“[𝐺ˆ]) βŠ—Zβ„“ Qβ„“ 'Hom

Coh𝐺ˆZβ„“(𝐺ˆ

Zβ„“πœŽ)(fΞ›1,Ξ›f2) βŠ—Zβ„“Qβ„“. By Theorem 11.2.1, we get a map

SΞ›1,Ξ›2 : Hom

Coh𝐺ˆZβ„“(𝐺ˆ

Zβ„“πœŽ)(Ξ›f1,Ξ›f2) β†’CorrShtloc(𝑆(Ξ›f1), 𝑆(Ξ›f2)). (12.6) Combining(12.5)with(12.6), we get the following map

HomCoh𝐺ˆQβ„“(𝐺ˆ

Qβ„“πœŽ)(𝑉e1,𝑉e2) β†’CorrShtloc(𝑆(Ξ›f1), 𝑆(Ξ›f2)) βŠ—Zβ„“ Qβ„“. (12.7) Choose a dominant coweight𝜈and a quadruple (π‘š1, 𝑛1, π‘š2, 𝑛2)that is (πœ‡1+𝜈, 𝜈)- acceptable and(πœ‡2+𝜈, 𝜈)-acceptable. We have the following diagram

Shπœ‡1 Shπœˆπœ‡

1|πœ‡2 Shπœ‡2

Shtlocπœ‡1 Sht𝜈,loc

πœ‡1|πœ‡2 Shtlocπœ‡2

Shtloc(πœ‡1 π‘š1,𝑛1) Sht𝜈,πœ‡loc(π‘š1,𝑛1)

1|πœ‡2 Shtloc(πœ‡2 π‘š2,𝑛2)

β†βˆ’ β„Žπœ‡

1

loc𝑝 locπœˆπ‘

βˆ’

β†’ β„Žπœ‡

2

loc𝑝

β†βˆ’ β„Žloc

πœ‡1

resπ‘š1, 𝑛1

βˆ’

β†’ β„Žloc

πœ‡2

resπœˆπ‘š1, 𝑛1 resπ‘š2, 𝑛2

β†βˆ’ β„Žloc(π‘š1

, 𝑛1) πœ‡1

βˆ’

β†’ β„Žloc(π‘š2

, 𝑛2) πœ‡2

, (12.8)

where

β€’ all squares are commutative (discussions on diagram (10.5) and diagram (12.3),

β€’ except for the square at the down right corner, and the other three squares are Cartesian (discussions on diagram(12.3)and diagram (12.5),

β€’ the morphismβ†βˆ’ β„Žπœ‡

1 is perfectly proper ([XZ17, Lemma 5.2.12]),

β€’ the morphisms loc𝑝(π‘šπ‘–, 𝑛𝑖) are perfectly smooth (Proposition 12.1.1).

Then the morphism locπœˆπ‘(π‘š1, 𝑛1) := resπœˆπ‘š1,𝑛1 β—¦locπœˆπ‘ is also perfectly proper. Thus we can pullback the cohomological correspondences (cf. [XZ17, A.2.11)]) on the right hand side of (12.6) along locπœˆπ‘(π‘š1, 𝑛1)to obtain a map

locπœˆπ‘(π‘š1, 𝑛1)β˜…: CorrShtloc(𝑆(Ξ›f1), 𝑆(Ξ›f2)) β†’ CorrSh𝜈

πœ‡|πœ‡(loc𝑝(π‘š1, 𝑛1)β˜…π‘†(fΞ›1),loc𝑝(π‘š2, 𝑛2)β˜…(𝑆(Ξ›f2)). Note that πœ‡π‘– are minuscule, then theβ˜…-pullback of𝑆(Ξ›e𝑖)along loc𝑝(π‘šπ‘–, 𝑛𝑖)equals

Zβ„“h𝑑𝑖i. Next, we construct a natural map β„­π‘Š : CorrSh𝜈

πœ‡1|πœ‡ 2

(Shπœ‡1,Zβ„“h𝑑1i),(Shπœ‡2,Zβ„“h𝑑2i)

β†’CorrSh𝜈

πœ‡1|πœ‡ 2

(Shπœ‡1,Lπ‘Š ,Zβ„“h𝑑1i),(Shπœ‡2,Lπ‘Š ,Zβ„“h𝑑2i) . (12.9)

For each𝑛 ∈Z+, we note that there exists an ind-scheme Sh(𝑛)

πœ‡1|πœ‡2 which fits into the following commutative diagram such that both squares are Cartesian

Shπœ‡1,𝐾(𝑛)

β„“ 𝐾ℓ Sh𝜈,(𝑛)

πœ‡1|πœ‡2 Sh

πœ‡2,𝐾(𝑛)

β„“ 𝐾ℓ

Shπœ‡1 Shπœˆπœ‡

1|πœ‡2 Shπœ‡2.

β†βˆ’ β„Žπœ‡(𝑛)

1

𝑝𝑛

1

βˆ’

β†’ β„Ž(𝑛)πœ‡

2

𝑝𝑛 𝑝𝑛

2

β†βˆ’ β„Žπœ‡

1

βˆ’

β†’ β„Žπœ‡

2

Here the three vertical maps are the natural quotients by the finite group𝐾ℓ/𝐾𝑛

β„“ and are thus Γ©tale.

Let (𝑓𝑛)𝑛 : (β†βˆ’ β„Žπœ‡

1)βˆ—(Z/ℓ𝑛Zh𝑑1i)𝑛 β†’ (β†’βˆ’ β„Žπœ‡

2)!(Z/ℓ𝑛Zh𝑑2i)𝑛 be a cohomological cor- respondence in CorrSh𝜈

πœ‡1|πœ‡2

(Shπœ‡1,Zβ„“h𝑑1i),(Shπœ‡2,Zβ„“h𝑑2i)

. For each 𝑛 ∈ Z+, the shifted pullback (cf. [XZ17, A.2.12]) of 𝑓𝑛gives rise to a cohomological correspon- dence

˜ 𝑓𝑛: (β†βˆ’

β„Ž(

𝑛)

πœ‡1 )βˆ—(Z/ℓ𝑛Zh𝑑1i) β†’ (β†’βˆ’ β„Ž(

𝑛)

πœ‡2)!(Z/ℓ𝑛Zh𝑑2i)

in CorrSh𝜈 ,(𝑛)

πœ‡1|πœ‡2

(Shπœ‡

1,𝐾(

𝑛) β„“

𝐾ℓ

,Z/ℓ𝑛Zh𝑑1i),(Shπœ‡

2,𝐾(

𝑛) β„“

𝐾ℓ

,Z/ℓ𝑛Zh𝑑2i)

. For any repre- sentationπ‘Šof𝐺

Qβ„“, recall theZ/ℓ𝑛ZmoduleΞ›π‘Š ,β„“/β„“π‘›Ξ›π‘Š ,β„“constructed in Β§12.2. The cohomological correspondence Λœπ‘“π‘›gives rise to a cohomological correspondence

˜

π‘”π‘›βˆˆCorr

Sh𝜈 ,(𝑛)πœ‡

1|πœ‡2

(Shπœ‡1,𝐾(𝑛)

β„“

𝐾ℓ Γ—Ξ›π‘Š ,β„“/β„“π‘›Ξ›π‘Š ,β„“h𝑑1i,Sh

πœ‡2,𝐾(𝑛)

β„“

𝐾ℓ Γ—Ξ›π‘Š ,β„“/β„“π‘›Ξ›π‘Š ,β„“h𝑑2i). In addition, the cohomological correspondence Λœπ‘“π‘› is𝐾ℓ/𝐾(𝑛)

β„“ -equivariant. Then it follows that the cohomological correspondence Λœπ‘”π‘› is also𝐾ℓ/𝐾(

𝑛)

β„“ -equivariant and descends to a cohomological correspondence

𝑔𝑛 ∈CorrSh𝜈

πœ‡1|πœ‡2

( (Shπœ‡1,Lπ‘Š ,β„“,𝑛h𝑑1i),(Shπœ‡2,Lπ‘Š ,β„“,𝑛h𝑑2i)). Definingβ„­π‘Š( (𝑓𝑛)𝑛) :=(𝑔𝑛)𝑛completes the construction ofβ„­π‘Š. Compose the maps we previously construct,

CorrSht𝜈 ,πœ‡loc(π‘š1, 𝑛1)

1|πœ‡2

(Shtlocπœ‡1(π‘š1,𝑛1), 𝑆(fΞ›1)loc(π‘š1,𝑛1)),(Shtlocπœ‡1(π‘š2,𝑛2), 𝑆(Ξ›f2)loc(π‘š2,𝑛2)) (12.10)

locπœˆπ‘(π‘š1,𝑛1)β˜…

βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’β†’CorrSh𝜈

πœ‡1|πœ‡2

( (Shπœ‡1,Zβ„“h𝑑1i),(Shπœ‡2,Zβ„“h𝑑2i))

β„­π‘Š

βˆ’βˆ’βˆ’β†’CorrSh𝜈

πœ‡1|πœ‡ 2

( (Shπœ‡1,Lπ‘Š ,Zβ„“h𝑑1i),(Shπœ‡2,Lπ‘Š ,Zβ„“h𝑑2i))

Hβˆ—π‘

βˆ’βˆ’β†’HomH𝑝(Hβˆ—π‘(Shπœ‡1,Lπ‘Š ,Zβ„“h𝑑1i),Hβˆ—π‘(Shπœ‡2,Lπ‘Š ,Zβ„“h𝑑2i)).

We justify that the composition of maps in(12.11)factors through CorrShtloc(𝑆(𝑉e1), 𝑆(𝑉e2)).

Note that the proof of Lemma 11.2.3.(3) and the definition of locπœˆπ‘(π‘š1, 𝑛1)β˜…imply that for a quadruple (π‘š0

1, 𝑛0

1, π‘š0

2, 𝑛0

2) of (πœ‡1 + 𝜈, 𝜈)-acceptable and (πœ‡2 + 𝜈, 𝜈)- acceptable integers, the functor locπœˆπ‘(π‘š1, 𝑛1)β˜…commutes with the connecting mor- phism in(10.12)(withπœ‡1,πœ‡2,πœ†fixed). Let𝜈 ≀ 𝜈0and(π‘š0

1, 𝑛0

1, π‘š0

2, 𝑛0

2)be a quadruple of non-negative integers satisfying appropriate acceptance conditions. The proper smooth base change shows that locπœˆπ‘(π‘š0

1, 𝑛0

1)β˜…commutes with enlarging𝜈 to𝜈0. In addition, the proper smooth base change together with the construction ofβ„­π‘Š show that the following diagram commutes:

CorrSh𝜈

πœ‡1|πœ‡ 2

( (Shπœ‡1,Zβ„“h𝑑1i),(Shπœ‡2,Zβ„“h𝑑2i)) CorrSh𝜈

πœ‡1|πœ‡ 2

( (Shπœ‡1,Lπ‘Š ,Zβ„“h𝑑1i),(Shπœ‡2,Lπ‘Š ,Zβ„“h𝑑2i))

CorrSh𝜈0

πœ‡1|πœ‡2

( (Shπœ‡1,Zβ„“h𝑑1i),(Shπœ‡2,Zβ„“h𝑑2i)) CorrSh𝜈0

πœ‡1|πœ‡2

( (Shπœ‡1,Lπ‘Š ,Zβ„“h𝑑1i),(Shπœ‡2,Lπ‘Š ,Zβ„“h𝑑2i)).

β„­π‘Š

π‘–βˆ— π‘–βˆ—

β„­π‘Š

Thus the map β„­π‘Š is compatible with the enlargement of 𝜈. Finally, by [XZ17, Lemma A.2.8], the composition of maps Hβˆ—π‘β—¦β„­π‘Š commutes with enlarging𝜈to𝜈0. We complete the proof of the statement at the beginning of this paragraph.

Composing(12.7)with(12.11), we get a canonical map HomCoh𝐺ˆQβ„“(𝐺ˆ

Qβ„“πœŽ)(𝑉e1,𝑉e2) β†’HomH𝑝(Hβˆ—π‘(Shπœ‡1,Lπ‘Š ,Qβ„“h𝑑1i),Hβˆ—π‘(Shπœ‡2,Lπ‘Š ,Qβ„“h𝑑2i)). (12.11) The fact that (12.9) is compatible with the compositions of the source and target can be proved in an analogous way as [XZ17, Lemma 7.3.12], and we omit the details. Then the action of J naturally translates to the right hand side of (12.9) and upgrades it to our desired map

Spc : Hom

Coh𝐺ˆ(𝐺 πœŽΛ† )(𝑉e1,𝑉e2) β†’HomHπ‘βŠ—J(Hβˆ—π‘(Shπœ‡1,Lπ‘Š ,Qβ„“h𝑑1i),Hβˆ—π‘(Shπœ‡2,Lπ‘Š ,Qβ„“h𝑑2i)). As discussed in loc.cit, the action of J on Hβˆ—π‘(Shπœ‡π‘–,Lπ‘Š ,Qβ„“h𝑑𝑖i) is expected to coincide with the usual Hecke algebra action, which may be understood as the Shimura variety analogue of V. Lafforgue’s "𝑆 = 𝑇" theorem (cf. [Laf18]). We prove this in the case of Shimura sets.

Proposition 12.2.3. LetSh𝐾(𝐺 , 𝑋) be a zero-dimensional Shimura variety. Then the action ofJonHβˆ—π‘(Shπœ‡π‘–,Lπ‘Š ,Qβ„“h𝑑𝑖i)is given by the classical Satake isomorphism.

Proof. Let 𝑓 ∈ J. Since the Shimura variety we consider is zero-dimensional, it follows from [XZ17, A.2.3(5)] that the cohomological correspondence locβ˜…π‘(SO(𝑓)) can be identified with a Zβ„“-valued function on Shπœ‡|πœ‡. By our construction of the map Spc, this function is given by the pullback of a function 𝑓0 on Shtlocπœ‡|πœ‡ = 𝐺(Z𝑝)\𝐺(Q𝑝)/𝐺(Z𝑝). Corollary 11.2.5(2) thus implies that the function 𝑓0 is exactly the function SO(𝑓) ∈ 𝐻

𝐺 ,𝐸[π‘βˆ’1/2, 𝑝1/2] which is the image of 𝑓 under the classical Satake isomorphism.

For any 𝑛 ∈ Z+, takeπ‘Š = Z𝑛ℓ. Recall our construction ofβ„­π‘Š, the cohomological correspondence Λœπ‘“π‘›is given by a finite direct sum of the function locβ˜…π‘(SO(𝑓))since the Shimura variety we consider is a set of discrete points. Then the action of Spc(𝑓) on Hβˆ—π‘(Shπœ‡π‘–,Lπ‘Š ,Qβ„“h𝑑𝑖i) is given by the classical Satake isomorphism. For generalπ‘Š, we take resolutions of it as in (12.10), and the statement follows from

the caseπ‘Š =Z𝑛ℓ.

12.3 Non-Vanishing of the Geometric Jacquet-Langlands Transfer In Theorem 12.2.2, we constructed the geometric Jacquet-Langlands transfer Spc : Hom

Coh𝐺ˆQβ„“(𝐺ˆ

Qβ„“πœŽ)(𝑉e1,𝑉e2) β†’HomHπ‘βŠ—J(Hβˆ—π‘(Shπœ‡1,Lπ‘Š ,Qβ„“h𝑑1i),Hβˆ—π‘(Shπœ‡2,Lπ‘Š ,Qβ„“h𝑑2i). It is natural to ask when this transfer map is nonzero. We discuss this issue in this

section. The idea essentially follows from the discussion in [XZ17, Β§7.4], and we briefly sketch it here.

Assume that Shπœ‡1,𝐾1(𝐺1, 𝑋1) is a zero dimensional Shimura variety. The Jacquet- Langlands transfer map induces the following map

JL1,2(a): H0𝑐(Shπœ‡1,Lπ‘Š ,Qβ„“) β†’Hβˆ—π‘(Shπœ‡2,Lπ‘Š ,Qβ„“h𝑑2i), fora ∈Hom

Coh𝐺ˆQβ„“(𝐺ˆ

Qβ„“πœŽπ‘)(𝑉e1,𝑉e2). Leta0 ∈Hom

Coh𝐺ˆQβ„“(𝐺ˆ

Qβ„“πœŽπ‘)(𝑉e2,𝑉e1)be the mor- phism such that the induced map

JL2,1(a0) : Hβˆ—π‘(Shπœ‡2,Lπ‘Š ,Qβ„“h𝑑2i) β†’H0𝑐(Shπœ‡1,Lπ‘Š ,Qβ„“)

is dual to JL1,2(a) when viewing it as a cohomological correspondence (cf. [XZ17,

Β§A.2.18]).

The composition map JL2,1(a0) β—¦JL1,2(a) gives rise to an endomorphism of𝑉gπœ‡

1 ∈ Coh𝐺ˆQβ„“(𝐺ˆ

Qβ„“πœŽπ‘). By [XZ17, Theorem 1.4.1], the hom spaces Hom

Coh𝐺ˆQβ„“(𝐺ˆ

Qβ„“πœŽ)(𝑉e1,𝑉e2) and Hom

Coh𝐺ˆQβ„“(𝐺ˆ

Qβ„“πœŽ)(𝑉e2,𝑉e1)are both finite projective J-modules. Thus it makes sense to consider the determinant of the pairing

HomCoh𝐺ˆQβ„“(𝐺ˆ

Qβ„“πœŽπ‘)(𝑉e2,𝑉e1) βŠ—Hom

Coh𝐺ˆQβ„“(𝐺ˆ

Qβ„“πœŽπ‘)(𝑉e1,𝑉e2) β†’ J. (12.12) In particular, this determinant can be regarded as a regular function on the stack [𝐺ˆ

Qβ„“πœŽπ‘/𝐺ˆ

Qβ„“]; for a detailed discussion on the pairing(12.12), see [XZ19].

By Theorem 6.1.2 inloc.cit, we conclude the following result:

Theorem 12.3.1. Letπœ‹π‘“ be an irreducibleH𝐾-module, and let

H0𝑐(Shπœ‡1,Lπ‘Š ,Qβ„“) [πœ‹π‘“] :=HomH𝐾(πœ‹π‘“,H0𝑐(Shπœ‡1,Lπ‘Š ,Qβ„“)) βŠ—πœ‹π‘“ denote theπœ‹π‘“-isotypical component. Then, the map

JL1,2(a) : H0𝑐(Shπœ‡1,Lπ‘Š ,Qβ„“) β†’H𝑑𝑐(Shπœ‡2,Lπ‘Š ,Qβ„“)

restricted to H0𝑐(Shπœ‡1,Lπ‘Š ,Qβ„“) [πœ‹π‘“] is injective if the Satake parameters of πœ‹π‘“ is general with respect toπ‘‰πœ‡

2 in the sense of [XZ17].

BIBLIOGRAPHY

[BD91] Alexander Beilinson and Vladimir Drinfeld. Quantization of Hitchin’s integrable system and Hecke eigensheaves. 1991.

[BR18] Pierre Baumann and Simon Riche. β€œNotes on the geometric Satake equivalence”. In:Relative aspects in Representation Theory, Langlands Functoriality and Automorphic Forms. Springer, 2018, pp. 1–134.

[BS17] Bhargav Bhatt and Peter Scholze. β€œProjectivity of the Witt vector affine Grassmannian”. In: Inventiones mathematicae 209.2 (2017), pp. 329–

423.

[DG14] Vladimir Drinfeld and Dennis Gaitsgory. β€œOn a theorem of Braden”. In:

Transformation groups19.2 (2014), pp. 313–358.

[DM82] Pierre Deligne and James S Milne. β€œTannakian categories”. In: Hodge cycles, motives, and Shimura varieties. Springer, 1982, pp. 101–228.

[Ghi03] Alexandru Ghitza. β€œSiegel modular forms (mod p) and algebraic modular forms”. In:arXiv preprint math/0306224(2003).

[Ghi05] Alexandru Ghitza. β€œAll Siegel Hecke eigensystems (mod p) are cuspi- dal”. In:arXiv preprint math/0511728(2005).

[Gin95] Victor Ginzburg. β€œPerverse sheaves on a loop group and Langlands’

duality”. In:arXiv preprint alg-geom/9511007(1995).

[Hel+10] David Helm et al. β€œTowards a geometric Jacquet-Langlands correspon- dence for unitary Shimura varieties”. In: Duke Mathematical Journal 155.3 (2010), pp. 483–518.

[Hel12] David Helm. β€œA geometric Jacquet-Langlands correspondence for U (2) Shimura varieties”. In:Israel Journal of Mathematics187.1 (2012), pp. 37–80.

[Kis10] Mark Kisin. β€œIntegral models for Shimura varieties of abelian type”. In:

Journal of the American Mathematical Society(2010).

[Laf18] Vincent Lafforgue. β€œChtoucas pour les groupes rΓ©ductifs et paramΓ©trisa- tion de Langlands globale”. In: Journal of the American Mathematical Society31.3 (2018), pp. 719–891.

[Lus] G Lusztig. β€œSingularities, character formulas, and a q-analogue of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981)”. In:AstΓ©risque(), pp. 101–102.

[LZ17] Ruochuan Liu and Xinwen Zhu. β€œRigidity and a Riemann–Hilbert cor- respondence for p-adic local systems”. In: Inventiones mathematicae 207.1 (2017), pp. 291–343.

Dokumen terkait