Chapter X: Moduli of Local Shtukas
10.2 Perverse Sheaves on the Moduli of Local Shtukas
Letπβ’be a sequence of dominant coweights and (π1, π1), (π2, π2)be two pairs of πβ’-large integers such thatπ1 β€ π2,π1 β€ π2, andπ2 β β. Define the functor
Resππ21,π,π21 :=(resππ21,π.π21)β : P(Shtloc(ππβ’ 2,π2),Ξ) βP(Shtloc(ππ 1,π1)
β’,Ξ ). (10.7) Then(10.4)yields
Resππ21,π,π21β¦Resππ32,π,π33 =Resππ31,π,π31. (10.8) Like Resππ, the functor Resππππ,π,πππ is also an equivalence of categories ifππ >1.
We define the category of perverse sheaves on the moduli of local Shtukas as P(ShtlocΒ―
π
,Ξ):= Γ
πβπ1(πΊ)
P(Shtlocπ ,Ξ), P(Shtlocπ ,Ξ) := lim
βββ
(π,π, π)
P(Shtlocπ (π,π),Ξ) (10.9) where the limit is taken over the triples{(π, π, π) βZ2Γπ | (π, π) isπlarge}with the product partial order. As in [XZ17], we call objects in P(Shtlocπ ,Ξ) connected objects. The connecting morphism is given by the composite of fully faithful functor
P(Shtloc(π1 π1,π1),Ξ) P(Shtloc(π1 π2,π2),Ξ) P(Shtloc(π2,π2)
π0
1
,Ξ).
Resππ2, π2 1, π
1
ππ 1, π0
1
For each dominant coweight πand a pair of π-large integers(π, π), we define the natural pullback functor
Ξ¨loc(π,π) :=Resπ,ππ,0 : P(Hkloc(π)π ,Ξ) βP(Shtloc(π,π)π ,Ξ). (10.10) We observe that Ξ¨loc(π,π) commutes with the connecting morphism in (10.9) by (10.8) and the proper smooth base change. Then we can take the limit and direct sum ofΞ¨loc(π,π) and derive the following well-defined functor
Ξ¨loc : P(HklocΒ―
π
,Ξ) βP(ShtlocΒ―
π
,Ξ). (10.11)
LetFπ β P(Shtlocπ
π
, πΈ)be connected objects. It is realized asFπ, π(ππ,ππ)
π
βP(Shtloc(πππ π,ππ)
, πΈ) for some ππ and some pair of ππ-large integers (ππ, ππ). We define the set of coho- mological correspondences betweenF1andF2as
CorrShtloc(F1,F2)
:= Γ
πβπ1(πΊ)
limβββCorr
Shtπ,πloc(π1, π1)
1|π2
(Shtlocπ1(π1,π1),F(π1,π1)
1, π1 ),(Shtlocπ2(π2,π2),F(π2,π2)
2, π2 ) ,
where the limit is taken over all partially ordered sextuples(π1, π2, π, π1, π1, π2, π2) such that
β’ (π1, π1, π2, π2)is (π1+π, π)and(π2+π, π)-acceptable,
β’ ππ βππ, for someππ βπ1(πΊ),
β’ πβπ.
Let (π1, π2, π, π1, π1, π2, π2) β€ (π0
1, π0
2, π0, π0
1, π0
1, π0
2, π0
2) be another such sextu- ple. The connecting morphism between the cohomological correspondences
CorrShtπ,πloc(π1, π1)
1|π2
(Shtloc(ππ1 1,π1),F1, π1),(Shtloc(ππ2 2,π2),F2, π2)
(10.12) and
CorrSht
π0,loc(π0 1, π0
1) π0
1|π0 2
(Shtloc(π
0 1,π0
1) π0
1
,F1, π0
1),(Shtloc(π
0 2,π0
2) π0
2
,F2, π0
2)
(10.13)
is given by first pulling back(4.13)to the Hecke correspondence Shtloc(π
0 1,π0
1)
π1 Shtπ,loc(π
0 1,π0
1)
π1|π2 Shtloc(π
0 2,π0
2)
π2 ,
along the restriction morphism, then pushing it forward to the Hecke correspondence Shtloc(π
0 1,π0
1) π0
1
Shtπ
0,loc(π01,π0
1) π0
1|π0
2
Shtloc(π
0 2,π0
2) π0
2
.
The connecting morphism is well-defined and can be composed. We refer to [XZ17,
Β§5.4.1] for more discussions.
C h a p t e r 11
KEY THEOREM FOR CONSTRUCTING THE JACQUET-LANGLANDS TRANSFER
In this chapter, we state and prove the key theorem for our construction of the Jacquet-Langlands transfer. We will make use of the theory of the cohomological correspondences throughout this chapter. Instead of explaining all the details, we refer to [XZ17, Appendix A.2] for a nice discussion.
11.1 Preliminaries
Fix a half Tate twist Ξ(1/2). Recall notations hπi and πβ introduced in Β§1.3.
Throughout this section, we consider the Langlands dual group scheme ΛπΊΞ overΞ ofπΊ and itsΞ-representations. The subscriptsΞwill be omitted for simplicity. We generalize a few notions introduced in previous sections for the sake of stating the key theorem.
More on Local Hecke Stacks
Let πβ’ := π1π2 Β· Β· Β·ππ β Rep(πΊΛπ ) and assume that for each π, ππ has the Jordan-Holder factorsΒ₯ {ππ
π π}π.
The integral geometric Satake equivalence (Theorem 8.0.14) SatπΊπ sendsπβ’ to an (πΏ+πΊ β πΒ―)π -equivariant perverse sheaf SatπΊπ (πβ’) on (πΊ ππΊ β πΒ―)π . We write πΊ ππ
β’
for the support of the external tensor product Sat(π1)ΛSat(π2)Λ Β· Β· Β·ΛSat(ππ ). Let π be a non-negative integer. We call itππ-large if π is ππ π-large for each π, and we call it πβ’-large if π = π1 +π2 + Β· Β· Β· +ππ such that ππ is ππ-large for each π. For a πβ’-large integer π, SatπΊπ(πβ’) descends to a perverse sheaf supported on Hkπloc(π)
β’ := [πΏππΊ\πΊ ππ
β’]. We write π(π)loc(π) for the twist of this perverse sheaf by hπdimπΊi. Note that π(πβ’)loc(π) is isomorphic to the "β "-pullback of π(π1)loc(π1)π(π2)loc(π2)Β· Β· Β·π(ππ )loc(ππ ) along the perfectly smooth morphism Hkπloc(π)
β’ β Γ
πHkloc(π ππ)
π constructed in(9.9). In the caseπ =1, we have
πΊ ππ
1 =βͺππΊ ππ
1π, Hklocπ (π)
1 =βͺπHklocπ1ππ. In general, Hkloc(π)π
β’ is of the formβͺπβ’Hkloc(π)πβ’ . Via descent, Corollary 8.0.15 gives
the following natural isomorphism:
HomπΊΛ(πβ’, πβ’) Corr
Hk0π,loc(π)
β’ |πβ’
(Hkπloc(π)
β’
,SatlocπΊ (π)(πβ’)),(Hklocπ (π)
β’
,SatlocπΊ (π)(πβ’)) . (11.1) Here and below, we regard πβ’ and πβ’ as representations of ΛπΊ via the diagonal embedding ΛπΊ β©β πΊΛπ .
Letπβ’ andπβ’ be two representations of ΛπΊπ . We can similarly define πΊ π0
πβ’|πβ’ :=
πΊ ππ
β’ΓπΊ ππΊ πΊ ππ
β’ and Hkπ0,loc(π)
β’|πβ’ = [πΏππΊ\πΊ π0
πβ’|πβ’]. More on Moduli of Local Shtukas
Letπβ’βRep(πΊΛπ ). For a pair of non-negative integers(π, π), we can generalize the notion of πβ’-largeand define the notion ofπβ’-large. Let(π, π)be a pair ofπβ’and πβ’-large integers, we can define the moduli of restricted local Shtukas Shtlocπ (π,π)
β’
and Shtloc(π,π)
πβ’|πβ’ . Similar to Hkπloc
β’, the stacks Shtπloc(π,π)
β’ and Shtloc(π,π)
πβ’|πβ’ can be regarded as unions of Shtloc(πβ’ π,π) and unions of Shtloc(π,π)
πβ’|πβ’ . We have the natural forgetful map πloc(π,π) : Shtπloc(π,π)
β’ βHkπloc(π)
β’
. (11.2)
Choose a pair ofπβ’-large integers(π, π) such thatπ > 0. Write π(πeβ’)loc(π,π) := Ξ¨loc(π,π)(Sat(πβ’)loc(π)) βP(Shtloc(π,π),Ξ)
for the pullback of Sat(π)loc(π) along the morphism πloc(π,π) (up to a shift and twist). Forπ =1,π(eπ)loc(π,π) represents the perverse sheafπ(eπ) := Ξ¨(SatπΊ(π)) β P(ShtlocΒ―
π
,Ξ).
Consider the front face of the diagram(10.5). The second and third vertical maps are perfectly smooth. Pulling back the cohomological correspondence on the right hand side of(11.1)to the upper edge and pre-composing it with(11.1), we get the map
Cloc(π,π) : HomπΊΛ(πβ’, πβ’) β Corr
Sht0π,loc(π, π)
β’ |πβ’
(π(πeβ’)loc(π,π), π(πfβ’)loc(π,π)). (11.3) The mapCloc(π,π) is compatible with the compositions at the source and target, and we refer to [XZ17, Lemma 6.1.8] for the proof.
Letπβ’ β Rep(πΊΛπ ) andπ βRep(πΊΛ). We call a quadruple of non-negative integers (π1, π2, π1, π1)πβ’π-acceptableif
β’ π1βπ2=π1βπ2isπ-large,
β’ (π2, π1)isπβ’-large.
For a quadruple of πβ’π-acceptable integers (π1, π2, π1, π1), we can construct the partial Frobenius morphism
πΉβ1
πβ’π : Shtloc(ππππ1,π1)
β’ β Shtπloc(π2,π2)
β’π (11.4)
similar to (10.1). Here,ππ is the Frobenius twist ofπ as in Remark 8.0.14.
Letπ1, π2 βRep(πΊΛ). For any projective objectπ βRep(πΊΛ), choose a quadruple of ( (π1βπ2βπ)πβ)-acceptable integers(π1, π1, π2, π2). We define the following stack
Shtπ ,π loc(π1,π1)
1|π2 :=Shtloc(π π1,π1)
1|ππβ(ππβπ1) Γ
Shtloc(( π2, π2)
π πβπ1)πβ Shtloc((πππβ1π.π1)
1)πβ|π2
. (11.5) The CategoryCohπΊΛ(πΊ πΛ )
Recall from Remark 8.0.14 that the Langlands dual group ΛπΊ is naturally equipped with an action of the arithmetic Frobenius π. Consider theπ-twisted conjugation action of ΛπΊ on ΛπΊ. We denote by CohπΊΛ(πΊ πΛ )the abelian category of ΛπΊ-equivariant coherent sheaves on the (non-neutral) component ΛπΊ π β πΊΛ o π. Equivalently, CohπΊΛ(πΊ πΛ ) can be regarded as the abelian category of coherent sheaves on the quotient stack [πΊ πΛ /πΊΛ]where ΛπΊacts on ΛπΊ πby the usual conjugation action.
Letπ βRep(πΊΛ) be an algebraic representation of ΛπΊ. There is an associated vector bundle on ΛπΊ πwith global section OΛ
πΊ βπ. Consider the following action of ΛπΊ on OπΊΛ βπ. For any π β πΊΛ and (π , π£) β OπΊΛ βπ, πΒ· (π , π£) := (π π πβ1(π), ππ£). The associated vector bundle thus gives an objectπeβCohπΊΛ(πΊ πΛ ).
11.2 Key Theorem
The following theorem is an analogue of [XZ17, Theorem 6.0.1].
Theorem 11.2.1. Letπ1, π2 β Rep(πΊΛ) be two projective Ξ-modules. Then there exists the following map
Sπ1,π2 : Hom
CohπΊΛ(πΊ πΛ )(πe1,πe2) ββCorrShtloc(π(πe1), π(πe2)), (11.6) which is compatible with the natural composition maps in the source and target.
We prove this theorem in the rest of this section.
We give an explicit construction of Sπ1,π2. Consider the following canonical iso- morphisms
HomCohπΊΛ(πΊ π)Λ (πe1,πe2) (11.7) HomOπΊ πΛ (OπΊ πΛ βπ1,OπΊ πΛ βπ2)πΊΛ
Hom(π1,OπΊ πΛ βπ2)πΊΛ (πβ
1 β OΛ
πΊ π βπ2)πΊΛ.
Let π β RepΞ(πΊΛΞ) be a projective Ξ-module with Ξ-basis {ππ}π and dual basis {πβ
π}π. We construct the map Ξπ : HomπΊΛ
Ξ(π1, ππββπ2βπ) HomπΊΛ(π1,Hom(ππβπβ, π2)) βHom
CohπΊΛ(πΊ πΛ )(πe1,πe2), by sendinga βHomπΊΛ
Ξ(π1, ππβ βπ2βπ)to theπβ
1 βπ2-valued functionΞπ(a) on ΛπΊ πdefined by
(Ξπ(a) (π)) (π£1) :=Γ
π
(a(π£1)) (π πβ
π βππ). It suffices to construct the map
Cπ : HomπΊΛ(π1, ππβ βπ βπ2) βCorrShtloc(π(πe1), π(πe2)).
for every π β RepΞ(πΊΛΞ). Let a β HomπΊΛ(π1, ππβ β π β π2). We have the following coevaluation and evaluation maps:
πΏππ :1βππββ ππ , ππ :π βπβ β1.
Choose a quadruple (π1, π1, π2, π2) of (π1 βπ2βπ)πβ-large integers. Then the mapCloc(π1,π1) defined in (11.3)sendsato the cohomological correspondence Cloc(π1,π1)(a) :π(πe1)loc(π1,π1) ββ π(ππfβ(πe2βπe))loc(π1,π1). (11.8) The partial Frobenius morphism(11.4)gives rise to the cohomological correspon- dence (cf.[XZ17, A.2.3])
DΞβ
πΉβ1
(πβπ2)πβ :π(ππfβ(πe2βπe))loc(π1,π1) ββπ( (πe2βπe)πfβ)loc(π2,π2). (11.9) Finally,Cloc(π2,π2) sends idβππ to the cohomological correspondence
Cloc(π2,π2)(idβππ) :π( (πe2βπe)πfβ)loc(π2,π2) ββ π(πe2)loc(π2,π2). (11.10)
The composition of cohomological correspondences (11.8), (11.9), and (11.10) yields a cohomological correspondence
Cπ(a) βCorr
Shtπ ,π loc(π1, π1)
1|π2
(π(πe1)loc(π1,π1), π(πe2)loc(π2,π2)).
The construction of the mapSπ1,π2 can be summarized in the following diagram
HomCohπΊΛ(πΊ πΛ )(πe1,πe2) CorrShtloc(π(πe1), π(πe2))
HomπΊΛ(π1, ππβ βπ2βπ) .
Sπ1,π2
Ξπ
Cπ
We prove that the cohomological correspondence constructed in the previous section is well-defined and can be composed.
Leta0 denote the image ofa under the canonical isomorphism HomπΊΛ(π1, ππβ β π2βπ) HomπΊΛ(ππ βπ1βπβ, π2).
Lemma 11.2.2. Let π , π , π1, π2, π0
1, π0
2 be representations of πΊΛ, and π1 β π2 : π1βπ2βπ0
1βπ0
2be aπΊΛΓπΊΛ-module homomorphism. LetbβHomπΊΛ(π , ππ1β π βπ2)andb0 βHomπΊΛ(π βπ0
2βπ0
1, π). We omit choosing appropriate integers (ππ, ππ)for simplicity. Then we have
C (b0β¦ (idβπ2βπ1)) β¦DΞβ
πΉβ1β¦C (b) =C (b0) β¦DΞβ
πΉβ1β¦C ( (π π1β¦idβπ2) β¦b). (11.11) In particular, the cohomological correspondenceSπ1,π2(a)equals to the composition of the following cohomological correspondences:
C (πΏππ βidπ1): π(πe1) ββπ(ππfβ(ππe βπe1)), DΞβ
πΉβ1
(πβπ1)πβ :π(ππfβ(ππe βπe1)) ββπ( (ππe βπe1)πfβ) C (a0) :π( (ππe βπe1)πfβ) ββπ(πe2).
Proof. Consider the following diagram
π(πe) π(Βππ1βπeβπf2) π(eπ βπf2βπf1)
π(Βππ0
1βπeβπf0
2) π(eπ βπf0
2βπf0
1) π(eπ)
C (b)
C ( (π π2β¦idβπ1)β¦b)
DΞπΉβ1
C (π π1βidβπ2)
C (b0β¦(idβπ2βπ1)) C (idβπ2βπ1)
DΞπΉβ1
C (b0)
.
(11.12)
The bent triangles on the left and right are clearly commutative by Corollary 8.0.15.
It suffices to prove that the rectangle in the middle is commutative. But this is a direct consequence of [XZ17, Lemma 6.1.13].
Let π = π1, π = 1, π1 = π0
1 = πβ, π2 = ππ βπ1, π0
2 = π β π2. Write a00 for the image ofa under the canonical isomorphism Hom(ππ βπ1 βπβ, π2) Hom(ππβπ1, πβπ2). Takeb=πΏππβid, π1=id, and π2 =a00. Then the second assertion follows from the above commutative diagram.
Lemma 11.2.3. For anyπΌ β HomπΊΛ(πe1,πe2), the construction ofSπ1,π2 is indepen- dent from the choice of
(1) projectiveΞ-modulesπ βRepΞ(πΊΛΞ),
(2) aβHomπΊΛ(π1, ππββπ2βπ), such thatΞπ(a) =πΌ, (3) (π1βπ2) βππβ-acceptable integers(π1, π1, π2, π2).
Proof. The proof is completely similar to that of [XZ17, Lemma 6.2.5], and we briefly discuss it here.
We start by proving the independence of (3). Choose another quadruple of (π1β π2) βππβ-acceptable integers (π0
1, π0
1, π0
2, π0
2) β₯ (π1, π1, π2, π2). We have the following diagram of Hecke correspondences
Shtloc(π
0 1,π0
1)
π1 Shtπ,loc(π
0 1,π0
1)
π1|π2 Shtloc(π
0 2,π0
2) π2
Shtπloc(π1,π1)
1 Shtππ,loc(π1,π1)
1|π2 Shtπloc(π2,π2)
2
.
res
π0 1π0
1 π1, π
1 res
π0 1π0
1 π1, π
1 res
π0 2π0
2 π2, π 2
This is the upper face of diagram (10.5). As we discussed in Β§10, all the vertical maps are smooth, the two squares are commutative, and the left square is Cartesian.
ThenCloc(π
0 1,π0
1)
π (a)equals the pullback of Cloc(π1,π1)
π (a)along the vertical maps.
Next, we prove the independence of (1) and (2) simultaneously. Consider that ΛπΊ acts on the filtration of OπΊ by right regular representation. Then OπΊ is realized as an ind-object in RepΞ(πΊΛ). Letπ β RepΞ(πΊΛ) be a projective object and we denote byπ the underlineπΈ-module ofπ equipped with the trivial ΛπΊ-action. Consider the following ΛπΊ-equivariant maps
aπ : π β OπΊ β π , π₯ β¦β aπ(π₯) (π) :=ππ₯ ,
ππ : πβ β π β OπΊ, (π₯β, π₯) β¦β ππ(π₯β, π₯) (π) :=π₯β(ππ₯),
where we identifyOπΊ βπas the space ofπ-valued functions on ΛπΊin the definition of aπ andππ. Taking π =π, we have the following ΛπΊΓπΊΛ-module maps
ππββπ2βπ
aπ πβ
βββββπββπOπΊ βπ2βπ
ππ
ββββ πOπΊ βπ2β OπΊ.
The map ΛπΊΓπΊΛ β πΊ π,Λ (π1, π2) β¦β π(π1)β1π(π2)π induces a natural map ππ : πΈ[πΊ πΛ ] β πOπΊ β OπΊ which intertwines the π-twisted conjugation action on πΈ[πΊ πΛ ]and the diagonal action of ΛπΊonπOπΊβOπΊ. For anyπΌβHomπΊΛ(π1,OπΊβπ2), denote byπΌ0the image ofπΌunder the following map
HomπΊΛ(π1,OπΊ βπ2) βββππ HomπΊΛ(π1, πOπΊ βπ2β OπΊ). Direct computation yields the followings
(ππ β¦aππβ) β¦a0=ππ(πΌ0):π1β πOπΊ βπ2β OπΊ, and
idπ2 βππ =ev(1,1) β¦ (ππ β¦ππβ) :π2βπ βπβ βπ2,
where ev(1,1) denotes the evaluation at (1,1) β πΊΛ Γ πΊΛ. In Lemma 11.2.2, let π1 βπ2 := π βπβ, π0
1 βπ0
2 := OπΊ β OπΊ, π1β π2 := ππ β¦ππβ, b := a0, and b0:=ev(1,1). Then we have
Cπ(a) =C (idπ2 β ππ) β¦DΞβ
πΉβ1
(π
2βπ)πβ
β¦ C (a0)
=C (ev(1,1)) β¦DΞβ
πΉβ1
(π
2β OπΊ)OπΊ
β¦ C (ππ(πΌ0)).
We see from the last equality in the above that Cπ(a) depends only on πΌ and the
lemma is thus proved.
We claim that our construction of Sπ1,π2 is compatible with the composition of morphisms. More precisely, we have the following lemma.
Lemma 11.2.4. For any representationsπ1, π2, π3, letπ1, π2, π3 β RepΞ(πΊΛΞ) be projectiveΞ-modules, and we have the following commutative diagram
HomCohπΊΛ(πΊ πΛ )(πe1,πe2) βHom
CohπΊΛ(πΊ πΛ )(πe2,πe3) Hom
CohπΊΛ(πΊ πΛ )(πe1,πe3) HomπΊΛ(π π1βπ1β πβ
2, π2) βHomπΊΛ(π π2βπ2β πβ
2, π3) HomπΊΛ(π π2βπ π1βπ1β πβ
1βπβ
2, π3) CorrShtloc(π(πe1), π(πe2)) βCorrShtloc(π(πe2), π(πe3)) CorrShtloc(π(πe1), π(πe3)).
π
Cπ 1βCπ
2
π0
Cπ 1βπ
2
π00
(11.13)
Here
β’ the unlabelled vertical arrows are given by the Peter-Weyl theorem
β’ πis the compositions of morphisms inCohπΊΛ(πΊ πΛ )
β’ π00 is the composition described in Β§10.2
β’ π0(a1βa2)is defined to be the homomorphism
π π2βπ π1βπ1βπβ
1β πβ
2
idπ π2βa1βidπβ
ββββββββββββ2 π π2βπ2β πβ
2 a2
ββπ3. Proof. The lemma can be proved following the same idea in the proof of [XZ17,
Lemma 6.2.7].
We study the endomorphism ring of the unit object in P(ShtlocΒ―
π
,Ξ). This will be used to prove the "π=π" theorem for Shimura sets in Β§12.3.
Let πΏ1 denote the intersection cohomology sheaf IC0 on Shtloc(0 π,π). The group theoretic description of the moduli of restricted local Shtukas (cf. [XZ17, Β§5.3.2]) implies that Shtloc0 (π,π) is perfectly smooth. ThusπΏ1may be realized as
πΏ
π,π
1 := Ξh(πβπ)dimπΊi β P(Shtloc(π,π)0 ,Ξ) for everyπ β₯ π. Fix a square rootπ1/2.
Corollary 11.2.5. (1) There is a natural isomorphism CorrShtloc(πΏ1, πΏ1) ' HπΊ ,πΈ
whereHπΊ ,πΈ denotes the Hecke algebraπΆβ
π (πΊ(O)\πΊ(πΉ)/πΊ(O), πΈ). (2) We denote the map
SO
[πΊ πΛ /πΊΛ],O[πΊ πΛ /πΊΛ] : End
CohπΊΛ(πΊ πΛ )(O[πΊ πΛ /πΊΛ]) βCorrShtloc(πΏ1, πΏ1)
bySOfor simplicity. Under the isomorphism in(1), the mapSOβidπΈ[πβ1/2,π1/2]
coincides with the classical Satake isomorphism.
Proof. Recall the definition of the Borel-Moore homology HBMπ (π) for a perfect pfp algebraic space which is defined over an algebraically closed field (cf. [XZ17, A.1.3]). Assume π1andπ2to be perfectly smooth algebraic spaces of pure dimen- sion. Letπ1β πΆ β π2be a correspondence. Then
CorrπΆ (π1, πΈhπ1i),(π2, πΈhπ2i)
(11.14)
=Homπ·π
π(πΆ ,πΈ) πΈhπ1i, ππΆhπ2β2 dimπ2
=HBM2 dimπ
2+π1βπ2(πΆ).
Then if 2 dimπΆ = 2 dimπ2+ π1 βπ2, the cohomological correspondences from (π1, πΈhπ1i)to(π2, πΈhπ2i)can be identified as the set of irreducible components of πΆof maximal dimension.
For a perfect pfp algebraic space π of dimension π, define πΌ to be the set of top- dimensional irreducible components of π. Then HBMπ (πΌ) is the free πΈ-module generated by the π-dimensional irreducible components of π, and thus can be identified with the space πΆ(πΌ , πΈ) of πΈ-valued functions on πΌ. The map π β¦β
Γ
πΆπβπΌ π(πΆπ) [πΆπ] establishes a bijection
πΆ(πΌ , πΈ) =HBMπ (π). (11.15) With the above preparations, we get an isomorphism
HπΊ ,πΈ 'CorrShtloc(πΏ1, πΏ1), (11.16) via a similar argument as for [XZ17, Proposition 5.4.4], and we finish the proof of (1).
To prove part (2), we first note that the statement holds for πΈ = Qβ by [XZ17, Theorem 6.0.1(2)]. We sketch the proof here. Let π be a central minuscule dominant coweight, and π be a dominant coweight such that π(π) = π. Choose (π1, π1, π2, π2) to be(π+π, π)-acceptable. Takeaβ HomπΊΛ(ππ βππ βππβ, ππ)to be the map induced by the evaluation mapeπ :ππβππβ β1. Consider the following diagram
pt πΊ πβ€πβ Ξ πΊ πβ€πβ ΓπΊ πβ€πβ πΓid πΊ ππβΓπΊ πβ€πβ Ξ πΊ πβ€πβ pt. Recall the cohomological correspondencesπΏIcπβandπIcπβdefined in [XZ17, Β§A.2.3.4].
Then Cloc(π1,π1)
ππ
(a) = πΏICπβ β¦ΞπΓidβ β¦πIcπβ β HBM0 (πΊ ππβ(π)), and the cohomologi- cal correspondenceCloc(π1,π1)
ππ
(a) can be identified with the function π onπΊ ππβ(π)
whose value at π₯ βπΊ ππβ(π) is given by tr(ππ₯ | Sat(ππβ)π₯Β―). Then up to a choice of π1/2, the map πO,O βQβ idQβ[π1/2,πβ1/2] coincides with the classical Satake isomor- phism.
Now we come back to the case πΈ = Zβ. Write π for Qβ[π1/2, πβ1/2]. The above argument shows that
SO βπ : End
CohπΊΛ(πΊ π)Λ (O[πΊ π/Λ πΊ]Λ ) βZ
β
πβ CorrShtloc(πΏ1, πΏ1) βZ
β
π
coincide with the classical Satake isomorphism. Note that EndCohπΊΛ(πΊ π)Λ (O[πΊ π/Λ Λ
πΊ]) βZβ π 'Zβ[πΊΛ]πΊΛ βZβ π ,
where ΛπΊ acts on ΛπΊ by theπ-twisted conjugation. Considering the Satake transfer of the image ofZβ-basis of Zβ[πΊΛ](πΊΛ) inZβ[πΊΛ](πΊΛ) βZβπ, we conclude the proof of
(2).
C h a p t e r 12
COHOMOLOGICAL CORRESPONDENCES BETWEEN SHIMURA VARIETIES
In this section, we adapt the machinery developed in previous sections and apply it to the study of the cohomological correspondences between different Hodge type Shimura varieties following the idea of [XZ17].
12.1 Preliminaries
Let (πΊ , π) be a Shimura datum and πΈ be its reflex field (cf. [Mil05]). Let πΎ β πΊ(Aπ) be a (sufficiently small) open compact subgroup and denote by ShπΎ(πΊ , π) the corresponding Shimura variety defined overπΈ. Fix a prime π >2 such thatπΎπ is a hyperspecial subgroup ofπΊ(Qπ). We write πΊ for the reductive group which extends πΊ to Z(π) and such thatπΊ(Zπ) = πΎπ. Choose π to be a place of πΈ lying over π. We write OπΈ ,(π) for the localization of OπΈ at π. Results of Kisin [Kis10]
and Vasiu [Vas07] state that for any Hodge type Shimura datum (πΊ , π), there is a smooth integral canonical modelSπΎ(πΊ , π) of ShπΎ(πΊ , π), which is defined over OπΈ ,(π). Let ππ denote the residue field ofOπΈ ,π and fix an algebraic closure Β―ππ of ππ. We denote by Shπ,πΎ :=(SπΎ(πΊ , π) βππ)pfthe perfection of the special fiber of SπΎ(πΊ , π). The perfection of mod πfibre of Shimura varieties and moduli of local Shtukas are related by a map locπ : Shπ,πΎ β Shtlocπ . The construction of locπis via aπΊ-torsor over the crystalline cite (SπΎ , ππ/OπΈ ,π)CRISand we refer to [XZ17, Β§7.2.1]
for a detailed discussion. In the Siegel case, it may be understood as the perfection of the morphism sending an abelian variety to its underlying π-divisible group. We need the following result of Xiao-Zhu [XZ17, Proposition 7.2.4] for our proof of the main theorem.
Proposition 12.1.1. Let(π, π) be a pair ofπ-large integers. The morphism locπ(π, π) :=resπ,πβ¦locπ : Shπ βShtloc(π π,π)
is perfectly smooth.
Γtale Local Systems onShπ,πΎ
Let β β π be a prime number. Assume that π : πΊ β πΊ πΏ
Qβ(π) is a Qβ- representation of πΊ. If πΎ β πΊ(Aπ) is sufficiently small, we associate an Γ©tale
local system Lβ,π on Shπ,πΎ to π following the idea of [LZ17, Β§4] and [Mil90,
Β§III.6] as follows.
WriteπΎ =πΎβπΎβ withπΎβ β πΊ(Qβ)andπΎβ β πΊ(Aβπ). The representationπrestricts to a representation
ππΎ
β : πΎ(Qβ) βπΊ(Qβ) βπΊ πΏ(π
Qβ). Note thatπΎ(Qβ)is compact, and there exists a latticeΞπ ,β β π
Qβ fixed byπΎ(Qβ). Now we vary the levels atβ. Define
πΎ(
π)
β :=πΎββ©πβ1
πΎ(Qβ)({π βπΊ πΏ(Ξπ ,β) | πβ‘ 1 mod βπ}).
Then we get a system of open neighborhoods of 1 β πΊ(Qβ). For each π, the construction ofπΎ(π)
β gives rise to a representation ππ
πΎβ :πΎβ/πΎ(π)
β βπΊ πΏ(Ξπ ,β/βπΞπ ,β). The natural projection map Sh
π,πΎ(
π)
β πΎβ β Shπ,πΎβπΎβ is a finite Γ©tale cover with the group of deck transformations being πΎβ/πΎ(
π)
β . Then the trivial Γ©taleZ/βπZ-local system Shπ,πΎ(π)
β
πΎβ ΓΞπ ,β/βπΞπ ,β on Shπ,πΎ(π)
β
πΎβ gives rise to the Γ©taleZ/βπZ-local system
Lπ ,β,π :=Shπ,πΎ(π)
β
πΎβ ΓπΎβ/πΎβ(π) Ξπ ,β/βπΞπ ,β. Let
Lπ ,Zβ :=lim
βββ
π
Lπ ,β,π. (12.1)
This is an Γ©taleZβ-local system on Shπ,πΎ. It can be checked thatLπ ,Qβ :=Lπ ,ZββQ is an Γ©taleQβ-local system on Shπ,πΎ which is independent of the choice ofΞβ. 12.2 Main Theorem
Let(πΊ1, π1) and(πΊ2, π2)be two Hodge type Shimura data (cf. [Mil05]) equipped with an isomorphism π : πΊ1,
Aπ ' πΊ2,
Aπ. Let {ππ} denote the conjugacy class of Hodge cocharacters determined by ππ and consider them as dominant characters of Λπ. In particular, π1 and π2 are both minuscule. Then [XZ17, Corollary 2.1.5]
implies that there is a canonical inner twistΞ¨R:πΊ1β πΊ2overC. Recall notations in Β§1.3. We defineππ,ad to be the composition ofππwith the quotientπΊ β πΊadand consider it as a character of Λπsc. We assume that
π1,ad |
π(πΊΛ
ΞQ
sc )= π2,ad |
π(πΊΛ
ΞQ sc ) .
It follows from [XZ17, Corollary 2.1.6] thatΞ¨Rcomes from a unique global inner twistΞ¨ : πΊ
1 Β―Q β πΊ
2 Β―Q such thatΞ¨ = Int(β) β¦π, for some π : πΊ1,
Aπ ' πΊ2,
Aπ and ββπΊ2,ad(AΒ―π).
We assume thatπΎπ β πΊ(Aπ) to be sufficiently small such thatπ πΎ1=πΎ2. Choose a prime πsuch thatπΎ1, π (and therefore πΎ2, π) is hyperspecial. LetπΊπ be the integral model ofπΊπ,
QπoverZπdetermined byπΎπ, π. ThenπΊ1 'πΊ2, and we can thus identify their Langlands dual groups (πΊ ,Λ π΅,Λ πΛ). Choose an isomorphism π : C ' QΒ―π. Let π | π be a place of the compositum of reflex fields of (πΊπ, ππ) determined by our choice of isomorphismπ. We write Shππfor the mod πfibre of the canonical integral model of ShπΎπ(πΊπ, ππ) base change toππ. We make the following assumption
π1 |
π(πΊΛ
ΞQπ)= π2 |
π(πΊΛ
ΞQπ) . (12.2)
The assumption guarantees the existence of the ind-scheme Shπ1|π2 which fits into the following commutative diagram
Shπ1,πΎ1 Shπ1|π2 Shπ2,πΎ2
Shtlocπ1 Shtlocπ
1|π2 Shtlocπ2
ββ βπ
1
locπ
β
β βπ
2
locπ
ββ βloc
π1
β
β βloc
π2
, (12.3)
and makes both squares to be Cartesian.
Remark 12.2.1. In the case that(πΊ1, π1)= (πΊ2, π2),Shπ1|π2is the perfection of the mod p fibre of a natural integral model of some Hecke correspondence. If(πΊ1, π1) β (πΊ2, π2), thenShπ1|π2can be regarded as βexotic Hecke correspondencesβ between mod p fibres of different Shimura varieties. We refer to [XZ17, Β§7.3.3, Β§7.3.4] for a detailed discussion.
Let (πΊπ, ππ) π = 1,2,3 be three Hodge type Shimura data, together with the iso- morphismsππ, π :πΊπ,
Aπ 'πΊπ ,
Aπ satisfying the natural cocycle condition. Choose a common level πΎ using the isomorphismππ, π. Let π be an unramified prime, such that the assumption(12.2)holds for each pair of( (πΊπ, ππ),(πΊπ, ππ)). Choose a half Tate twistQβ(1/2).
Let ππ := ππ
π be the highest weight representation of ΛπΊ
Qβ of highest weight ππ. Write πeπ β CohπΊΛQβ(πΊΛ
Qβπ) for the vector bundle associated to ππ analogous to
Β§11.4. Recall fromΒ§12.1 that, to each representationπ ofπΊ
Qβ, we can attach the Γ©tale local systemLπ ,Qβ on Shππ. Letππ =h2π, ππi=dim ShπΎ(πΊπ, ππ). Denote the global section of the structure sheaf on the quotient stack [πΊ πΛ /πΊΛ] by J, and the prime-to-π Hecke algebra byHπ.
Theorem 12.2.2. There exists a map Spc : Hom
CohπΊΛQβ(πΊΛ
Qβπ)(πe1,πe2) βHomHπβJ(Hβπ(Shπ1,Lπ ,Qβhπ1i),Hβπ(Shπ2,Lπ ,Qβhπ2i), (12.4)
which is compatible with compositions on the source and target.
Proof. Choose a latticeΞπ βRepZ
β(πΊΛ
Zβ)inππ. We denote byΞeπ βCohπΊΛZβ(πΊΛ
Zβπ) the coherent sheaf which corresponds toΞπ as in Β§11.1. Then
HomCohπΊΛQβ(πΊΛ
Qβπ)(πe1,πe2) 'HomπΊΛ
Qβ
(π1, π2βQβ[πΊΛ]) (12.5) 'HomπΊΛ
Qβ
(Ξ1βZ
βQβ,(Ξ2βZ
β Zβ[πΊΛ]) βZ
βQβ) 'HomπΊΛ
Zβ
(Ξ1,Ξ2βZβ Zβ[πΊΛ]) βZβ Qβ 'Hom
CohπΊΛZβ(πΊΛ
Zβπ)(fΞ1,Ξf2) βZβQβ. By Theorem 11.2.1, we get a map
SΞ1,Ξ2 : Hom
CohπΊΛZβ(πΊΛ
Zβπ)(Ξf1,Ξf2) βCorrShtloc(π(Ξf1), π(Ξf2)). (12.6) Combining(12.5)with(12.6), we get the following map
HomCohπΊΛQβ(πΊΛ
Qβπ)(πe1,πe2) βCorrShtloc(π(Ξf1), π(Ξf2)) βZβ Qβ. (12.7) Choose a dominant coweightπand a quadruple (π1, π1, π2, π2)that is (π1+π, π)- acceptable and(π2+π, π)-acceptable. We have the following diagram
Shπ1 Shππ
1|π2 Shπ2
Shtlocπ1 Shtπ,loc
π1|π2 Shtlocπ2
Shtloc(π1 π1,π1) Shtπ,πloc(π1,π1)
1|π2 Shtloc(π2 π2,π2)
ββ βπ
1
locπ locππ
β
β βπ
2
locπ
ββ βloc
π1
resπ1, π1
β
β βloc
π2
resππ1, π1 resπ2, π2
ββ βloc(π1
, π1) π1
β
β βloc(π2
, π2) π2
, (12.8)
where
β’ all squares are commutative (discussions on diagram (10.5) and diagram (12.3),
β’ except for the square at the down right corner, and the other three squares are Cartesian (discussions on diagram(12.3)and diagram (12.5),
β’ the morphismββ βπ
1 is perfectly proper ([XZ17, Lemma 5.2.12]),
β’ the morphisms locπ(ππ, ππ) are perfectly smooth (Proposition 12.1.1).
Then the morphism locππ(π1, π1) := resππ1,π1 β¦locππ is also perfectly proper. Thus we can pullback the cohomological correspondences (cf. [XZ17, A.2.11)]) on the right hand side of (12.6) along locππ(π1, π1)to obtain a map
locππ(π1, π1)β : CorrShtloc(π(Ξf1), π(Ξf2)) β CorrShπ
π|π(locπ(π1, π1)β π(fΞ1),locπ(π2, π2)β (π(Ξf2)). Note that ππ are minuscule, then theβ -pullback ofπ(Ξeπ)along locπ(ππ, ππ)equals
Zβhππi. Next, we construct a natural map βπ : CorrShπ
π1|π 2
(Shπ1,Zβhπ1i),(Shπ2,Zβhπ2i)
βCorrShπ
π1|π 2
(Shπ1,Lπ ,Zβhπ1i),(Shπ2,Lπ ,Zβhπ2i) . (12.9)
For eachπ βZ+, we note that there exists an ind-scheme Sh(π)
π1|π2 which fits into the following commutative diagram such that both squares are Cartesian
Shπ1,πΎ(π)
β πΎβ Shπ,(π)
π1|π2 Sh
π2,πΎ(π)
β πΎβ
Shπ1 Shππ
1|π2 Shπ2.
ββ βπ(π)
1
ππ
1
β
β β(π)π
2
ππ ππ
2
ββ βπ
1
β
β βπ
2
Here the three vertical maps are the natural quotients by the finite groupπΎβ/πΎπ
β and are thus Γ©tale.
Let (ππ)π : (ββ βπ
1)β(Z/βπZhπ1i)π β (ββ βπ
2)!(Z/βπZhπ2i)π be a cohomological cor- respondence in CorrShπ
π1|π2
(Shπ1,Zβhπ1i),(Shπ2,Zβhπ2i)
. For each π β Z+, the shifted pullback (cf. [XZ17, A.2.12]) of ππgives rise to a cohomological correspon- dence
Λ ππ: (ββ
β(
π)
π1 )β(Z/βπZhπ1i) β (ββ β(
π)
π2)!(Z/βπZhπ2i)