• Tidak ada hasil yang ditemukan

Perverse Sheaves on the Moduli of Local Shtukas

Chapter X: Moduli of Local Shtukas

10.2 Perverse Sheaves on the Moduli of Local Shtukas

Letπœ‡β€’be a sequence of dominant coweights and (π‘š1, 𝑛1), (π‘š2, 𝑛2)be two pairs of πœ‡β€’-large integers such thatπ‘š1 ≀ π‘š2,𝑛1 ≀ 𝑛2, andπ‘š2 β‰ βˆž. Define the functor

Resπ‘šπ‘š21,𝑛,𝑛21 :=(resπ‘šπ‘š21,𝑛.𝑛21)β˜…: P(Shtloc(π‘šπœ‡β€’ 2,𝑛2),Ξ›) β†’P(Shtloc(π‘šπœ‡ 1,𝑛1)

β€’,Ξ› ). (10.7) Then(10.4)yields

Resπ‘šπ‘š21,𝑛,𝑛21β—¦Resπ‘šπ‘š32,𝑛,𝑛33 =Resπ‘šπ‘š31,𝑛,𝑛31. (10.8) Like Resπ‘šπ‘›, the functor Resπ‘šπ‘šπ‘–π‘—,𝑛,𝑛𝑖𝑗 is also an equivalence of categories ifπ‘šπ‘— >1.

We define the category of perverse sheaves on the moduli of local Shtukas as P(ShtlocΒ―

π‘˜

,Ξ›):= Ê

πœ‰βˆˆπœ‹1(𝐺)

P(Shtlocπœ‰ ,Ξ›), P(Shtlocπœ‰ ,Ξ›) := lim

βˆ’βˆ’β†’

(π‘š,𝑛, πœ‡)

P(Shtlocπœ‡ (π‘š,𝑛),Ξ›) (10.9) where the limit is taken over the triples{(π‘š, 𝑛, πœ‡) ∈Z2Γ—πœ‰ | (π‘š, 𝑛) isπœ‡large}with the product partial order. As in [XZ17], we call objects in P(Shtlocπœ‰ ,Ξ›) connected objects. The connecting morphism is given by the composite of fully faithful functor

P(Shtloc(πœ‡1 π‘š1,𝑛1),Ξ›) P(Shtloc(πœ‡1 π‘š2,𝑛2),Ξ›) P(Shtloc(π‘š2,𝑛2)

πœ‡0

1

,Ξ›).

Resπ‘šπ‘š2, 𝑛2 1, 𝑛

1

π‘–πœ‡ 1, πœ‡0

1

For each dominant coweight πœ‡and a pair of πœ‡-large integers(π‘š, 𝑛), we define the natural pullback functor

Ξ¨loc(π‘š,𝑛) :=Resπ‘š,π‘›π‘š,0 : P(Hkloc(π‘š)πœ‡ ,Ξ›) β†’P(Shtloc(π‘š,𝑛)πœ‡ ,Ξ›). (10.10) We observe that Ξ¨loc(π‘š,𝑛) commutes with the connecting morphism in (10.9) by (10.8) and the proper smooth base change. Then we can take the limit and direct sum ofΞ¨loc(π‘š,𝑛) and derive the following well-defined functor

Ξ¨loc : P(HklocΒ―

π‘˜

,Ξ›) β†’P(ShtlocΒ―

π‘˜

,Ξ›). (10.11)

LetF𝑖 ∈ P(Shtlocπœ‰

𝑖

, 𝐸)be connected objects. It is realized asF𝑖, πœ‡(π‘šπ‘–,𝑛𝑖)

𝑖

∈P(Shtloc(π‘šπœ‡π‘– 𝑖,𝑛𝑖)

, 𝐸) for some πœ‡π‘– and some pair of πœ‡π‘–-large integers (π‘šπ‘–, 𝑛𝑖). We define the set of coho- mological correspondences betweenF1andF2as

CorrShtloc(F1,F2)

:= Ê

πœ‰βˆˆπœ‹1(𝐺)

limβˆ’βˆ’β†’Corr

Shtπœ†,πœ‡loc(π‘š1, 𝑛1)

1|πœ‡2

(Shtlocπœ‡1(π‘š1,𝑛1),F(π‘š1,𝑛1)

1, πœ‡1 ),(Shtlocπœ‡2(π‘š2,𝑛2),F(π‘š2,𝑛2)

2, πœ‡2 ) ,

where the limit is taken over all partially ordered sextuples(πœ‡1, πœ‡2, πœ†, π‘š1, 𝑛1, π‘š2, 𝑛2) such that

β€’ (π‘š1, 𝑛1, π‘š2, 𝑛2)is (πœ‡1+πœ†, πœ†)and(πœ‡2+πœ†, πœ†)-acceptable,

β€’ πœ‡π‘– βˆˆπœ‰π‘–, for someπœ‰π‘– βˆˆπœ‹1(𝐺),

β€’ πœ†βˆˆπœ‰.

Let (πœ‡1, πœ‡2, πœ†, π‘š1, 𝑛1, π‘š2, 𝑛2) ≀ (πœ‡0

1, πœ‡0

2, πœ†0, π‘š0

1, 𝑛0

1, π‘š0

2, 𝑛0

2) be another such sextu- ple. The connecting morphism between the cohomological correspondences

CorrShtπœ†,πœ‡loc(π‘š1, 𝑛1)

1|πœ‡2

(Shtloc(π‘šπœ‡1 1,𝑛1),F1, πœ‡1),(Shtloc(π‘šπœ‡2 2,𝑛2),F2, πœ‡2)

(10.12) and

CorrSht

πœ†0,loc(π‘š0 1, 𝑛0

1) πœ‡0

1|πœ‡0 2

(Shtloc(π‘š

0 1,𝑛0

1) πœ‡0

1

,F1, πœ‡0

1),(Shtloc(π‘š

0 2,𝑛0

2) πœ‡0

2

,F2, πœ‡0

2)

(10.13)

is given by first pulling back(4.13)to the Hecke correspondence Shtloc(π‘š

0 1,𝑛0

1)

πœ‡1 Shtπœ†,loc(π‘š

0 1,𝑛0

1)

πœ‡1|πœ‡2 Shtloc(π‘š

0 2,𝑛0

2)

πœ‡2 ,

along the restriction morphism, then pushing it forward to the Hecke correspondence Shtloc(π‘š

0 1,𝑛0

1) πœ‡0

1

Shtπœ†

0,loc(π‘š01,𝑛0

1) πœ‡0

1|πœ‡0

2

Shtloc(π‘š

0 2,𝑛0

2) πœ‡0

2

.

The connecting morphism is well-defined and can be composed. We refer to [XZ17,

Β§5.4.1] for more discussions.

C h a p t e r 11

KEY THEOREM FOR CONSTRUCTING THE JACQUET-LANGLANDS TRANSFER

In this chapter, we state and prove the key theorem for our construction of the Jacquet-Langlands transfer. We will make use of the theory of the cohomological correspondences throughout this chapter. Instead of explaining all the details, we refer to [XZ17, Appendix A.2] for a nice discussion.

11.1 Preliminaries

Fix a half Tate twist Ξ›(1/2). Recall notations h𝑑i and π‘“β˜… introduced in Β§1.3.

Throughout this section, we consider the Langlands dual group scheme ˆ𝐺Λ overΞ› of𝐺 and itsΞ›-representations. The subscriptsΞ›will be omitted for simplicity. We generalize a few notions introduced in previous sections for the sake of stating the key theorem.

More on Local Hecke Stacks

Let 𝑉‒ := 𝑉1𝑉2 Β· Β· ·𝑉𝑠 ∈ Rep(𝐺ˆ𝑠) and assume that for each 𝑖, 𝑉𝑖 has the Jordan-Holder factorsΒ₯ {π‘‰πœ‡

𝑖 𝑗}𝑗.

The integral geometric Satake equivalence (Theorem 8.0.14) Sat𝐺𝑠 sends𝑉‒ to an (𝐿+𝐺 βŠ— π‘˜Β―)𝑠-equivariant perverse sheaf Sat𝐺𝑠(𝑉‒) on (𝐺 π‘ŸπΊ βŠ— π‘˜Β―)𝑠. We write 𝐺 π‘Ÿπ‘‰

β€’

for the support of the external tensor product Sat(𝑉1)˜Sat(𝑉2)˜ Β· Β· ·˜Sat(𝑉𝑠). Let π‘š be a non-negative integer. We call it𝑉𝑖-large if π‘š is πœ‡π‘– 𝑗-large for each 𝑗, and we call it 𝑉‒-large if π‘š = π‘š1 +π‘š2 + Β· Β· Β· +π‘šπ‘  such that π‘šπ‘– is 𝑉𝑖-large for each 𝑖. For a 𝑉‒-large integer π‘š, Sat𝐺𝑛(𝑉‒) descends to a perverse sheaf supported on Hk𝑉loc(π‘š)

β€’ := [πΏπ‘šπΊ\𝐺 π‘Ÿπ‘‰

β€’]. We write 𝑆(𝑉)loc(π‘š) for the twist of this perverse sheaf by hπ‘šdim𝐺i. Note that 𝑆(𝑉‒)loc(π‘š) is isomorphic to the "β˜…"-pullback of 𝑆(𝑉1)loc(π‘š1)𝑆(𝑉2)loc(π‘š2)Β· Β· ·𝑆(𝑉𝑠)loc(π‘šπ‘ ) along the perfectly smooth morphism Hk𝑉loc(π‘š)

β€’ β†’ Î

𝑖Hkloc(𝑉 π‘šπ‘–)

𝑖 constructed in(9.9). In the case𝑠=1, we have

𝐺 π‘Ÿπ‘‰

1 =βˆͺ𝑗𝐺 π‘Ÿπœ‡

1𝑗, Hkloc𝑉 (π‘š)

1 =βˆͺ𝑗Hklocπœ‡1π‘—π‘š. In general, Hkloc(π‘š)𝑉

β€’ is of the formβˆͺπœ‡β€’Hkloc(π‘š)πœ‡β€’ . Via descent, Corollary 8.0.15 gives

the following natural isomorphism:

Hom𝐺ˆ(𝑉‒, π‘Šβ€’) Corr

Hk0𝑉,loc(π‘š)

β€’ |π‘Šβ€’

(Hk𝑉loc(π‘š)

β€’

,Satloc𝐺 (π‘š)(𝑉‒)),(Hklocπ‘Š (π‘š)

β€’

,Satloc𝐺 (π‘š)(π‘Šβ€’)) . (11.1) Here and below, we regard 𝑉‒ and π‘Šβ€’ as representations of ˆ𝐺 via the diagonal embedding ˆ𝐺 ↩→ 𝐺ˆ𝑠.

Let𝑉‒ andπ‘Šβ€’ be two representations of ˆ𝐺𝑠. We can similarly define 𝐺 π‘Ÿ0

𝑉‒|π‘Šβ€’ :=

𝐺 π‘Ÿπ‘‰

‒×𝐺 π‘ŸπΊ 𝐺 π‘Ÿπ‘Š

β€’ and Hk𝑉0,loc(π‘š)

β€’|π‘Šβ€’ = [πΏπ‘šπΊ\𝐺 π‘Ÿ0

𝑉‒|π‘Šβ€’]. More on Moduli of Local Shtukas

Letπ‘‰β€’βˆˆRep(𝐺ˆ𝑠). For a pair of non-negative integers(π‘š, 𝑛), we can generalize the notion of πœ‡β€’-largeand define the notion of𝑉‒-large. Let(π‘š, 𝑛)be a pair of𝑉‒and π‘Šβ€’-large integers, we can define the moduli of restricted local Shtukas Shtloc𝑉 (π‘š,𝑛)

β€’

and Shtloc(π‘š,𝑛)

𝑉‒|π‘Šβ€’ . Similar to Hk𝑉loc

β€’, the stacks Sht𝑉loc(π‘š,𝑛)

β€’ and Shtloc(π‘š,𝑛)

𝑉‒|π‘Šβ€’ can be regarded as unions of Shtloc(πœ‡β€’ π‘š,𝑛) and unions of Shtloc(π‘š,𝑛)

πœ‡β€’|πœˆβ€’ . We have the natural forgetful map πœ“loc(π‘š,𝑛) : Sht𝑉loc(π‘š,𝑛)

β€’ β†’Hk𝑉loc(π‘š)

β€’

. (11.2)

Choose a pair of𝑉‒-large integers(π‘š, 𝑛) such that𝑛 > 0. Write 𝑆(𝑉eβ€’)loc(π‘š,𝑛) := Ξ¨loc(π‘š,𝑛)(Sat(𝑉‒)loc(π‘š)) ∈P(Shtloc(π‘š,𝑛),Ξ›)

for the pullback of Sat(𝑉)loc(π‘š) along the morphism πœ“loc(π‘š,𝑛) (up to a shift and twist). For𝑠 =1,𝑆(e𝑉)loc(π‘š,𝑛) represents the perverse sheaf𝑆(e𝑉) := Ξ¨(Sat𝐺(𝑉)) ∈ P(ShtlocΒ―

π‘˜

,Ξ›).

Consider the front face of the diagram(10.5). The second and third vertical maps are perfectly smooth. Pulling back the cohomological correspondence on the right hand side of(11.1)to the upper edge and pre-composing it with(11.1), we get the map

Cloc(π‘š,𝑛) : Hom𝐺ˆ(𝑉‒, π‘Šβ€’) β†’ Corr

Sht0𝑉,loc(π‘š, 𝑛)

β€’ |π‘Šβ€’

(𝑆(𝑉eβ€’)loc(π‘š,𝑛), 𝑆(π‘Šfβ€’)loc(π‘š,𝑛)). (11.3) The mapCloc(π‘š,𝑛) is compatible with the compositions at the source and target, and we refer to [XZ17, Lemma 6.1.8] for the proof.

Let𝑉‒ ∈ Rep(𝐺ˆ𝑠) andπ‘Š ∈Rep(𝐺ˆ). We call a quadruple of non-negative integers (π‘š1, 𝑛2, π‘š1, 𝑛1)π‘‰β€’π‘Š-acceptableif

β€’ π‘š1βˆ’π‘š2=𝑛1βˆ’π‘›2isπ‘Š-large,

β€’ (π‘š2, 𝑛1)is𝑉‒-large.

For a quadruple of π‘‰β€’π‘Š-acceptable integers (π‘š1, 𝑛2, π‘š1, 𝑛1), we can construct the partial Frobenius morphism

πΉβˆ’1

π‘‰β€’π‘Š : Shtloc(πœŽπ‘Šπ‘šπ‘‰1,𝑛1)

β€’ β†’ Sht𝑉loc(π‘š2,𝑛2)

β€’π‘Š (11.4)

similar to (10.1). Here,πœŽπ‘Š is the Frobenius twist ofπ‘Š as in Remark 8.0.14.

Let𝑉1, 𝑉2 ∈Rep(𝐺ˆ). For any projective objectπ‘Š ∈Rep(𝐺ˆ), choose a quadruple of ( (𝑉1βŠ—π‘‰2βŠ—π‘Š)π‘Šβˆ—)-acceptable integers(π‘š1, 𝑛1, π‘š2, 𝑛2). We define the following stack

Shtπ‘Š ,𝑉 loc(π‘š1,𝑛1)

1|𝑉2 :=Shtloc(𝑉 π‘š1,𝑛1)

1|πœŽπ‘Šβˆ—(πœŽπ‘ŠβŠ—π‘‰1) Γ—

Shtloc(( π‘š2, 𝑛2)

𝜎 π‘ŠβŠ—π‘‰1)π‘Šβˆ— Shtloc((πœŽπ‘Šπ‘šβŠ—1𝑉.𝑛1)

1)π‘Šβˆ—|𝑉2

. (11.5) The CategoryCoh𝐺ˆ(𝐺 πœŽΛ† )

Recall from Remark 8.0.14 that the Langlands dual group ˆ𝐺 is naturally equipped with an action of the arithmetic Frobenius 𝜎. Consider the𝜎-twisted conjugation action of ˆ𝐺 on ˆ𝐺. We denote by Coh𝐺ˆ(𝐺 πœŽΛ† )the abelian category of ˆ𝐺-equivariant coherent sheaves on the (non-neutral) component ˆ𝐺 𝜎 βŠ‚ 𝐺ˆ o 𝜎. Equivalently, Coh𝐺ˆ(𝐺 πœŽΛ† ) can be regarded as the abelian category of coherent sheaves on the quotient stack [𝐺 πœŽΛ† /𝐺ˆ]where ˆ𝐺acts on ˆ𝐺 𝜎by the usual conjugation action.

Let𝑉 ∈Rep(𝐺ˆ) be an algebraic representation of ˆ𝐺. There is an associated vector bundle on ˆ𝐺 𝜎with global section OΛ†

𝐺 βŠ—π‘‰. Consider the following action of ˆ𝐺 on O𝐺ˆ βŠ—π‘‰. For any 𝑔 ∈ 𝐺ˆ and (𝑓 , 𝑣) ∈ O𝐺ˆ βŠ—π‘‰, 𝑔· (𝑓 , 𝑣) := (𝑔 𝑓 πœŽβˆ’1(𝑔), 𝑔𝑣). The associated vector bundle thus gives an object𝑉e∈Coh𝐺ˆ(𝐺 πœŽΛ† ).

11.2 Key Theorem

The following theorem is an analogue of [XZ17, Theorem 6.0.1].

Theorem 11.2.1. Let𝑉1, 𝑉2 ∈ Rep(𝐺ˆ) be two projective Ξ›-modules. Then there exists the following map

S𝑉1,𝑉2 : Hom

Coh𝐺ˆ(𝐺 πœŽΛ† )(𝑉e1,𝑉e2) βˆ’β†’CorrShtloc(𝑆(𝑉e1), 𝑆(𝑉e2)), (11.6) which is compatible with the natural composition maps in the source and target.

We prove this theorem in the rest of this section.

We give an explicit construction of S𝑉1,𝑉2. Consider the following canonical iso- morphisms

HomCoh𝐺ˆ(𝐺 𝜎)Λ† (𝑉e1,𝑉e2) (11.7) HomO𝐺 πœŽΛ† (O𝐺 πœŽΛ† βŠ—π‘‰1,O𝐺 πœŽΛ† βŠ—π‘‰2)𝐺ˆ

Hom(𝑉1,O𝐺 πœŽΛ† βŠ—π‘‰2)𝐺ˆ (π‘‰βˆ—

1 βŠ— OΛ†

𝐺 𝜎 βŠ—π‘‰2)𝐺ˆ.

Let π‘Š ∈ RepΞ›(𝐺ˆΛ) be a projective Ξ›-module with Ξ›-basis {𝑒𝑖}𝑖 and dual basis {π‘’βˆ—

𝑖}𝑖. We construct the map Ξ˜π‘Š : Hom𝐺ˆ

Ξ›(𝑉1, πœŽπ‘Šβˆ—βŠ—π‘‰2βŠ—π‘Š) Hom𝐺ˆ(𝑉1,Hom(πœŽπ‘ŠβŠ—π‘Šβˆ—, 𝑉2)) β†’Hom

Coh𝐺ˆ(𝐺 πœŽΛ† )(𝑉e1,𝑉e2), by sendinga ∈Hom𝐺ˆ

Ξ›(𝑉1, πœŽπ‘Šβˆ— βŠ—π‘‰2βŠ—π‘Š)to theπ‘‰βˆ—

1 βŠ—π‘‰2-valued functionΞ˜π‘Š(a) on ˆ𝐺 𝜎defined by

(Ξ˜π‘Š(a) (𝑔)) (𝑣1) :=Γ•

𝑖

(a(𝑣1)) (𝑔 π‘’βˆ—

𝑖 βŠ—π‘’π‘–). It suffices to construct the map

Cπ‘Š : Hom𝐺ˆ(𝑉1, πœŽπ‘Šβˆ— βŠ—π‘Š βŠ—π‘‰2) β†’CorrShtloc(𝑆(𝑉e1), 𝑆(𝑉e2)).

for every π‘Š ∈ RepΞ›(𝐺ˆΛ). Let a ∈ Hom𝐺ˆ(𝑉1, πœŽπ‘Šβˆ— βŠ— π‘Š βŠ— 𝑉2). We have the following coevaluation and evaluation maps:

π›ΏπœŽπ‘Š :1β†’πœŽπ‘Šβˆ—βŠ— πœŽπ‘Š , π‘’π‘Š :π‘Š βŠ—π‘Šβˆ— β†’1.

Choose a quadruple (π‘š1, 𝑛1, π‘š2, 𝑛2) of (𝑉1 βŠ—π‘‰2βŠ—π‘Š)π‘Šβˆ—-large integers. Then the mapCloc(π‘š1,𝑛1) defined in (11.3)sendsato the cohomological correspondence Cloc(π‘š1,𝑛1)(a) :𝑆(𝑉e1)loc(π‘š1,𝑛1) βˆ’β†’ 𝑆(πœŽπ‘Šfβˆ—(𝑉e2βŠ—π‘Še))loc(π‘š1,𝑛1). (11.8) The partial Frobenius morphism(11.4)gives rise to the cohomological correspon- dence (cf.[XZ17, A.2.3])

DΞ“βˆ—

πΉβˆ’1

(π‘ŠβŠ—π‘‰2)π‘Šβˆ— :𝑆(πœŽπ‘Šfβˆ—(𝑉e2βŠ—π‘Še))loc(π‘š1,𝑛1) βˆ’β†’π‘†( (𝑉e2βŠ—π‘Še)π‘Šfβˆ—)loc(π‘š2,𝑛2). (11.9) Finally,Cloc(π‘š2,𝑛2) sends idβŠ—π‘’π‘Š to the cohomological correspondence

Cloc(π‘š2,𝑛2)(idβŠ—π‘’π‘Š) :𝑆( (𝑉e2βŠ—π‘Še)π‘Šfβˆ—)loc(π‘š2,𝑛2) βˆ’β†’ 𝑆(𝑉e2)loc(π‘š2,𝑛2). (11.10)

The composition of cohomological correspondences (11.8), (11.9), and (11.10) yields a cohomological correspondence

Cπ‘Š(a) ∈Corr

Shtπ‘Š ,𝑉 loc(π‘š1, 𝑛1)

1|𝑉2

(𝑆(𝑉e1)loc(π‘š1,𝑛1), 𝑆(𝑉e2)loc(π‘š2,𝑛2)).

The construction of the mapS𝑉1,𝑉2 can be summarized in the following diagram

HomCoh𝐺ˆ(𝐺 πœŽΛ† )(𝑉e1,𝑉e2) CorrShtloc(𝑆(𝑉e1), 𝑆(𝑉e2))

Hom𝐺ˆ(𝑉1, πœŽπ‘Šβˆ— βŠ—π‘‰2βŠ—π‘Š) .

S𝑉1,𝑉2

Ξ˜π‘Š

Cπ‘Š

We prove that the cohomological correspondence constructed in the previous section is well-defined and can be composed.

Leta0 denote the image ofa under the canonical isomorphism Hom𝐺ˆ(𝑉1, πœŽπ‘Šβˆ— βŠ— 𝑉2βŠ—π‘Š) Hom𝐺ˆ(πœŽπ‘Š βŠ—π‘‰1βŠ—π‘Šβˆ—, 𝑉2).

Lemma 11.2.2. Let 𝑋 , π‘Œ , π‘Š1, π‘Š2, π‘Š0

1, π‘Š0

2 be representations of 𝐺ˆ, and 𝑓1 βŠ— 𝑓2 : π‘Š1βŠ—π‘Š2β†’π‘Š0

1βŠ—π‘Š0

2be a𝐺ˆ×𝐺ˆ-module homomorphism. Letb∈Hom𝐺ˆ(𝑋 , πœŽπ‘Š1βŠ— π‘Œ βŠ—π‘Š2)andb0 ∈Hom𝐺ˆ(π‘Œ βŠ—π‘Š0

2βŠ—π‘Š0

1, π‘Œ). We omit choosing appropriate integers (π‘šπ‘–, 𝑛𝑖)for simplicity. Then we have

C (b0β—¦ (idβŠ—π‘“2βŠ—π‘“1)) β—¦DΞ“βˆ—

πΉβˆ’1β—¦C (b) =C (b0) β—¦DΞ“βˆ—

πΉβˆ’1β—¦C ( (𝜎 𝑓1β—¦idβŠ—π‘“2) β—¦b). (11.11) In particular, the cohomological correspondenceS𝑉1,𝑉2(a)equals to the composition of the following cohomological correspondences:

C (π›ΏπœŽπ‘Š βŠ—id𝑉1): 𝑆(𝑉e1) βˆ’β†’π‘†(πœŽπ‘Šfβˆ—(πœŽπ‘Še βŠ—π‘‰e1)), DΞ“βˆ—

πΉβˆ’1

(π‘ŠβŠ—π‘‰1)π‘Šβˆ— :𝑆(πœŽπ‘Šfβˆ—(πœŽπ‘Še βŠ—π‘‰e1)) βˆ’β†’π‘†( (πœŽπ‘Še βŠ—π‘‰e1)π‘Šfβˆ—) C (a0) :𝑆( (πœŽπ‘Še βŠ—π‘‰e1)π‘Šfβˆ—) βˆ’β†’π‘†(𝑉e2).

Proof. Consider the following diagram

𝑆(𝑋e) 𝑆(ΒπœŽπ‘Š1βŠ—π‘ŒeβŠ—π‘Šf2) 𝑆(eπ‘Œ βŠ—π‘Šf2βŠ—π‘Šf1)

𝑆(ΒπœŽπ‘Š0

1βŠ—π‘ŒeβŠ—π‘Šf0

2) 𝑆(eπ‘Œ βŠ—π‘Šf0

2βŠ—π‘Šf0

1) 𝑆(eπ‘Œ)

C (b)

C ( (𝜎 𝑓2β—¦idβŠ—π‘“1)β—¦b)

DΞ“πΉβˆ’1

C (𝜎 𝑓1βŠ—idβŠ—π‘“2)

C (b0β—¦(idβŠ—π‘“2βŠ—π‘“1)) C (idβŠ—π‘“2βŠ—π‘“1)

DΞ“πΉβˆ’1

C (b0)

.

(11.12)

The bent triangles on the left and right are clearly commutative by Corollary 8.0.15.

It suffices to prove that the rectangle in the middle is commutative. But this is a direct consequence of [XZ17, Lemma 6.1.13].

Let 𝑋 = 𝑉1, π‘Œ = 1, π‘Š1 = π‘Š0

1 = π‘Šβˆ—, π‘Š2 = πœŽπ‘Š βŠ—π‘‰1, π‘Š0

2 = π‘Š βŠ— 𝑉2. Write a00 for the image ofa under the canonical isomorphism Hom(πœŽπ‘Š βŠ—π‘‰1 βŠ—π‘Šβˆ—, 𝑉2) Hom(πœŽπ‘ŠβŠ—π‘‰1, π‘ŠβŠ—π‘‰2). Takeb=π›ΏπœŽπ‘ŠβŠ—id, 𝑓1=id, and 𝑓2 =a00. Then the second assertion follows from the above commutative diagram.

Lemma 11.2.3. For any𝛼 ∈ Hom𝐺ˆ(𝑉e1,𝑉e2), the construction ofS𝑉1,𝑉2 is indepen- dent from the choice of

(1) projectiveΞ›-modulesπ‘Š ∈RepΞ›(𝐺ˆΛ),

(2) a∈Hom𝐺ˆ(𝑉1, πœŽπ‘Šβˆ—βŠ—π‘‰2βŠ—π‘Š), such thatΞ˜π‘Š(a) =𝛼, (3) (𝑉1βŠ—π‘‰2) βŠ—π‘Šπ‘Šβˆ—-acceptable integers(π‘š1, 𝑛1, π‘š2, 𝑛2).

Proof. The proof is completely similar to that of [XZ17, Lemma 6.2.5], and we briefly discuss it here.

We start by proving the independence of (3). Choose another quadruple of (𝑉1βŠ— 𝑉2) βŠ—π‘Šπ‘Šβˆ—-acceptable integers (π‘š0

1, 𝑛0

1, π‘š0

2, 𝑛0

2) β‰₯ (π‘š1, 𝑛1, π‘š2, 𝑛2). We have the following diagram of Hecke correspondences

Shtloc(π‘š

0 1,𝑛0

1)

𝑉1 Shtπœ†,loc(π‘š

0 1,𝑛0

1)

𝑉1|𝑉2 Shtloc(π‘š

0 2,𝑛0

2) 𝑉2

Sht𝑉loc(π‘š1,𝑛1)

1 Shtπ‘‰πœ†,loc(π‘š1,𝑛1)

1|𝑉2 Sht𝑉loc(π‘š2,𝑛2)

2

.

res

π‘š0 1𝑛0

1 π‘š1, 𝑛

1 res

π‘š0 1𝑛0

1 π‘š1, 𝑛

1 res

π‘š0 2𝑛0

2 π‘š2, 𝑛 2

This is the upper face of diagram (10.5). As we discussed in Β§10, all the vertical maps are smooth, the two squares are commutative, and the left square is Cartesian.

ThenCloc(π‘š

0 1,𝑛0

1)

π‘Š (a)equals the pullback of Cloc(π‘š1,𝑛1)

π‘Š (a)along the vertical maps.

Next, we prove the independence of (1) and (2) simultaneously. Consider that ˆ𝐺 acts on the filtration of O𝐺 by right regular representation. Then O𝐺 is realized as an ind-object in RepΞ›(𝐺ˆ). Let𝑋 ∈ RepΞ›(𝐺ˆ) be a projective object and we denote by𝑋 the underline𝐸-module of𝑋 equipped with the trivial ˆ𝐺-action. Consider the following ˆ𝐺-equivariant maps

a𝑋 : 𝑋 β†’ O𝐺 βŠ— 𝑋 , π‘₯ ↦→ a𝑋(π‘₯) (𝑔) :=𝑔π‘₯ ,

π‘šπ‘‹ : π‘‹βˆ— βŠ— 𝑋 β†’ O𝐺, (π‘₯βˆ—, π‘₯) ↦→ π‘šπ‘‹(π‘₯βˆ—, π‘₯) (𝑔) :=π‘₯βˆ—(𝑔π‘₯),

where we identifyO𝐺 βŠ—π‘‹as the space of𝑋-valued functions on ˆ𝐺in the definition of a𝑋 andπ‘šπ‘‹. Taking 𝑋 =π‘Š, we have the following ˆ𝐺×𝐺ˆ-module maps

πœŽπ‘Šβˆ—βŠ—π‘‰2βŠ—π‘Š

a𝜎 π‘Šβˆ—

βˆ’βˆ’βˆ’βˆ’β†’π‘Šβˆ—βŠ—πœŽO𝐺 βŠ—π‘‰2βŠ—π‘Š

π‘šπ‘Š

βˆ’βˆ’βˆ’β†’ 𝜎O𝐺 βŠ—π‘‰2βŠ— O𝐺.

The map ˆ𝐺×𝐺ˆ β†’ 𝐺 𝜎,Λ† (𝑔1, 𝑔2) ↦→ 𝜎(𝑔1)βˆ’1𝜎(𝑔2)𝜎 induces a natural map π‘‘πœŽ : 𝐸[𝐺 πœŽΛ† ] β†’ 𝜎O𝐺 βŠ— O𝐺 which intertwines the 𝜎-twisted conjugation action on 𝐸[𝐺 πœŽΛ† ]and the diagonal action of ˆ𝐺on𝜎OπΊβŠ—O𝐺. For anyπ›ΌβˆˆHom𝐺ˆ(𝑉1,OπΊβŠ—π‘‰2), denote by𝛼0the image of𝛼under the following map

Hom𝐺ˆ(𝑉1,O𝐺 βŠ—π‘‰2) βˆ’βˆ’β†’π‘‘πœŽ Hom𝐺ˆ(𝑉1, 𝜎O𝐺 βŠ—π‘‰2βŠ— O𝐺). Direct computation yields the followings

(π‘šπ‘Š β—¦aπœŽπ‘Šβˆ—) β—¦a0=π‘‘πœŽ(𝛼0):𝑉1β†’ 𝜎O𝐺 βŠ—π‘‰2βŠ— O𝐺, and

id𝑉2 βŠ—π‘’π‘Š =ev(1,1) β—¦ (π‘šπ‘Š β—¦π‘Žπ‘Šβˆ—) :𝑉2βŠ—π‘Š βŠ—π‘Šβˆ— →𝑉2,

where ev(1,1) denotes the evaluation at (1,1) ∈ 𝐺ˆ Γ— 𝐺ˆ. In Lemma 11.2.2, let π‘Š1 βŠ—π‘Š2 := π‘Š βŠ—π‘Šβˆ—, π‘Š0

1 βŠ—π‘Š0

2 := O𝐺 βŠ— O𝐺, 𝑓1βŠ— 𝑓2 := π‘šπ‘Š β—¦π‘Žπ‘Šβˆ—, b := a0, and b0:=ev(1,1). Then we have

Cπ‘Š(a) =C (id𝑉2 βŠ— π‘’π‘Š) β—¦DΞ“βˆ—

πΉβˆ’1

(𝑉

2βŠ—π‘Š)π‘Šβˆ—

β—¦ C (a0)

=C (ev(1,1)) β—¦DΞ“βˆ—

πΉβˆ’1

(𝑉

2βŠ— O𝐺)O𝐺

β—¦ C (π‘‘πœŽ(𝛼0)).

We see from the last equality in the above that Cπ‘Š(a) depends only on 𝛼 and the

lemma is thus proved.

We claim that our construction of S𝑉1,𝑉2 is compatible with the composition of morphisms. More precisely, we have the following lemma.

Lemma 11.2.4. For any representations𝑉1, 𝑉2, 𝑉3, let𝑆1, 𝑆2, 𝑆3 ∈ RepΞ›(𝐺ˆΛ) be projectiveΞ›-modules, and we have the following commutative diagram

HomCoh𝐺ˆ(𝐺 πœŽΛ† )(𝑉e1,𝑉e2) βŠ—Hom

Coh𝐺ˆ(𝐺 πœŽΛ† )(𝑉e2,𝑉e3) Hom

Coh𝐺ˆ(𝐺 πœŽΛ† )(𝑉e1,𝑉e3) Hom𝐺ˆ(𝜎 𝑆1βŠ—π‘‰1βŠ— π‘†βˆ—

2, 𝑉2) βŠ—Hom𝐺ˆ(𝜎 𝑆2βŠ—π‘‰2βŠ— π‘†βˆ—

2, 𝑉3) Hom𝐺ˆ(𝜎 𝑆2βŠ—πœŽ 𝑆1βŠ—π‘‰1βŠ— π‘†βˆ—

1βŠ—π‘†βˆ—

2, 𝑉3) CorrShtloc(𝑆(𝑉e1), 𝑆(𝑉e2)) βŠ—CorrShtloc(𝑆(𝑉e2), 𝑆(𝑉e3)) CorrShtloc(𝑆(𝑉e1), 𝑆(𝑉e3)).

πœ™

C𝑆 1βŠ—C𝑆

2

πœ™0

C𝑆 1βŠ—π‘†

2

πœ™00

(11.13)

Here

β€’ the unlabelled vertical arrows are given by the Peter-Weyl theorem

β€’ πœ™is the compositions of morphisms inCoh𝐺ˆ(𝐺 πœŽΛ† )

β€’ πœ™00 is the composition described in Β§10.2

β€’ πœ™0(a1βŠ—a2)is defined to be the homomorphism

𝜎 𝑆2βŠ—πœŽ 𝑆1βŠ—π‘‰1βŠ—π‘†βˆ—

1βŠ— π‘†βˆ—

2

id𝜎 𝑆2βŠ—a1βŠ—idπ‘†βˆ—

βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’β†’2 𝜎 𝑆2βŠ—π‘‰2βŠ— π‘†βˆ—

2 a2

βˆ’β†’π‘‰3. Proof. The lemma can be proved following the same idea in the proof of [XZ17,

Lemma 6.2.7].

We study the endomorphism ring of the unit object in P(ShtlocΒ―

π‘˜

,Ξ›). This will be used to prove the "𝑆=𝑇" theorem for Shimura sets in Β§12.3.

Let 𝛿1 denote the intersection cohomology sheaf IC0 on Shtloc(0 π‘š,𝑛). The group theoretic description of the moduli of restricted local Shtukas (cf. [XZ17, Β§5.3.2]) implies that Shtloc0 (π‘š,𝑛) is perfectly smooth. Thus𝛿1may be realized as

𝛿

π‘š,𝑛

1 := Ξ›h(π‘šβˆ’π‘›)dim𝐺i ∈ P(Shtloc(π‘š,𝑛)0 ,Ξ›) for everyπ‘š β‰₯ 𝑛. Fix a square rootπ‘ž1/2.

Corollary 11.2.5. (1) There is a natural isomorphism CorrShtloc(𝛿1, 𝛿1) ' H𝐺 ,𝐸

whereH𝐺 ,𝐸 denotes the Hecke algebra𝐢∞

𝑐 (𝐺(O)\𝐺(𝐹)/𝐺(O), 𝐸). (2) We denote the map

SO

[𝐺 πœŽΛ† /𝐺ˆ],O[𝐺 πœŽΛ† /𝐺ˆ] : End

Coh𝐺ˆ(𝐺 πœŽΛ† )(O[𝐺 πœŽΛ† /𝐺ˆ]) β†’CorrShtloc(𝛿1, 𝛿1)

bySOfor simplicity. Under the isomorphism in(1), the mapSOβŠ—id𝐸[π‘žβˆ’1/2,π‘ž1/2]

coincides with the classical Satake isomorphism.

Proof. Recall the definition of the Borel-Moore homology HBM𝑖 (𝑋) for a perfect pfp algebraic space which is defined over an algebraically closed field (cf. [XZ17, A.1.3]). Assume 𝑋1and𝑋2to be perfectly smooth algebraic spaces of pure dimen- sion. Let𝑋1← 𝐢 β†’ 𝑋2be a correspondence. Then

Corr𝐢 (𝑋1, 𝐸h𝑑1i),(𝑋2, 𝐸h𝑑2i)

(11.14)

=Hom𝐷𝑐

𝑏(𝐢 ,𝐸) 𝐸h𝑑1i, πœ”πΆh𝑑2βˆ’2 dim𝑋2

=HBM2 dim𝑋

2+𝑑1βˆ’π‘‘2(𝐢).

Then if 2 dim𝐢 = 2 dim𝑋2+ 𝑑1 βˆ’π‘‘2, the cohomological correspondences from (𝑋1, 𝐸h𝑑1i)to(𝑋2, 𝐸h𝑑2i)can be identified as the set of irreducible components of 𝐢of maximal dimension.

For a perfect pfp algebraic space 𝑋 of dimension 𝑑, define 𝐼 to be the set of top- dimensional irreducible components of 𝑋. Then HBM𝑑 (𝐼) is the free 𝐸-module generated by the 𝑑-dimensional irreducible components of 𝑋, and thus can be identified with the space 𝐢(𝐼 , 𝐸) of 𝐸-valued functions on 𝐼. The map 𝑓 ↦→

Í

πΆπ‘–βˆˆπΌ 𝑓(𝐢𝑖) [𝐢𝑖] establishes a bijection

𝐢(𝐼 , 𝐸) =HBM𝑑 (𝑋). (11.15) With the above preparations, we get an isomorphism

H𝐺 ,𝐸 'CorrShtloc(𝛿1, 𝛿1), (11.16) via a similar argument as for [XZ17, Proposition 5.4.4], and we finish the proof of (1).

To prove part (2), we first note that the statement holds for 𝐸 = Qβ„“ by [XZ17, Theorem 6.0.1(2)]. We sketch the proof here. Let πœ‡ be a central minuscule dominant coweight, and 𝜈 be a dominant coweight such that 𝜎(𝜈) = 𝜈. Choose (π‘š1, 𝑛1, π‘š2, 𝑛2) to be(𝜈+πœ‡, 𝜈)-acceptable. Takea∈ Hom𝐺ˆ(π‘‰πœˆ βŠ—π‘‰πœ‡ βŠ—π‘‰πœˆβˆ—, π‘‰πœ‡)to be the map induced by the evaluation mape𝜈 :π‘‰πœˆβŠ—π‘‰πœˆβˆ— β†’1. Consider the following diagram

pt 𝐺 π‘Ÿβ‰€πœˆβˆ— Ξ” 𝐺 π‘Ÿβ‰€πœˆβˆ— ×𝐺 π‘Ÿβ‰€πœˆβˆ— πœŽΓ—id 𝐺 π‘Ÿπœ‡βˆ—Γ—πΊ π‘Ÿβ‰€πœ‡βˆ— Ξ” 𝐺 π‘Ÿβ‰€πœˆβˆ— pt. Recall the cohomological correspondences𝛿Icπœˆβˆ—and𝑒Icπœˆβˆ—defined in [XZ17, Β§A.2.3.4].

Then Cloc(π‘š1,𝑛1)

π‘‰πœˆ

(a) = 𝛿ICπœˆβˆ— β—¦Ξ“πœŽΓ—idβˆ— ◦𝑒Icπœˆβˆ— ∈ HBM0 (𝐺 π‘Ÿπœˆβˆ—(π‘˜)), and the cohomologi- cal correspondenceCloc(π‘š1,𝑛1)

π‘‰πœˆ

(a) can be identified with the function 𝑓 on𝐺 π‘Ÿπœˆβˆ—(π‘˜)

whose value at π‘₯ ∈𝐺 π‘Ÿπœˆβˆ—(π‘˜) is given by tr(πœ™π‘₯ | Sat(π‘‰πœˆβˆ—)π‘₯Β―). Then up to a choice of π‘ž1/2, the map 𝑆O,O βŠ—Qβ„“ idQβ„“[π‘ž1/2,π‘žβˆ’1/2] coincides with the classical Satake isomor- phism.

Now we come back to the case 𝐸 = Zβ„“. Write 𝑄 for Qβ„“[π‘ž1/2, π‘žβˆ’1/2]. The above argument shows that

SO βŠ—π‘„ : End

Coh𝐺ˆ(𝐺 𝜎)Λ† (O[𝐺 𝜎/Λ† 𝐺]Λ† ) βŠ—Z

β„“

𝑄→ CorrShtloc(𝛿1, 𝛿1) βŠ—Z

β„“

𝑄

coincide with the classical Satake isomorphism. Note that EndCoh𝐺ˆ(𝐺 𝜎)Λ† (O[𝐺 𝜎/Λ† Λ†

𝐺]) βŠ—Zβ„“ 𝑄 'Zβ„“[𝐺ˆ]𝐺ˆ βŠ—Zβ„“ 𝑄 ,

where ˆ𝐺 acts on ˆ𝐺 by the𝜎-twisted conjugation. Considering the Satake transfer of the image ofZβ„“-basis of Zβ„“[𝐺ˆ](𝐺ˆ) inZβ„“[𝐺ˆ](𝐺ˆ) βŠ—Zℓ𝑄, we conclude the proof of

(2).

C h a p t e r 12

COHOMOLOGICAL CORRESPONDENCES BETWEEN SHIMURA VARIETIES

In this section, we adapt the machinery developed in previous sections and apply it to the study of the cohomological correspondences between different Hodge type Shimura varieties following the idea of [XZ17].

12.1 Preliminaries

Let (𝐺 , 𝑋) be a Shimura datum and 𝐸 be its reflex field (cf. [Mil05]). Let 𝐾 βŠ‚ 𝐺(A𝑓) be a (sufficiently small) open compact subgroup and denote by Sh𝐾(𝐺 , 𝑋) the corresponding Shimura variety defined over𝐸. Fix a prime 𝑝 >2 such that𝐾𝑝 is a hyperspecial subgroup of𝐺(Q𝑝). We write 𝐺 for the reductive group which extends 𝐺 to Z(𝑝) and such that𝐺(Z𝑝) = 𝐾𝑝. Choose 𝜈 to be a place of 𝐸 lying over 𝑝. We write O𝐸 ,(𝜈) for the localization of O𝐸 at 𝜈. Results of Kisin [Kis10]

and Vasiu [Vas07] state that for any Hodge type Shimura datum (𝐺 , 𝑋), there is a smooth integral canonical modelS𝐾(𝐺 , 𝑋) of Sh𝐾(𝐺 , 𝑋), which is defined over O𝐸 ,(𝜈). Let π‘˜πœˆ denote the residue field ofO𝐸 ,𝜈 and fix an algebraic closure Β―π‘˜πœˆ of π‘˜πœˆ. We denote by Shπœ‡,𝐾 :=(S𝐾(𝐺 , 𝑋) βŠ—π‘˜πœˆ)pfthe perfection of the special fiber of S𝐾(𝐺 , 𝑋). The perfection of mod 𝑝fibre of Shimura varieties and moduli of local Shtukas are related by a map loc𝑝 : Shπœ‡,𝐾 β†’ Shtlocπœ‡ . The construction of loc𝑝is via a𝐺-torsor over the crystalline cite (S𝐾 , π‘˜πœˆ/O𝐸 ,𝜈)CRISand we refer to [XZ17, Β§7.2.1]

for a detailed discussion. In the Siegel case, it may be understood as the perfection of the morphism sending an abelian variety to its underlying 𝑝-divisible group. We need the following result of Xiao-Zhu [XZ17, Proposition 7.2.4] for our proof of the main theorem.

Proposition 12.1.1. Let(π‘š, 𝑛) be a pair ofπœ‡-large integers. The morphism loc𝑝(π‘š, 𝑛) :=resπ‘š,𝑛◦loc𝑝 : Shπœ‡ β†’Shtloc(πœ‡ π‘š,𝑛)

is perfectly smooth.

Γ‰tale Local Systems onShπœ‡,𝐾

Let β„“ β‰  𝑝 be a prime number. Assume that 𝜌 : 𝐺 β†’ 𝐺 𝐿

Qβ„“(π‘Š) is a Qβ„“- representation of 𝐺. If 𝐾 βŠ‚ 𝐺(A𝑓) is sufficiently small, we associate an Γ©tale

local system Lβ„“,π‘Š on Shπœ‡,𝐾 to π‘Š following the idea of [LZ17, Β§4] and [Mil90,

Β§III.6] as follows.

Write𝐾 =𝐾ℓ𝐾ℓ with𝐾ℓ βŠ‚ 𝐺(Qβ„“)and𝐾ℓ βŠ‚ 𝐺(Aℓ𝑓). The representation𝜌restricts to a representation

𝜌𝐾

β„“ : 𝐾(Qβ„“) →𝐺(Qβ„“) →𝐺 𝐿(π‘Š

Qβ„“). Note that𝐾(Qβ„“)is compact, and there exists a latticeΞ›π‘Š ,β„“ βŠ‚ π‘Š

Qβ„“ fixed by𝐾(Qβ„“). Now we vary the levels atβ„“. Define

𝐾(

𝑛)

β„“ :=πΎβ„“βˆ©πœŒβˆ’1

𝐾(Qβ„“)({𝑔 ∈𝐺 𝐿(Ξ›π‘Š ,β„“) | 𝑔≑ 1 mod ℓ𝑛}).

Then we get a system of open neighborhoods of 1 ∈ 𝐺(Qβ„“). For each 𝑛, the construction of𝐾(𝑛)

β„“ gives rise to a representation πœŒπ‘›

𝐾ℓ :𝐾ℓ/𝐾(𝑛)

β„“ →𝐺 𝐿(Ξ›π‘Š ,β„“/β„“π‘›Ξ›π‘Š ,β„“). The natural projection map Sh

πœ‡,𝐾(

𝑛)

β„“ 𝐾ℓ β†’ Shπœ‡,𝐾ℓ𝐾ℓ is a finite Γ©tale cover with the group of deck transformations being 𝐾ℓ/𝐾(

𝑛)

β„“ . Then the trivial Γ©taleZ/ℓ𝑛Z-local system Shπœ‡,𝐾(𝑛)

β„“

𝐾ℓ Γ—Ξ›π‘Š ,β„“/β„“π‘›Ξ›π‘Š ,β„“ on Shπœ‡,𝐾(𝑛)

β„“

𝐾ℓ gives rise to the Γ©taleZ/ℓ𝑛Z-local system

Lπ‘Š ,β„“,𝑛 :=Shπœ‡,𝐾(𝑛)

β„“

𝐾ℓ ×𝐾ℓ/𝐾ℓ(𝑛) Ξ›π‘Š ,β„“/β„“π‘›Ξ›π‘Š ,β„“. Let

Lπ‘Š ,Zβ„“ :=lim

β†βˆ’βˆ’

𝑛

Lπ‘Š ,β„“,𝑛. (12.1)

This is an Γ©taleZβ„“-local system on Shπœ‡,𝐾. It can be checked thatLπ‘Š ,Qβ„“ :=Lπ‘Š ,Zβ„“βŠ—Q is an Γ©taleQβ„“-local system on Shπœ‡,𝐾 which is independent of the choice ofΞ›β„“. 12.2 Main Theorem

Let(𝐺1, 𝑋1) and(𝐺2, 𝑋2)be two Hodge type Shimura data (cf. [Mil05]) equipped with an isomorphism πœƒ : 𝐺1,

A𝑓 ' 𝐺2,

A𝑓. Let {πœ‡π‘–} denote the conjugacy class of Hodge cocharacters determined by 𝑋𝑖 and consider them as dominant characters of ˆ𝑇. In particular, πœ‡1 and πœ‡2 are both minuscule. Then [XZ17, Corollary 2.1.5]

implies that there is a canonical inner twistΞ¨R:𝐺1β†’ 𝐺2overC. Recall notations in Β§1.3. We defineπœ‡π‘–,ad to be the composition ofπœ‡π‘–with the quotient𝐺 β†’ 𝐺adand consider it as a character of ˆ𝑇sc. We assume that

πœ‡1,ad |

𝑍(𝐺ˆ

Ξ“Q

sc )= πœ‡2,ad |

𝑍(𝐺ˆ

Ξ“Q sc ) .

It follows from [XZ17, Corollary 2.1.6] thatΨRcomes from a unique global inner twistΨ : 𝐺

1 Β―Q β†’ 𝐺

2 Β―Q such thatΞ¨ = Int(β„Ž) β—¦πœƒ, for some πœƒ : 𝐺1,

A𝑓 ' 𝐺2,

A𝑓 and β„ŽβˆˆπΊ2,ad(A¯𝑓).

We assume that𝐾𝑖 βŠ‚ 𝐺(A𝑓) to be sufficiently small such thatπœƒ 𝐾1=𝐾2. Choose a prime 𝑝such that𝐾1, 𝑝 (and therefore 𝐾2, 𝑝) is hyperspecial. Let𝐺𝑖 be the integral model of𝐺𝑖,

Q𝑝overZ𝑝determined by𝐾𝑖, 𝑝. Then𝐺1 '𝐺2, and we can thus identify their Langlands dual groups (𝐺 ,Λ† 𝐡,Λ† 𝑇ˆ). Choose an isomorphism πœ„ : C ' Q¯𝑝. Let 𝜈 | 𝑝 be a place of the compositum of reflex fields of (𝐺𝑖, 𝑋𝑖) determined by our choice of isomorphismπœ„. We write Shπœ‡π‘–for the mod 𝑝fibre of the canonical integral model of Sh𝐾𝑖(𝐺𝑖, 𝑋𝑖) base change toπ‘˜πœˆ. We make the following assumption

πœ‡1 |

𝑍(𝐺ˆ

Ξ“Q𝑝)= πœ‡2 |

𝑍(𝐺ˆ

Ξ“Q𝑝) . (12.2)

The assumption guarantees the existence of the ind-scheme Shπœ‡1|πœ‡2 which fits into the following commutative diagram

Shπœ‡1,𝐾1 Shπœ‡1|πœ‡2 Shπœ‡2,𝐾2

Shtlocπœ‡1 Shtlocπœ‡

1|πœ‡2 Shtlocπœ‡2

β†βˆ’ β„Žπœ‡

1

loc𝑝

βˆ’

β†’ β„Žπœ‡

2

loc𝑝

β†βˆ’ β„Žloc

πœ‡1

βˆ’

β†’ β„Žloc

πœ‡2

, (12.3)

and makes both squares to be Cartesian.

Remark 12.2.1. In the case that(𝐺1, 𝑋1)= (𝐺2, 𝑋2),Shπœ‡1|πœ‡2is the perfection of the mod p fibre of a natural integral model of some Hecke correspondence. If(𝐺1, 𝑋1) β‰  (𝐺2, 𝑋2), thenShπœ‡1|πœ‡2can be regarded as β€œexotic Hecke correspondences” between mod p fibres of different Shimura varieties. We refer to [XZ17, Β§7.3.3, Β§7.3.4] for a detailed discussion.

Let (𝐺𝑖, 𝑋𝑖) 𝑖 = 1,2,3 be three Hodge type Shimura data, together with the iso- morphismsπœƒπ‘–, 𝑗 :𝐺𝑖,

A𝑓 '𝐺𝑗 ,

A𝑓 satisfying the natural cocycle condition. Choose a common level 𝐾 using the isomorphismπœƒπ‘–, 𝑗. Let 𝑝 be an unramified prime, such that the assumption(12.2)holds for each pair of( (𝐺𝑖, 𝑋𝑖),(𝐺𝑗, 𝑋𝑗)). Choose a half Tate twistQβ„“(1/2).

Let 𝑉𝑖 := π‘‰πœ‡

𝑖 be the highest weight representation of ˆ𝐺

Qβ„“ of highest weight πœ‡π‘–. Write 𝑉e𝑖 ∈ Coh𝐺ˆQβ„“(𝐺ˆ

Qβ„“πœŽ) for the vector bundle associated to 𝑉𝑖 analogous to

Β§11.4. Recall fromΒ§12.1 that, to each representationπ‘Š of𝐺

Qβ„“, we can attach the Γ©tale local systemLπ‘Š ,Qβ„“ on Shπœ‡π‘–. Let𝑑𝑖 =h2𝜌, πœ‡π‘–i=dim Sh𝐾(𝐺𝑖, 𝑋𝑖). Denote the global section of the structure sheaf on the quotient stack [𝐺 πœŽΛ† /𝐺ˆ] by J, and the prime-to-𝑝 Hecke algebra byH𝑝.

Theorem 12.2.2. There exists a map Spc : Hom

Coh𝐺ˆQβ„“(𝐺ˆ

Qβ„“πœŽ)(𝑉e1,𝑉e2) β†’HomHπ‘βŠ—J(Hβˆ—π‘(Shπœ‡1,Lπ‘Š ,Qβ„“h𝑑1i),Hβˆ—π‘(Shπœ‡2,Lπ‘Š ,Qβ„“h𝑑2i), (12.4)

which is compatible with compositions on the source and target.

Proof. Choose a latticeΛ𝑖 ∈RepZ

β„“(𝐺ˆ

Zβ„“)in𝑉𝑖. We denote byΞ›e𝑖 ∈Coh𝐺ˆZβ„“(𝐺ˆ

Zβ„“πœŽ) the coherent sheaf which corresponds toΛ𝑖 as in Β§11.1. Then

HomCoh𝐺ˆQβ„“(𝐺ˆ

Qβ„“πœŽ)(𝑉e1,𝑉e2) 'Hom𝐺ˆ

Qβ„“

(𝑉1, 𝑉2βŠ—Qβ„“[𝐺ˆ]) (12.5) 'Hom𝐺ˆ

Qβ„“

(Ξ›1βŠ—Z

β„“Qβ„“,(Ξ›2βŠ—Z

β„“ Zβ„“[𝐺ˆ]) βŠ—Z

β„“Qβ„“) 'Hom𝐺ˆ

Zβ„“

(Ξ›1,Ξ›2βŠ—Zβ„“ Zβ„“[𝐺ˆ]) βŠ—Zβ„“ Qβ„“ 'Hom

Coh𝐺ˆZβ„“(𝐺ˆ

Zβ„“πœŽ)(fΞ›1,Ξ›f2) βŠ—Zβ„“Qβ„“. By Theorem 11.2.1, we get a map

SΞ›1,Ξ›2 : Hom

Coh𝐺ˆZβ„“(𝐺ˆ

Zβ„“πœŽ)(Ξ›f1,Ξ›f2) β†’CorrShtloc(𝑆(Ξ›f1), 𝑆(Ξ›f2)). (12.6) Combining(12.5)with(12.6), we get the following map

HomCoh𝐺ˆQβ„“(𝐺ˆ

Qβ„“πœŽ)(𝑉e1,𝑉e2) β†’CorrShtloc(𝑆(Ξ›f1), 𝑆(Ξ›f2)) βŠ—Zβ„“ Qβ„“. (12.7) Choose a dominant coweight𝜈and a quadruple (π‘š1, 𝑛1, π‘š2, 𝑛2)that is (πœ‡1+𝜈, 𝜈)- acceptable and(πœ‡2+𝜈, 𝜈)-acceptable. We have the following diagram

Shπœ‡1 Shπœˆπœ‡

1|πœ‡2 Shπœ‡2

Shtlocπœ‡1 Sht𝜈,loc

πœ‡1|πœ‡2 Shtlocπœ‡2

Shtloc(πœ‡1 π‘š1,𝑛1) Sht𝜈,πœ‡loc(π‘š1,𝑛1)

1|πœ‡2 Shtloc(πœ‡2 π‘š2,𝑛2)

β†βˆ’ β„Žπœ‡

1

loc𝑝 locπœˆπ‘

βˆ’

β†’ β„Žπœ‡

2

loc𝑝

β†βˆ’ β„Žloc

πœ‡1

resπ‘š1, 𝑛1

βˆ’

β†’ β„Žloc

πœ‡2

resπœˆπ‘š1, 𝑛1 resπ‘š2, 𝑛2

β†βˆ’ β„Žloc(π‘š1

, 𝑛1) πœ‡1

βˆ’

β†’ β„Žloc(π‘š2

, 𝑛2) πœ‡2

, (12.8)

where

β€’ all squares are commutative (discussions on diagram (10.5) and diagram (12.3),

β€’ except for the square at the down right corner, and the other three squares are Cartesian (discussions on diagram(12.3)and diagram (12.5),

β€’ the morphismβ†βˆ’ β„Žπœ‡

1 is perfectly proper ([XZ17, Lemma 5.2.12]),

β€’ the morphisms loc𝑝(π‘šπ‘–, 𝑛𝑖) are perfectly smooth (Proposition 12.1.1).

Then the morphism locπœˆπ‘(π‘š1, 𝑛1) := resπœˆπ‘š1,𝑛1 β—¦locπœˆπ‘ is also perfectly proper. Thus we can pullback the cohomological correspondences (cf. [XZ17, A.2.11)]) on the right hand side of (12.6) along locπœˆπ‘(π‘š1, 𝑛1)to obtain a map

locπœˆπ‘(π‘š1, 𝑛1)β˜…: CorrShtloc(𝑆(Ξ›f1), 𝑆(Ξ›f2)) β†’ CorrSh𝜈

πœ‡|πœ‡(loc𝑝(π‘š1, 𝑛1)β˜…π‘†(fΞ›1),loc𝑝(π‘š2, 𝑛2)β˜…(𝑆(Ξ›f2)). Note that πœ‡π‘– are minuscule, then theβ˜…-pullback of𝑆(Ξ›e𝑖)along loc𝑝(π‘šπ‘–, 𝑛𝑖)equals

Zβ„“h𝑑𝑖i. Next, we construct a natural map β„­π‘Š : CorrSh𝜈

πœ‡1|πœ‡ 2

(Shπœ‡1,Zβ„“h𝑑1i),(Shπœ‡2,Zβ„“h𝑑2i)

β†’CorrSh𝜈

πœ‡1|πœ‡ 2

(Shπœ‡1,Lπ‘Š ,Zβ„“h𝑑1i),(Shπœ‡2,Lπ‘Š ,Zβ„“h𝑑2i) . (12.9)

For each𝑛 ∈Z+, we note that there exists an ind-scheme Sh(𝑛)

πœ‡1|πœ‡2 which fits into the following commutative diagram such that both squares are Cartesian

Shπœ‡1,𝐾(𝑛)

β„“ 𝐾ℓ Sh𝜈,(𝑛)

πœ‡1|πœ‡2 Sh

πœ‡2,𝐾(𝑛)

β„“ 𝐾ℓ

Shπœ‡1 Shπœˆπœ‡

1|πœ‡2 Shπœ‡2.

β†βˆ’ β„Žπœ‡(𝑛)

1

𝑝𝑛

1

βˆ’

β†’ β„Ž(𝑛)πœ‡

2

𝑝𝑛 𝑝𝑛

2

β†βˆ’ β„Žπœ‡

1

βˆ’

β†’ β„Žπœ‡

2

Here the three vertical maps are the natural quotients by the finite group𝐾ℓ/𝐾𝑛

β„“ and are thus Γ©tale.

Let (𝑓𝑛)𝑛 : (β†βˆ’ β„Žπœ‡

1)βˆ—(Z/ℓ𝑛Zh𝑑1i)𝑛 β†’ (β†’βˆ’ β„Žπœ‡

2)!(Z/ℓ𝑛Zh𝑑2i)𝑛 be a cohomological cor- respondence in CorrSh𝜈

πœ‡1|πœ‡2

(Shπœ‡1,Zβ„“h𝑑1i),(Shπœ‡2,Zβ„“h𝑑2i)

. For each 𝑛 ∈ Z+, the shifted pullback (cf. [XZ17, A.2.12]) of 𝑓𝑛gives rise to a cohomological correspon- dence

˜ 𝑓𝑛: (β†βˆ’

β„Ž(

𝑛)

πœ‡1 )βˆ—(Z/ℓ𝑛Zh𝑑1i) β†’ (β†’βˆ’ β„Ž(

𝑛)

πœ‡2)!(Z/ℓ𝑛Zh𝑑2i)

Dokumen terkait