• Tidak ada hasil yang ditemukan

Perverse Sheaves on the Moduli of Local Hecke Stacks

Chapter IX: Local Hecke Stacks

9.2 Perverse Sheaves on the Moduli of Local Hecke Stacks

Letπ‘š1 ≀ π‘š2be twoπœ‡β€’-large integers. The natural (twisted) pullback functor Resπ‘šπ‘š21 :=(resπ‘šπ‘š21)β˜…:=(resπ‘šπ‘š21)βˆ—[𝑑] (𝑑/2) : P(Hkloc(πœ‡β€’ π‘š1)) β†’P(Hkloc(πœ‡β€’ π‘š2)) is an equivalence of categories. We define the category of perverse sheaves on the local Hecke stack as

P(HklocΒ―

π‘˜

,Ξ›) := Ê

πœ‰βˆˆπœ‹1(𝐺)

P(Hklocπœ‰ ,Ξ›),P(Hklocπœ‰ ,Ξ›) := lim

βˆ’βˆ’β†’

(πœ‡,π‘š)βˆˆπœ‰Γ—Zβ‰₯0

P(Hkloc(πœ‡ π‘š),Ξ›). Here the connecting morphism in the definition of P(Hkloc,Ξ›) is the fully faithful embedding

P(Hkloc(πœ‡1 π‘š1),Ξ›) P(Hklocπœ‡1π‘š1,Ξ›) P(Hkloc(πœ‡2 π‘š2),Ξ›).

Resπ‘šπ‘š2

1 π‘–πœ‡

1, πœ‡ 2βˆ—

Finally, via descent, there is a natural equivalence of categories P(Hkloc(πœ‡ π‘š), 𝐸) PπΏπ‘šπΊ(𝐺 π‘Ÿβ‰€πœ‡, 𝐸), which induces an equivalence P(HklocΒ―

π‘˜

, 𝐸) P𝐿+πΊβŠ—π‘˜Β―(𝐺 π‘ŸπΊβŠ—π‘˜ , 𝐸¯ ).

C h a p t e r 10

MODULI OF LOCAL SHTUKAS

In this chapter, we define different versions of moduli of local Shtukas and correspon- dences between them. Using these results, we define the category of𝐸-coefficient perverse sheaves on the moduli of local Shtukas and their cohomological correspon- dences. In the rest of this thesis, we will make use of the theory of cohomological correspondences between perfect schemes and perfect pfp algebraic spaces. We refer to [XZ17, Appendix A] for reference.

Definition 10.0.1. Letπœ‡β€’=(πœ‡1, πœ‡2,Β· Β· Β· , πœ‡π‘›)be a sequence of dominant coweights.

Themoduli of local ShtukasShtlocπœ‡β€’ classifies for each perfectπ‘˜-algebra𝑅sequences of modifications of𝐺-torsors

E𝑛 Eπ‘›βˆ’1 Β· Β· Β· E0 𝜎E𝑛

over𝐷𝑅 of relative positions≀ πœ‡π‘›,Β· Β· Β· ,≀ πœ‡1respectively.

It follows from the definition that

Shtlocπœ‡β€’ Hklocπœ‡β€’ ×𝑑←×𝑑→,B𝐿+𝐺×B𝐿+𝐺 ,idΓ—πœŽB𝐿+𝐺 .

There is a natural forgetful map πœ“loc : Shtlocπœ‡β€’ β†’ Hklocπœ‡β€’ which forgets the isomor- phismsE0 𝜎E𝑛. One can define the stack

Sht0,loc

πœ‡β€’|πœˆβ€’

which classifies for each perfectπ‘˜-algebra𝑅the following rectangle of modifications E𝑛 Β· Β· Β· E0 𝜎E𝑛

Eπ‘š0 Β· Β· Β· E0

0 𝜎E0π‘š,

of𝐺-torsors over𝐷𝑅 with modifications in the upper (resp. lower) row bounded by πœ‡β€’(resp. πœˆβ€’). We get theSatake correspondencefor moduli of local Shtukas

Shtlocπœ‡β€’ Sht0πœ‡,loc

β€’|πœˆβ€’ Shtlocπœˆβ€’

π‘ β†πœ‡

β€’ π‘ β†’πœ‡

β€’

.

We introduce the partial Frobenius morphism between the moduli of local Shtukas which will play an important role in later constructions.

Definition 10.0.2. Letπœ‡β€’= (πœ‡1, πœ‡2,Β· Β· Β· , πœ‡π‘›)be a sequence of dominant coweights of𝐺. We define thepartial Frobenius morphismto be

πΉπœ‡

β€’ : Shtlocπœ‡1,Β·Β·Β·, πœ‡π‘› Shtloc𝜎(πœ‡

𝑛), πœ‡1,Β·Β·Β·, πœ‡π‘›βˆ’1 (10.1) (E𝑛 Β· Β· Β· E0 𝜎E𝑛) (Eπ‘›βˆ’1 Β· Β· Β· 𝜎E𝑛

𝜎Eπ‘›βˆ’1). Definition 10.0.3. Let πœ‡β€’ and πœˆβ€’ be two sequences of dominant coweights. For each perfect π‘˜-algebra𝑅, the prestack Shtlocπœ‡

β€’|πœˆβ€’ classifies the following commutative diagram of modifications of𝐺-torsors over 𝐷𝑅

E𝑛 Β· Β· Β· E0 𝜎E𝑛

Eπ‘š0 Β· Β· Β· E0

0 𝜎E0π‘š,

𝛽 π›½πœŽ

where the top (resp. bottom) row defines an𝑅-point of Shtlocπœ‡β€’ (resp. Shtlocπœˆβ€’ ). Letβ†βˆ’ β„Žloc

πœ‡β€’

(reps.β†’βˆ’ β„Žloc

πœˆβ€’) denote the morphism which maps the above commutative rectangle to its upper (resp. lower) row. We define theHecke correspondenceof local Shtukas to be to following diagram

Shtlocπœ‡β€’ Shtlocπœ‡

β€’|πœˆβ€’ Shtlocπœˆβ€’ .

β†βˆ’ β„Žloc

πœ‡β€’

βˆ’

β†’ β„Žloc𝜈

β€’ (10.2)

If in addition, the relative position of 𝛽 is bounded by πœ†, we get a closed sub- prestack Shtπœ†,loc

πœ‡β€’|πœˆβ€’. In particular, ifπœ†=0, the Hecke correspondence(4.2)reduces to the Satake correspondence.

The Hecke correspondence can be considered as the composition of two Satake cor- respondences and the cohomological correspondence given by the partial Frobenius morphism. More precisely, we recall [XZ17, Lemma 5.2.14].

Lemma 10.0.4. Let πœ‡β€’andπœˆβ€’be two sequences of dominant coweights. Chooseπœ† to be a dominant coweight such thatπœ† β‰₯ |πœ‡β€’| +𝜎(πœ†) orπœ† β‰₯ |πœ‡β€’| +𝜈, then we have

the following commutative diagram of prestacks Shtπœƒ ,loc

πœ‡β€’|πœˆβ€’

Sht0,loc

πœ‡β€’| (𝜎(πœƒβˆ—),πœ†) Sht0(πœ†,πœƒ,locβˆ—) |πœˆβ€’

Shtlocπœ‡β€’ Sht𝜎(πœƒβˆ—),πœ† Shtlocπœ†,πœƒβˆ— Shtlocπœˆβ€’.

π‘ β†πœ‡

β€’

𝑠→

𝜎(πœƒβˆ—),πœ†

𝑠→

πœˆβ€’

π‘ β†πœ†, πœƒβˆ—

πΉπœ†, πœƒβˆ—βˆ’1

In addition, the pentagon in the middle is a Cartesian square when composing 𝑠→

𝜎(πœƒβˆ—),πœ† withπΉβˆ’1

πœ†,πœƒβˆ—.

10.1 Moduli of Restricted Local Shtukas

Let πœ‡β€’ = 0 or more generally, a central cocharacter, Shtlocπœ‡β€’ ' B𝐺(O) which is not perfectly of finite presentation as a prestack. Thus to apply theβ„“-adic formalism, it is desirable to study the following approximation of Shtlocπœ‡β€’.

Definition 10.1.1. Letπœ‡β€’be a sequence of dominant coweights and (π‘š, 𝑛)a pair of πœ‡β€’-large integers. We define the moduli stack Shtloc(πœ‡β€’ π‘š,𝑛) of (π‘š, 𝑛)-restricted local iterated shtukasas the stack that classifies for every perfectπ‘˜-algebra 𝑅,

(1) an𝑅-point of Hkloc(πœ‡β€’ π‘š), (2) an isomorphism

Ξ¨: 𝜎(E← |𝐷𝑛, 𝑅) ' (Eβ†’ |π·π‘š, 𝑅) |𝐷𝑛, 𝑅

of𝐿𝑛𝐺-torsos over Spec𝑅, whereE← andEβ†’are defined in(9.5)and(9.6), respectively.

The above definition gives a canonical isomorphism

Shtlocπœ‡β€’(π‘š,𝑛) Hklocπœ‡β€’(π‘š) ×𝑑←×resπ‘šπ‘›β—¦π‘‘β†’,B𝐿𝑛𝐺×B𝐿𝑛𝐺 ,idΓ—πœŽB𝐿𝑛𝐺 .

The natural forgetful morphism πœ“loc(π‘š,𝑛) : Shtloc(πœ‡β€’ π‘š,𝑛) β†’ Hkloc(πœ‡β€’ π‘š) is a perfectly smooth morphism of relative dimension 𝑛dim𝐺. For two sequences of dominant coweightsπœ‡β€’,πœˆβ€’, we define Shtloc(πœ‡ π‘š,𝑛)

β€’|πœˆβ€’ to be the stack which classifies for each perfect π‘˜-algebra 𝑅, an𝑅-point of Hkloc(π‘š,𝑛)πœ‡

β€’|πœˆβ€’ together with an isomorphism𝜎(E← |𝐷𝑛, 𝑅) '

(E |π·π‘š, 𝑅) |𝐷𝑛, 𝑅. Let (π‘š1, 𝑛1) and (π‘š2, 𝑛2) be two pairs of πœ‡β€’-large integers such thatπ‘š1 ≀ π‘š2and𝑛1 ≀ 𝑛2. We define the restriction morphism

resπ‘šπ‘š21,𝑛.𝑛21 : Shtlocπœ‡β€’(π‘š2,𝑛2) β†’Shtlocπœ‡β€’(π‘š1,𝑛1) (10.3) as the composition of the following morphisms

resπ‘šπ‘š21,𝑛.𝑛21 :Shtloc(πœ‡β€’ π‘š2,𝑛2) Hkloc(πœ‡β€’ π‘š2) Γ—

𝑑←×resπ‘šπ‘›2

2◦𝑑→,B𝐿𝑛2𝐺×B𝐿𝑛2𝐺 ,idΓ—πœŽB𝐿𝑛2𝐺

resπ‘šπ‘š21Γ—res𝑛𝑛21

βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’β†’Hkloc(π‘šπœ‡β€’ 1) ×𝑑

←×resπ‘šπ‘›1

1◦𝑑→,B𝐿𝑛1𝐺×B𝐿𝑛1𝐺 ,idΓ—πœŽB𝐿𝑛1𝐺 Shtloc(πœ‡β€’ π‘š1,𝑛1).

For (π‘š2, 𝑛2) = (∞,∞), we write resπ‘šπ‘š21,𝑛.𝑛21 as resπ‘š1,𝑛1 for simplicity. For three pairs ofπœ‡β€’-large integers(π‘šπ‘–, 𝑛𝑖)such thatπ‘š1 ≀ π‘š2 ≀ π‘š3and𝑛1 ≀ 𝑛2 ≀ 𝑛3, we have

resπ‘šπ‘š21,𝑛,𝑛21β—¦resπ‘šπ‘š32,𝑛,𝑛32 =resπ‘šπ‘š31,𝑛,𝑛31. (10.4) The Satake correspondences for restricted local Hecke stacks and the Satake corre- spondences for restricted local Shtukas are related by the restriction morphisms and summarized in the following diagram

Shtloc(πœ‡β€’ π‘š2,𝑛2) Sht0πœ‡,loc(π‘š2,𝑛2)

β€’|πœˆβ€’ Shtloc(πœˆβ€’ π‘š2,𝑛2)

Shtloc(πœ‡β€’ π‘š1,𝑛1) Sht0πœ‡,loc(π‘š1,𝑛1)

β€’|πœˆβ€’ Shtloc(πœˆβ€’ π‘š1,𝑛1)

Hklocπœ‡β€’(π‘š2) Hk0,loc(π‘š2)

πœ‡β€’|πœˆβ€’ Hklocπœˆβ€’ (π‘š2)

Hkloc(π‘šπœ‡β€’ 1) Hk0,loc(π‘š1)

πœ‡β€’|πœˆβ€’ Hkloc(π‘šπœˆβ€’ 1)

πœ“loc(π‘š2, 𝑛 2)

resπ‘šπ‘š2, 𝑛2 1, 𝑛

1 resπ‘šπ‘š21, 𝑛, 𝑛21

πœ“loc(π‘š2, 𝑛 2)

resπ‘šπ‘š2, 𝑛2 1, 𝑛

1

πœ™loc(π‘š2, 𝑛 2)

πœ“loc(π‘š1, 𝑛 1)

πœ“loc(π‘š1, 𝑛

1) πœ“loc(π‘š1, 𝑛

1)

(10.5) where

(1) all rectangles are commutative,

(2) all rectangles are Cartesian except for the two on the left and right side of the cuboid.

Letπœ‡β€’ =(πœ‡1,Β· Β· Β· , πœ‡π‘›)be a sequence of dominant cocharacters. We call a quadruple of non-negative integers(π‘š1, 𝑛1, π‘š2, 𝑛2) πœ‡β€’-acceptableif

(1) π‘š1βˆ’π‘š2=𝑛1βˆ’π‘›2areπœ‡π‘›-large (or equivalently𝜎(πœ‡π‘›)-large), (2) π‘š2βˆ’π‘›1is πœ‡β€’-large.

We can define the partial Frobenius morphism πΉβˆ’1

πœ‡β€’ : Shtloc𝜎((π‘š1,𝑛1)

πœ‡π‘›), πœ‡1,Β·Β·Β·, πœ‡π‘›βˆ’1 β†’Shtlocπœ‡1,(π‘šΒ·Β·Β·, πœ‡2,𝑛22) (10.6) for restricted local Shtukas. The construction of πΉβˆ’1

πœ‡β€’ is technical and we refer to [XZ17, Construction 5.3.12] for detailed discussion.

10.2 Perverse Sheaves on the Moduli of Local Shtukas

Letπœ‡β€’be a sequence of dominant coweights and (π‘š1, 𝑛1), (π‘š2, 𝑛2)be two pairs of πœ‡β€’-large integers such thatπ‘š1 ≀ π‘š2,𝑛1 ≀ 𝑛2, andπ‘š2 β‰ βˆž. Define the functor

Resπ‘šπ‘š21,𝑛,𝑛21 :=(resπ‘šπ‘š21,𝑛.𝑛21)β˜…: P(Shtloc(π‘šπœ‡β€’ 2,𝑛2),Ξ›) β†’P(Shtloc(π‘šπœ‡ 1,𝑛1)

β€’,Ξ› ). (10.7) Then(10.4)yields

Resπ‘šπ‘š21,𝑛,𝑛21β—¦Resπ‘šπ‘š32,𝑛,𝑛33 =Resπ‘šπ‘š31,𝑛,𝑛31. (10.8) Like Resπ‘šπ‘›, the functor Resπ‘šπ‘šπ‘–π‘—,𝑛,𝑛𝑖𝑗 is also an equivalence of categories ifπ‘šπ‘— >1.

We define the category of perverse sheaves on the moduli of local Shtukas as P(ShtlocΒ―

π‘˜

,Ξ›):= Ê

πœ‰βˆˆπœ‹1(𝐺)

P(Shtlocπœ‰ ,Ξ›), P(Shtlocπœ‰ ,Ξ›) := lim

βˆ’βˆ’β†’

(π‘š,𝑛, πœ‡)

P(Shtlocπœ‡ (π‘š,𝑛),Ξ›) (10.9) where the limit is taken over the triples{(π‘š, 𝑛, πœ‡) ∈Z2Γ—πœ‰ | (π‘š, 𝑛) isπœ‡large}with the product partial order. As in [XZ17], we call objects in P(Shtlocπœ‰ ,Ξ›) connected objects. The connecting morphism is given by the composite of fully faithful functor

P(Shtloc(πœ‡1 π‘š1,𝑛1),Ξ›) P(Shtloc(πœ‡1 π‘š2,𝑛2),Ξ›) P(Shtloc(π‘š2,𝑛2)

πœ‡0

1

,Ξ›).

Resπ‘šπ‘š2, 𝑛2 1, 𝑛

1

π‘–πœ‡ 1, πœ‡0

1

For each dominant coweight πœ‡and a pair of πœ‡-large integers(π‘š, 𝑛), we define the natural pullback functor

Ξ¨loc(π‘š,𝑛) :=Resπ‘š,π‘›π‘š,0 : P(Hkloc(π‘š)πœ‡ ,Ξ›) β†’P(Shtloc(π‘š,𝑛)πœ‡ ,Ξ›). (10.10) We observe that Ξ¨loc(π‘š,𝑛) commutes with the connecting morphism in (10.9) by (10.8) and the proper smooth base change. Then we can take the limit and direct sum ofΞ¨loc(π‘š,𝑛) and derive the following well-defined functor

Ξ¨loc : P(HklocΒ―

π‘˜

,Ξ›) β†’P(ShtlocΒ―

π‘˜

,Ξ›). (10.11)

LetF𝑖 ∈ P(Shtlocπœ‰

𝑖

, 𝐸)be connected objects. It is realized asF𝑖, πœ‡(π‘šπ‘–,𝑛𝑖)

𝑖

∈P(Shtloc(π‘šπœ‡π‘– 𝑖,𝑛𝑖)

, 𝐸) for some πœ‡π‘– and some pair of πœ‡π‘–-large integers (π‘šπ‘–, 𝑛𝑖). We define the set of coho- mological correspondences betweenF1andF2as

CorrShtloc(F1,F2)

:= Ê

πœ‰βˆˆπœ‹1(𝐺)

limβˆ’βˆ’β†’Corr

Shtπœ†,πœ‡loc(π‘š1, 𝑛1)

1|πœ‡2

(Shtlocπœ‡1(π‘š1,𝑛1),F(π‘š1,𝑛1)

1, πœ‡1 ),(Shtlocπœ‡2(π‘š2,𝑛2),F(π‘š2,𝑛2)

2, πœ‡2 ) ,

where the limit is taken over all partially ordered sextuples(πœ‡1, πœ‡2, πœ†, π‘š1, 𝑛1, π‘š2, 𝑛2) such that

β€’ (π‘š1, 𝑛1, π‘š2, 𝑛2)is (πœ‡1+πœ†, πœ†)and(πœ‡2+πœ†, πœ†)-acceptable,

β€’ πœ‡π‘– βˆˆπœ‰π‘–, for someπœ‰π‘– βˆˆπœ‹1(𝐺),

β€’ πœ†βˆˆπœ‰.

Let (πœ‡1, πœ‡2, πœ†, π‘š1, 𝑛1, π‘š2, 𝑛2) ≀ (πœ‡0

1, πœ‡0

2, πœ†0, π‘š0

1, 𝑛0

1, π‘š0

2, 𝑛0

2) be another such sextu- ple. The connecting morphism between the cohomological correspondences

CorrShtπœ†,πœ‡loc(π‘š1, 𝑛1)

1|πœ‡2

(Shtloc(π‘šπœ‡1 1,𝑛1),F1, πœ‡1),(Shtloc(π‘šπœ‡2 2,𝑛2),F2, πœ‡2)

(10.12) and

CorrSht

πœ†0,loc(π‘š0 1, 𝑛0

1) πœ‡0

1|πœ‡0 2

(Shtloc(π‘š

0 1,𝑛0

1) πœ‡0

1

,F1, πœ‡0

1),(Shtloc(π‘š

0 2,𝑛0

2) πœ‡0

2

,F2, πœ‡0

2)

(10.13)

is given by first pulling back(4.13)to the Hecke correspondence Shtloc(π‘š

0 1,𝑛0

1)

πœ‡1 Shtπœ†,loc(π‘š

0 1,𝑛0

1)

πœ‡1|πœ‡2 Shtloc(π‘š

0 2,𝑛0

2)

πœ‡2 ,

along the restriction morphism, then pushing it forward to the Hecke correspondence Shtloc(π‘š

0 1,𝑛0

1) πœ‡0

1

Shtπœ†

0,loc(π‘š01,𝑛0

1) πœ‡0

1|πœ‡0

2

Shtloc(π‘š

0 2,𝑛0

2) πœ‡0

2

.

The connecting morphism is well-defined and can be composed. We refer to [XZ17,

Β§5.4.1] for more discussions.

C h a p t e r 11

KEY THEOREM FOR CONSTRUCTING THE JACQUET-LANGLANDS TRANSFER

In this chapter, we state and prove the key theorem for our construction of the Jacquet-Langlands transfer. We will make use of the theory of the cohomological correspondences throughout this chapter. Instead of explaining all the details, we refer to [XZ17, Appendix A.2] for a nice discussion.

11.1 Preliminaries

Fix a half Tate twist Ξ›(1/2). Recall notations h𝑑i and π‘“β˜… introduced in Β§1.3.

Throughout this section, we consider the Langlands dual group scheme ˆ𝐺Λ overΞ› of𝐺 and itsΞ›-representations. The subscriptsΞ›will be omitted for simplicity. We generalize a few notions introduced in previous sections for the sake of stating the key theorem.

More on Local Hecke Stacks

Let 𝑉‒ := 𝑉1𝑉2 Β· Β· ·𝑉𝑠 ∈ Rep(𝐺ˆ𝑠) and assume that for each 𝑖, 𝑉𝑖 has the Jordan-Holder factorsΒ₯ {π‘‰πœ‡

𝑖 𝑗}𝑗.

The integral geometric Satake equivalence (Theorem 8.0.14) Sat𝐺𝑠 sends𝑉‒ to an (𝐿+𝐺 βŠ— π‘˜Β―)𝑠-equivariant perverse sheaf Sat𝐺𝑠(𝑉‒) on (𝐺 π‘ŸπΊ βŠ— π‘˜Β―)𝑠. We write 𝐺 π‘Ÿπ‘‰

β€’

for the support of the external tensor product Sat(𝑉1)˜Sat(𝑉2)˜ Β· Β· ·˜Sat(𝑉𝑠). Let π‘š be a non-negative integer. We call it𝑉𝑖-large if π‘š is πœ‡π‘– 𝑗-large for each 𝑗, and we call it 𝑉‒-large if π‘š = π‘š1 +π‘š2 + Β· Β· Β· +π‘šπ‘  such that π‘šπ‘– is 𝑉𝑖-large for each 𝑖. For a 𝑉‒-large integer π‘š, Sat𝐺𝑛(𝑉‒) descends to a perverse sheaf supported on Hk𝑉loc(π‘š)

β€’ := [πΏπ‘šπΊ\𝐺 π‘Ÿπ‘‰

β€’]. We write 𝑆(𝑉)loc(π‘š) for the twist of this perverse sheaf by hπ‘šdim𝐺i. Note that 𝑆(𝑉‒)loc(π‘š) is isomorphic to the "β˜…"-pullback of 𝑆(𝑉1)loc(π‘š1)𝑆(𝑉2)loc(π‘š2)Β· Β· ·𝑆(𝑉𝑠)loc(π‘šπ‘ ) along the perfectly smooth morphism Hk𝑉loc(π‘š)

β€’ β†’ Î

𝑖Hkloc(𝑉 π‘šπ‘–)

𝑖 constructed in(9.9). In the case𝑠=1, we have

𝐺 π‘Ÿπ‘‰

1 =βˆͺ𝑗𝐺 π‘Ÿπœ‡

1𝑗, Hkloc𝑉 (π‘š)

1 =βˆͺ𝑗Hklocπœ‡1π‘—π‘š. In general, Hkloc(π‘š)𝑉

β€’ is of the formβˆͺπœ‡β€’Hkloc(π‘š)πœ‡β€’ . Via descent, Corollary 8.0.15 gives

the following natural isomorphism:

Hom𝐺ˆ(𝑉‒, π‘Šβ€’) Corr

Hk0𝑉,loc(π‘š)

β€’ |π‘Šβ€’

(Hk𝑉loc(π‘š)

β€’

,Satloc𝐺 (π‘š)(𝑉‒)),(Hklocπ‘Š (π‘š)

β€’

,Satloc𝐺 (π‘š)(π‘Šβ€’)) . (11.1) Here and below, we regard 𝑉‒ and π‘Šβ€’ as representations of ˆ𝐺 via the diagonal embedding ˆ𝐺 ↩→ 𝐺ˆ𝑠.

Let𝑉‒ andπ‘Šβ€’ be two representations of ˆ𝐺𝑠. We can similarly define 𝐺 π‘Ÿ0

𝑉‒|π‘Šβ€’ :=

𝐺 π‘Ÿπ‘‰

‒×𝐺 π‘ŸπΊ 𝐺 π‘Ÿπ‘Š

β€’ and Hk𝑉0,loc(π‘š)

β€’|π‘Šβ€’ = [πΏπ‘šπΊ\𝐺 π‘Ÿ0

𝑉‒|π‘Šβ€’]. More on Moduli of Local Shtukas

Letπ‘‰β€’βˆˆRep(𝐺ˆ𝑠). For a pair of non-negative integers(π‘š, 𝑛), we can generalize the notion of πœ‡β€’-largeand define the notion of𝑉‒-large. Let(π‘š, 𝑛)be a pair of𝑉‒and π‘Šβ€’-large integers, we can define the moduli of restricted local Shtukas Shtloc𝑉 (π‘š,𝑛)

β€’

and Shtloc(π‘š,𝑛)

𝑉‒|π‘Šβ€’ . Similar to Hk𝑉loc

β€’, the stacks Sht𝑉loc(π‘š,𝑛)

β€’ and Shtloc(π‘š,𝑛)

𝑉‒|π‘Šβ€’ can be regarded as unions of Shtloc(πœ‡β€’ π‘š,𝑛) and unions of Shtloc(π‘š,𝑛)

πœ‡β€’|πœˆβ€’ . We have the natural forgetful map πœ“loc(π‘š,𝑛) : Sht𝑉loc(π‘š,𝑛)

β€’ β†’Hk𝑉loc(π‘š)

β€’

. (11.2)

Choose a pair of𝑉‒-large integers(π‘š, 𝑛) such that𝑛 > 0. Write 𝑆(𝑉eβ€’)loc(π‘š,𝑛) := Ξ¨loc(π‘š,𝑛)(Sat(𝑉‒)loc(π‘š)) ∈P(Shtloc(π‘š,𝑛),Ξ›)

for the pullback of Sat(𝑉)loc(π‘š) along the morphism πœ“loc(π‘š,𝑛) (up to a shift and twist). For𝑠 =1,𝑆(e𝑉)loc(π‘š,𝑛) represents the perverse sheaf𝑆(e𝑉) := Ξ¨(Sat𝐺(𝑉)) ∈ P(ShtlocΒ―

π‘˜

,Ξ›).

Consider the front face of the diagram(10.5). The second and third vertical maps are perfectly smooth. Pulling back the cohomological correspondence on the right hand side of(11.1)to the upper edge and pre-composing it with(11.1), we get the map

Cloc(π‘š,𝑛) : Hom𝐺ˆ(𝑉‒, π‘Šβ€’) β†’ Corr

Sht0𝑉,loc(π‘š, 𝑛)

β€’ |π‘Šβ€’

(𝑆(𝑉eβ€’)loc(π‘š,𝑛), 𝑆(π‘Šfβ€’)loc(π‘š,𝑛)). (11.3) The mapCloc(π‘š,𝑛) is compatible with the compositions at the source and target, and we refer to [XZ17, Lemma 6.1.8] for the proof.

Let𝑉‒ ∈ Rep(𝐺ˆ𝑠) andπ‘Š ∈Rep(𝐺ˆ). We call a quadruple of non-negative integers (π‘š1, 𝑛2, π‘š1, 𝑛1)π‘‰β€’π‘Š-acceptableif

β€’ π‘š1βˆ’π‘š2=𝑛1βˆ’π‘›2isπ‘Š-large,

β€’ (π‘š2, 𝑛1)is𝑉‒-large.

For a quadruple of π‘‰β€’π‘Š-acceptable integers (π‘š1, 𝑛2, π‘š1, 𝑛1), we can construct the partial Frobenius morphism

πΉβˆ’1

π‘‰β€’π‘Š : Shtloc(πœŽπ‘Šπ‘šπ‘‰1,𝑛1)

β€’ β†’ Sht𝑉loc(π‘š2,𝑛2)

β€’π‘Š (11.4)

similar to (10.1). Here,πœŽπ‘Š is the Frobenius twist ofπ‘Š as in Remark 8.0.14.

Let𝑉1, 𝑉2 ∈Rep(𝐺ˆ). For any projective objectπ‘Š ∈Rep(𝐺ˆ), choose a quadruple of ( (𝑉1βŠ—π‘‰2βŠ—π‘Š)π‘Šβˆ—)-acceptable integers(π‘š1, 𝑛1, π‘š2, 𝑛2). We define the following stack

Shtπ‘Š ,𝑉 loc(π‘š1,𝑛1)

1|𝑉2 :=Shtloc(𝑉 π‘š1,𝑛1)

1|πœŽπ‘Šβˆ—(πœŽπ‘ŠβŠ—π‘‰1) Γ—

Shtloc(( π‘š2, 𝑛2)

𝜎 π‘ŠβŠ—π‘‰1)π‘Šβˆ— Shtloc((πœŽπ‘Šπ‘šβŠ—1𝑉.𝑛1)

1)π‘Šβˆ—|𝑉2

. (11.5) The CategoryCoh𝐺ˆ(𝐺 πœŽΛ† )

Recall from Remark 8.0.14 that the Langlands dual group ˆ𝐺 is naturally equipped with an action of the arithmetic Frobenius 𝜎. Consider the𝜎-twisted conjugation action of ˆ𝐺 on ˆ𝐺. We denote by Coh𝐺ˆ(𝐺 πœŽΛ† )the abelian category of ˆ𝐺-equivariant coherent sheaves on the (non-neutral) component ˆ𝐺 𝜎 βŠ‚ 𝐺ˆ o 𝜎. Equivalently, Coh𝐺ˆ(𝐺 πœŽΛ† ) can be regarded as the abelian category of coherent sheaves on the quotient stack [𝐺 πœŽΛ† /𝐺ˆ]where ˆ𝐺acts on ˆ𝐺 𝜎by the usual conjugation action.

Let𝑉 ∈Rep(𝐺ˆ) be an algebraic representation of ˆ𝐺. There is an associated vector bundle on ˆ𝐺 𝜎with global section OΛ†

𝐺 βŠ—π‘‰. Consider the following action of ˆ𝐺 on O𝐺ˆ βŠ—π‘‰. For any 𝑔 ∈ 𝐺ˆ and (𝑓 , 𝑣) ∈ O𝐺ˆ βŠ—π‘‰, 𝑔· (𝑓 , 𝑣) := (𝑔 𝑓 πœŽβˆ’1(𝑔), 𝑔𝑣). The associated vector bundle thus gives an object𝑉e∈Coh𝐺ˆ(𝐺 πœŽΛ† ).

11.2 Key Theorem

The following theorem is an analogue of [XZ17, Theorem 6.0.1].

Theorem 11.2.1. Let𝑉1, 𝑉2 ∈ Rep(𝐺ˆ) be two projective Ξ›-modules. Then there exists the following map

S𝑉1,𝑉2 : Hom

Coh𝐺ˆ(𝐺 πœŽΛ† )(𝑉e1,𝑉e2) βˆ’β†’CorrShtloc(𝑆(𝑉e1), 𝑆(𝑉e2)), (11.6) which is compatible with the natural composition maps in the source and target.

We prove this theorem in the rest of this section.

We give an explicit construction of S𝑉1,𝑉2. Consider the following canonical iso- morphisms

HomCoh𝐺ˆ(𝐺 𝜎)Λ† (𝑉e1,𝑉e2) (11.7) HomO𝐺 πœŽΛ† (O𝐺 πœŽΛ† βŠ—π‘‰1,O𝐺 πœŽΛ† βŠ—π‘‰2)𝐺ˆ

Hom(𝑉1,O𝐺 πœŽΛ† βŠ—π‘‰2)𝐺ˆ (π‘‰βˆ—

1 βŠ— OΛ†

𝐺 𝜎 βŠ—π‘‰2)𝐺ˆ.

Let π‘Š ∈ RepΞ›(𝐺ˆΛ) be a projective Ξ›-module with Ξ›-basis {𝑒𝑖}𝑖 and dual basis {π‘’βˆ—

𝑖}𝑖. We construct the map Ξ˜π‘Š : Hom𝐺ˆ

Ξ›(𝑉1, πœŽπ‘Šβˆ—βŠ—π‘‰2βŠ—π‘Š) Hom𝐺ˆ(𝑉1,Hom(πœŽπ‘ŠβŠ—π‘Šβˆ—, 𝑉2)) β†’Hom

Coh𝐺ˆ(𝐺 πœŽΛ† )(𝑉e1,𝑉e2), by sendinga ∈Hom𝐺ˆ

Ξ›(𝑉1, πœŽπ‘Šβˆ— βŠ—π‘‰2βŠ—π‘Š)to theπ‘‰βˆ—

1 βŠ—π‘‰2-valued functionΞ˜π‘Š(a) on ˆ𝐺 𝜎defined by

(Ξ˜π‘Š(a) (𝑔)) (𝑣1) :=Γ•

𝑖

(a(𝑣1)) (𝑔 π‘’βˆ—

𝑖 βŠ—π‘’π‘–). It suffices to construct the map

Cπ‘Š : Hom𝐺ˆ(𝑉1, πœŽπ‘Šβˆ— βŠ—π‘Š βŠ—π‘‰2) β†’CorrShtloc(𝑆(𝑉e1), 𝑆(𝑉e2)).

for every π‘Š ∈ RepΞ›(𝐺ˆΛ). Let a ∈ Hom𝐺ˆ(𝑉1, πœŽπ‘Šβˆ— βŠ— π‘Š βŠ— 𝑉2). We have the following coevaluation and evaluation maps:

π›ΏπœŽπ‘Š :1β†’πœŽπ‘Šβˆ—βŠ— πœŽπ‘Š , π‘’π‘Š :π‘Š βŠ—π‘Šβˆ— β†’1.

Choose a quadruple (π‘š1, 𝑛1, π‘š2, 𝑛2) of (𝑉1 βŠ—π‘‰2βŠ—π‘Š)π‘Šβˆ—-large integers. Then the mapCloc(π‘š1,𝑛1) defined in (11.3)sendsato the cohomological correspondence Cloc(π‘š1,𝑛1)(a) :𝑆(𝑉e1)loc(π‘š1,𝑛1) βˆ’β†’ 𝑆(πœŽπ‘Šfβˆ—(𝑉e2βŠ—π‘Še))loc(π‘š1,𝑛1). (11.8) The partial Frobenius morphism(11.4)gives rise to the cohomological correspon- dence (cf.[XZ17, A.2.3])

DΞ“βˆ—

πΉβˆ’1

(π‘ŠβŠ—π‘‰2)π‘Šβˆ— :𝑆(πœŽπ‘Šfβˆ—(𝑉e2βŠ—π‘Še))loc(π‘š1,𝑛1) βˆ’β†’π‘†( (𝑉e2βŠ—π‘Še)π‘Šfβˆ—)loc(π‘š2,𝑛2). (11.9) Finally,Cloc(π‘š2,𝑛2) sends idβŠ—π‘’π‘Š to the cohomological correspondence

Cloc(π‘š2,𝑛2)(idβŠ—π‘’π‘Š) :𝑆( (𝑉e2βŠ—π‘Še)π‘Šfβˆ—)loc(π‘š2,𝑛2) βˆ’β†’ 𝑆(𝑉e2)loc(π‘š2,𝑛2). (11.10)

The composition of cohomological correspondences (11.8), (11.9), and (11.10) yields a cohomological correspondence

Cπ‘Š(a) ∈Corr

Shtπ‘Š ,𝑉 loc(π‘š1, 𝑛1)

1|𝑉2

(𝑆(𝑉e1)loc(π‘š1,𝑛1), 𝑆(𝑉e2)loc(π‘š2,𝑛2)).

The construction of the mapS𝑉1,𝑉2 can be summarized in the following diagram

HomCoh𝐺ˆ(𝐺 πœŽΛ† )(𝑉e1,𝑉e2) CorrShtloc(𝑆(𝑉e1), 𝑆(𝑉e2))

Hom𝐺ˆ(𝑉1, πœŽπ‘Šβˆ— βŠ—π‘‰2βŠ—π‘Š) .

S𝑉1,𝑉2

Ξ˜π‘Š

Cπ‘Š

We prove that the cohomological correspondence constructed in the previous section is well-defined and can be composed.

Leta0 denote the image ofa under the canonical isomorphism Hom𝐺ˆ(𝑉1, πœŽπ‘Šβˆ— βŠ— 𝑉2βŠ—π‘Š) Hom𝐺ˆ(πœŽπ‘Š βŠ—π‘‰1βŠ—π‘Šβˆ—, 𝑉2).

Lemma 11.2.2. Let 𝑋 , π‘Œ , π‘Š1, π‘Š2, π‘Š0

1, π‘Š0

2 be representations of 𝐺ˆ, and 𝑓1 βŠ— 𝑓2 : π‘Š1βŠ—π‘Š2β†’π‘Š0

1βŠ—π‘Š0

2be a𝐺ˆ×𝐺ˆ-module homomorphism. Letb∈Hom𝐺ˆ(𝑋 , πœŽπ‘Š1βŠ— π‘Œ βŠ—π‘Š2)andb0 ∈Hom𝐺ˆ(π‘Œ βŠ—π‘Š0

2βŠ—π‘Š0

1, π‘Œ). We omit choosing appropriate integers (π‘šπ‘–, 𝑛𝑖)for simplicity. Then we have

C (b0β—¦ (idβŠ—π‘“2βŠ—π‘“1)) β—¦DΞ“βˆ—

πΉβˆ’1β—¦C (b) =C (b0) β—¦DΞ“βˆ—

πΉβˆ’1β—¦C ( (𝜎 𝑓1β—¦idβŠ—π‘“2) β—¦b). (11.11) In particular, the cohomological correspondenceS𝑉1,𝑉2(a)equals to the composition of the following cohomological correspondences:

C (π›ΏπœŽπ‘Š βŠ—id𝑉1): 𝑆(𝑉e1) βˆ’β†’π‘†(πœŽπ‘Šfβˆ—(πœŽπ‘Še βŠ—π‘‰e1)), DΞ“βˆ—

πΉβˆ’1

(π‘ŠβŠ—π‘‰1)π‘Šβˆ— :𝑆(πœŽπ‘Šfβˆ—(πœŽπ‘Še βŠ—π‘‰e1)) βˆ’β†’π‘†( (πœŽπ‘Še βŠ—π‘‰e1)π‘Šfβˆ—) C (a0) :𝑆( (πœŽπ‘Še βŠ—π‘‰e1)π‘Šfβˆ—) βˆ’β†’π‘†(𝑉e2).

Proof. Consider the following diagram

𝑆(𝑋e) 𝑆(ΒπœŽπ‘Š1βŠ—π‘ŒeβŠ—π‘Šf2) 𝑆(eπ‘Œ βŠ—π‘Šf2βŠ—π‘Šf1)

𝑆(ΒπœŽπ‘Š0

1βŠ—π‘ŒeβŠ—π‘Šf0

2) 𝑆(eπ‘Œ βŠ—π‘Šf0

2βŠ—π‘Šf0

1) 𝑆(eπ‘Œ)

C (b)

C ( (𝜎 𝑓2β—¦idβŠ—π‘“1)β—¦b)

DΞ“πΉβˆ’1

C (𝜎 𝑓1βŠ—idβŠ—π‘“2)

C (b0β—¦(idβŠ—π‘“2βŠ—π‘“1)) C (idβŠ—π‘“2βŠ—π‘“1)

DΞ“πΉβˆ’1

C (b0)

.

(11.12)

The bent triangles on the left and right are clearly commutative by Corollary 8.0.15.

It suffices to prove that the rectangle in the middle is commutative. But this is a direct consequence of [XZ17, Lemma 6.1.13].

Let 𝑋 = 𝑉1, π‘Œ = 1, π‘Š1 = π‘Š0

1 = π‘Šβˆ—, π‘Š2 = πœŽπ‘Š βŠ—π‘‰1, π‘Š0

2 = π‘Š βŠ— 𝑉2. Write a00 for the image ofa under the canonical isomorphism Hom(πœŽπ‘Š βŠ—π‘‰1 βŠ—π‘Šβˆ—, 𝑉2) Hom(πœŽπ‘ŠβŠ—π‘‰1, π‘ŠβŠ—π‘‰2). Takeb=π›ΏπœŽπ‘ŠβŠ—id, 𝑓1=id, and 𝑓2 =a00. Then the second assertion follows from the above commutative diagram.

Lemma 11.2.3. For any𝛼 ∈ Hom𝐺ˆ(𝑉e1,𝑉e2), the construction ofS𝑉1,𝑉2 is indepen- dent from the choice of

(1) projectiveΞ›-modulesπ‘Š ∈RepΞ›(𝐺ˆΛ),

(2) a∈Hom𝐺ˆ(𝑉1, πœŽπ‘Šβˆ—βŠ—π‘‰2βŠ—π‘Š), such thatΞ˜π‘Š(a) =𝛼, (3) (𝑉1βŠ—π‘‰2) βŠ—π‘Šπ‘Šβˆ—-acceptable integers(π‘š1, 𝑛1, π‘š2, 𝑛2).

Proof. The proof is completely similar to that of [XZ17, Lemma 6.2.5], and we briefly discuss it here.

We start by proving the independence of (3). Choose another quadruple of (𝑉1βŠ— 𝑉2) βŠ—π‘Šπ‘Šβˆ—-acceptable integers (π‘š0

1, 𝑛0

1, π‘š0

2, 𝑛0

2) β‰₯ (π‘š1, 𝑛1, π‘š2, 𝑛2). We have the following diagram of Hecke correspondences

Shtloc(π‘š

0 1,𝑛0

1)

𝑉1 Shtπœ†,loc(π‘š

0 1,𝑛0

1)

𝑉1|𝑉2 Shtloc(π‘š

0 2,𝑛0

2) 𝑉2

Sht𝑉loc(π‘š1,𝑛1)

1 Shtπ‘‰πœ†,loc(π‘š1,𝑛1)

1|𝑉2 Sht𝑉loc(π‘š2,𝑛2)

2

.

res

π‘š0 1𝑛0

1 π‘š1, 𝑛

1 res

π‘š0 1𝑛0

1 π‘š1, 𝑛

1 res

π‘š0 2𝑛0

2 π‘š2, 𝑛 2

This is the upper face of diagram (10.5). As we discussed in Β§10, all the vertical maps are smooth, the two squares are commutative, and the left square is Cartesian.

ThenCloc(π‘š

0 1,𝑛0

1)

π‘Š (a)equals the pullback of Cloc(π‘š1,𝑛1)

π‘Š (a)along the vertical maps.

Next, we prove the independence of (1) and (2) simultaneously. Consider that ˆ𝐺 acts on the filtration of O𝐺 by right regular representation. Then O𝐺 is realized as an ind-object in RepΞ›(𝐺ˆ). Let𝑋 ∈ RepΞ›(𝐺ˆ) be a projective object and we denote by𝑋 the underline𝐸-module of𝑋 equipped with the trivial ˆ𝐺-action. Consider the following ˆ𝐺-equivariant maps

a𝑋 : 𝑋 β†’ O𝐺 βŠ— 𝑋 , π‘₯ ↦→ a𝑋(π‘₯) (𝑔) :=𝑔π‘₯ ,

π‘šπ‘‹ : π‘‹βˆ— βŠ— 𝑋 β†’ O𝐺, (π‘₯βˆ—, π‘₯) ↦→ π‘šπ‘‹(π‘₯βˆ—, π‘₯) (𝑔) :=π‘₯βˆ—(𝑔π‘₯),

where we identifyO𝐺 βŠ—π‘‹as the space of𝑋-valued functions on ˆ𝐺in the definition of a𝑋 andπ‘šπ‘‹. Taking 𝑋 =π‘Š, we have the following ˆ𝐺×𝐺ˆ-module maps

πœŽπ‘Šβˆ—βŠ—π‘‰2βŠ—π‘Š

a𝜎 π‘Šβˆ—

βˆ’βˆ’βˆ’βˆ’β†’π‘Šβˆ—βŠ—πœŽO𝐺 βŠ—π‘‰2βŠ—π‘Š

π‘šπ‘Š

βˆ’βˆ’βˆ’β†’ 𝜎O𝐺 βŠ—π‘‰2βŠ— O𝐺.

The map ˆ𝐺×𝐺ˆ β†’ 𝐺 𝜎,Λ† (𝑔1, 𝑔2) ↦→ 𝜎(𝑔1)βˆ’1𝜎(𝑔2)𝜎 induces a natural map π‘‘πœŽ : 𝐸[𝐺 πœŽΛ† ] β†’ 𝜎O𝐺 βŠ— O𝐺 which intertwines the 𝜎-twisted conjugation action on 𝐸[𝐺 πœŽΛ† ]and the diagonal action of ˆ𝐺on𝜎OπΊβŠ—O𝐺. For anyπ›ΌβˆˆHom𝐺ˆ(𝑉1,OπΊβŠ—π‘‰2), denote by𝛼0the image of𝛼under the following map

Hom𝐺ˆ(𝑉1,O𝐺 βŠ—π‘‰2) βˆ’βˆ’β†’π‘‘πœŽ Hom𝐺ˆ(𝑉1, 𝜎O𝐺 βŠ—π‘‰2βŠ— O𝐺). Direct computation yields the followings

(π‘šπ‘Š β—¦aπœŽπ‘Šβˆ—) β—¦a0=π‘‘πœŽ(𝛼0):𝑉1β†’ 𝜎O𝐺 βŠ—π‘‰2βŠ— O𝐺, and

id𝑉2 βŠ—π‘’π‘Š =ev(1,1) β—¦ (π‘šπ‘Š β—¦π‘Žπ‘Šβˆ—) :𝑉2βŠ—π‘Š βŠ—π‘Šβˆ— →𝑉2,

where ev(1,1) denotes the evaluation at (1,1) ∈ 𝐺ˆ Γ— 𝐺ˆ. In Lemma 11.2.2, let π‘Š1 βŠ—π‘Š2 := π‘Š βŠ—π‘Šβˆ—, π‘Š0

1 βŠ—π‘Š0

2 := O𝐺 βŠ— O𝐺, 𝑓1βŠ— 𝑓2 := π‘šπ‘Š β—¦π‘Žπ‘Šβˆ—, b := a0, and b0:=ev(1,1). Then we have

Cπ‘Š(a) =C (id𝑉2 βŠ— π‘’π‘Š) β—¦DΞ“βˆ—

πΉβˆ’1

(𝑉

2βŠ—π‘Š)π‘Šβˆ—

β—¦ C (a0)

=C (ev(1,1)) β—¦DΞ“βˆ—

πΉβˆ’1

(𝑉

2βŠ— O𝐺)O𝐺

β—¦ C (π‘‘πœŽ(𝛼0)).

We see from the last equality in the above that Cπ‘Š(a) depends only on 𝛼 and the

lemma is thus proved.

We claim that our construction of S𝑉1,𝑉2 is compatible with the composition of morphisms. More precisely, we have the following lemma.

Lemma 11.2.4. For any representations𝑉1, 𝑉2, 𝑉3, let𝑆1, 𝑆2, 𝑆3 ∈ RepΞ›(𝐺ˆΛ) be projectiveΞ›-modules, and we have the following commutative diagram

HomCoh𝐺ˆ(𝐺 πœŽΛ† )(𝑉e1,𝑉e2) βŠ—Hom

Coh𝐺ˆ(𝐺 πœŽΛ† )(𝑉e2,𝑉e3) Hom

Coh𝐺ˆ(𝐺 πœŽΛ† )(𝑉e1,𝑉e3) Hom𝐺ˆ(𝜎 𝑆1βŠ—π‘‰1βŠ— π‘†βˆ—

2, 𝑉2) βŠ—Hom𝐺ˆ(𝜎 𝑆2βŠ—π‘‰2βŠ— π‘†βˆ—

2, 𝑉3) Hom𝐺ˆ(𝜎 𝑆2βŠ—πœŽ 𝑆1βŠ—π‘‰1βŠ— π‘†βˆ—

1βŠ—π‘†βˆ—

2, 𝑉3) CorrShtloc(𝑆(𝑉e1), 𝑆(𝑉e2)) βŠ—CorrShtloc(𝑆(𝑉e2), 𝑆(𝑉e3)) CorrShtloc(𝑆(𝑉e1), 𝑆(𝑉e3)).

πœ™

C𝑆 1βŠ—C𝑆

2

πœ™0

C𝑆 1βŠ—π‘†

2

πœ™00

(11.13)

Here

β€’ the unlabelled vertical arrows are given by the Peter-Weyl theorem

β€’ πœ™is the compositions of morphisms inCoh𝐺ˆ(𝐺 πœŽΛ† )

β€’ πœ™00 is the composition described in Β§10.2

β€’ πœ™0(a1βŠ—a2)is defined to be the homomorphism

𝜎 𝑆2βŠ—πœŽ 𝑆1βŠ—π‘‰1βŠ—π‘†βˆ—

1βŠ— π‘†βˆ—

2

id𝜎 𝑆2βŠ—a1βŠ—idπ‘†βˆ—

βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’β†’2 𝜎 𝑆2βŠ—π‘‰2βŠ— π‘†βˆ—

2 a2

βˆ’β†’π‘‰3. Proof. The lemma can be proved following the same idea in the proof of [XZ17,

Lemma 6.2.7].

We study the endomorphism ring of the unit object in P(ShtlocΒ―

π‘˜

,Ξ›). This will be used to prove the "𝑆=𝑇" theorem for Shimura sets in Β§12.3.

Let 𝛿1 denote the intersection cohomology sheaf IC0 on Shtloc(0 π‘š,𝑛). The group theoretic description of the moduli of restricted local Shtukas (cf. [XZ17, Β§5.3.2]) implies that Shtloc0 (π‘š,𝑛) is perfectly smooth. Thus𝛿1may be realized as

𝛿

π‘š,𝑛

1 := Ξ›h(π‘šβˆ’π‘›)dim𝐺i ∈ P(Shtloc(π‘š,𝑛)0 ,Ξ›) for everyπ‘š β‰₯ 𝑛. Fix a square rootπ‘ž1/2.

Corollary 11.2.5. (1) There is a natural isomorphism CorrShtloc(𝛿1, 𝛿1) ' H𝐺 ,𝐸

whereH𝐺 ,𝐸 denotes the Hecke algebra𝐢∞

𝑐 (𝐺(O)\𝐺(𝐹)/𝐺(O), 𝐸). (2) We denote the map

SO

[𝐺 πœŽΛ† /𝐺ˆ],O[𝐺 πœŽΛ† /𝐺ˆ] : End

Coh𝐺ˆ(𝐺 πœŽΛ† )(O[𝐺 πœŽΛ† /𝐺ˆ]) β†’CorrShtloc(𝛿1, 𝛿1)

bySOfor simplicity. Under the isomorphism in(1), the mapSOβŠ—id𝐸[π‘žβˆ’1/2,π‘ž1/2]

coincides with the classical Satake isomorphism.

Proof. Recall the definition of the Borel-Moore homology HBM𝑖 (𝑋) for a perfect pfp algebraic space which is defined over an algebraically closed field (cf. [XZ17, A.1.3]). Assume 𝑋1and𝑋2to be perfectly smooth algebraic spaces of pure dimen- sion. Let𝑋1← 𝐢 β†’ 𝑋2be a correspondence. Then

Corr𝐢 (𝑋1, 𝐸h𝑑1i),(𝑋2, 𝐸h𝑑2i)

(11.14)

=Hom𝐷𝑐

𝑏(𝐢 ,𝐸) 𝐸h𝑑1i, πœ”πΆh𝑑2βˆ’2 dim𝑋2

=HBM2 dim𝑋

2+𝑑1βˆ’π‘‘2(𝐢).

Then if 2 dim𝐢 = 2 dim𝑋2+ 𝑑1 βˆ’π‘‘2, the cohomological correspondences from (𝑋1, 𝐸h𝑑1i)to(𝑋2, 𝐸h𝑑2i)can be identified as the set of irreducible components of 𝐢of maximal dimension.

For a perfect pfp algebraic space 𝑋 of dimension 𝑑, define 𝐼 to be the set of top- dimensional irreducible components of 𝑋. Then HBM𝑑 (𝐼) is the free 𝐸-module generated by the 𝑑-dimensional irreducible components of 𝑋, and thus can be identified with the space 𝐢(𝐼 , 𝐸) of 𝐸-valued functions on 𝐼. The map 𝑓 ↦→

Í

πΆπ‘–βˆˆπΌ 𝑓(𝐢𝑖) [𝐢𝑖] establishes a bijection

𝐢(𝐼 , 𝐸) =HBM𝑑 (𝑋). (11.15) With the above preparations, we get an isomorphism

H𝐺 ,𝐸 'CorrShtloc(𝛿1, 𝛿1), (11.16) via a similar argument as for [XZ17, Proposition 5.4.4], and we finish the proof of (1).

To prove part (2), we first note that the statement holds for 𝐸 = Qβ„“ by [XZ17, Theorem 6.0.1(2)]. We sketch the proof here. Let πœ‡ be a central minuscule dominant coweight, and 𝜈 be a dominant coweight such that 𝜎(𝜈) = 𝜈. Choose (π‘š1, 𝑛1, π‘š2, 𝑛2) to be(𝜈+πœ‡, 𝜈)-acceptable. Takea∈ Hom𝐺ˆ(π‘‰πœˆ βŠ—π‘‰πœ‡ βŠ—π‘‰πœˆβˆ—, π‘‰πœ‡)to be the map induced by the evaluation mape𝜈 :π‘‰πœˆβŠ—π‘‰πœˆβˆ— β†’1. Consider the following diagram

pt 𝐺 π‘Ÿβ‰€πœˆβˆ— Ξ” 𝐺 π‘Ÿβ‰€πœˆβˆ— ×𝐺 π‘Ÿβ‰€πœˆβˆ— πœŽΓ—id 𝐺 π‘Ÿπœ‡βˆ—Γ—πΊ π‘Ÿβ‰€πœ‡βˆ— Ξ” 𝐺 π‘Ÿβ‰€πœˆβˆ— pt. Recall the cohomological correspondences𝛿Icπœˆβˆ—and𝑒Icπœˆβˆ—defined in [XZ17, Β§A.2.3.4].

Then Cloc(π‘š1,𝑛1)

π‘‰πœˆ

(a) = 𝛿ICπœˆβˆ— β—¦Ξ“πœŽΓ—idβˆ— ◦𝑒Icπœˆβˆ— ∈ HBM0 (𝐺 π‘Ÿπœˆβˆ—(π‘˜)), and the cohomologi- cal correspondenceCloc(π‘š1,𝑛1)

π‘‰πœˆ

(a) can be identified with the function 𝑓 on𝐺 π‘Ÿπœˆβˆ—(π‘˜)

whose value at π‘₯ ∈𝐺 π‘Ÿπœˆβˆ—(π‘˜) is given by tr(πœ™π‘₯ | Sat(π‘‰πœˆβˆ—)π‘₯Β―). Then up to a choice of π‘ž1/2, the map 𝑆O,O βŠ—Qβ„“ idQβ„“[π‘ž1/2,π‘žβˆ’1/2] coincides with the classical Satake isomor- phism.

Now we come back to the case 𝐸 = Zβ„“. Write 𝑄 for Qβ„“[π‘ž1/2, π‘žβˆ’1/2]. The above argument shows that

SO βŠ—π‘„ : End

Coh𝐺ˆ(𝐺 𝜎)Λ† (O[𝐺 𝜎/Λ† 𝐺]Λ† ) βŠ—Z

β„“

𝑄→ CorrShtloc(𝛿1, 𝛿1) βŠ—Z

β„“

𝑄

coincide with the classical Satake isomorphism. Note that EndCoh𝐺ˆ(𝐺 𝜎)Λ† (O[𝐺 𝜎/Λ† Λ†

𝐺]) βŠ—Zβ„“ 𝑄 'Zβ„“[𝐺ˆ]𝐺ˆ βŠ—Zβ„“ 𝑄 ,

where ˆ𝐺 acts on ˆ𝐺 by the𝜎-twisted conjugation. Considering the Satake transfer of the image ofZβ„“-basis of Zβ„“[𝐺ˆ](𝐺ˆ) inZβ„“[𝐺ˆ](𝐺ˆ) βŠ—Zℓ𝑄, we conclude the proof of

(2).

C h a p t e r 12

COHOMOLOGICAL CORRESPONDENCES BETWEEN SHIMURA VARIETIES

In this section, we adapt the machinery developed in previous sections and apply it to the study of the cohomological correspondences between different Hodge type Shimura varieties following the idea of [XZ17].

12.1 Preliminaries

Let (𝐺 , 𝑋) be a Shimura datum and 𝐸 be its reflex field (cf. [Mil05]). Let 𝐾 βŠ‚ 𝐺(A𝑓) be a (sufficiently small) open compact subgroup and denote by Sh𝐾(𝐺 , 𝑋) the corresponding Shimura variety defined over𝐸. Fix a prime 𝑝 >2 such that𝐾𝑝 is a hyperspecial subgroup of𝐺(Q𝑝). We write 𝐺 for the reductive group which extends 𝐺 to Z(𝑝) and such that𝐺(Z𝑝) = 𝐾𝑝. Choose 𝜈 to be a place of 𝐸 lying over 𝑝. We write O𝐸 ,(𝜈) for the localization of O𝐸 at 𝜈. Results of Kisin [Kis10]

and Vasiu [Vas07] state that for any Hodge type Shimura datum (𝐺 , 𝑋), there is a smooth integral canonical modelS𝐾(𝐺 , 𝑋) of Sh𝐾(𝐺 , 𝑋), which is defined over O𝐸 ,(𝜈). Let π‘˜πœˆ denote the residue field ofO𝐸 ,𝜈 and fix an algebraic closure Β―π‘˜πœˆ of π‘˜πœˆ. We denote by Shπœ‡,𝐾 :=(S𝐾(𝐺 , 𝑋) βŠ—π‘˜πœˆ)pfthe perfection of the special fiber of S𝐾(𝐺 , 𝑋). The perfection of mod 𝑝fibre of Shimura varieties and moduli of local Shtukas are related by a map loc𝑝 : Shπœ‡,𝐾 β†’ Shtlocπœ‡ . The construction of loc𝑝is via a𝐺-torsor over the crystalline cite (S𝐾 , π‘˜πœˆ/O𝐸 ,𝜈)CRISand we refer to [XZ17, Β§7.2.1]

for a detailed discussion. In the Siegel case, it may be understood as the perfection of the morphism sending an abelian variety to its underlying 𝑝-divisible group. We need the following result of Xiao-Zhu [XZ17, Proposition 7.2.4] for our proof of the main theorem.

Proposition 12.1.1. Let(π‘š, 𝑛) be a pair ofπœ‡-large integers. The morphism loc𝑝(π‘š, 𝑛) :=resπ‘š,𝑛◦loc𝑝 : Shπœ‡ β†’Shtloc(πœ‡ π‘š,𝑛)

is perfectly smooth.

Γ‰tale Local Systems onShπœ‡,𝐾

Let β„“ β‰  𝑝 be a prime number. Assume that 𝜌 : 𝐺 β†’ 𝐺 𝐿

Qβ„“(π‘Š) is a Qβ„“- representation of 𝐺. If 𝐾 βŠ‚ 𝐺(A𝑓) is sufficiently small, we associate an Γ©tale

Dokumen terkait