• Tidak ada hasil yang ditemukan

Peculiarities of the interaction of the rare earths and antimony 1. Binary systems

Dalam dokumen Handbook on the Physics and (Halaman 151-163)

RARE EARTH – ANTIMONY SYSTEMS

7. Peculiarities of the interaction of the rare earths and antimony 1. Binary systems

Similar to other binaryR–p-element systems, the formation of binary rare earth – antimonides with a simple stoichiometry is a characteristic feature of these systems. The largest number of structure types formed was encountered for the group of RSb2compounds (4 members).

The polymorphic modifications were observed for GdSb2and TbSb2as well as theRSb (R= La, Ce) andR5Sb3(R=Yb, Y and Sc) compounds were noted to undergo the solid state transformations.

Although the phase diagrams have been constructed for allR–Sb systems except Eu and Sc, there are many reports on the crystal structure of compounds which are not shown in the corresponding phase diagram. The systematic thermochemical investigations of the rare earth antimonides (R=Y, La, Ce, Pr, Nd, Sm and Dy) and optimization of the thermodynamic data have been carried out by Cacciamani et al. (1996) and Ferro et al. (1988) respectively.

Later on, the same group of authors (Borzone et al., 2000) suggested that the poor reliability of results for most of theR–Sb phase diagrams are attributable to experimental difficulties arising from the high melting temperatures of the compounds, the high reactivity of samples, and the high volatility of the antimony.

For Gd–Sb phase diagram, as an example, the GdSb2(66.6 at% Sb) was reported to be the richest in Sb compound with two structural modifications, SmSb2and HoSb2(Abdusalamova et al., 1986). In more recent work, Altmeyer and Jeitschko (1998) established the existence the Gd2Sb5 compound (71.42 at% Sb) with the monoclinic structure of the Dy2Sb5 type.

136 O.L. SOLOGUB AND P.S. SALAMAKHA Table 57

Isotypic compounds of the binaryR–Sb systemsa

Composition Structure La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Sc type

R2Sb La2Sb + + + + +

Cu2Sb +

R5Sb3 Mn5Sb3 + + + + + + + + + + + + +

Yb5Sb3 + + + +

R4Sb3 anti-Th3P4 + + + + + + + + + + + +

R11Sb10 Ho11Ge10 + +

RSb NaCl + + + + + + + + + + + + + + +

HgMn + +

R2Sb5 Dy2Sb5 + + + +

RSb2 SmSb2 + + + + + + +

HoSb2 + + + + + + + +

CaSb2 +

ZrSi2 +

aSign+means that the compound with corresponding structure type exists; – the compound was not observed.

Borzone et al. (2000) studying the phase diagram of Gd–Sb system, observed and determined the crystal structure of Gd16Sb39(70.91 at% Sb).

The structures of Eu containing binary antimonides are isotypic with binary antimonides of alkaline earth metals (Ca, Ba, Sr) and do not have the analogues, except for Eu5Sb3, in other R–Sb systems (table 57).

7.2. Ternary systems

As is evident from the foregoing paragraphs, the interaction of the components in the ternary RM–Sb systems have not been adequately studied. The isothermal sections (over all con- centration region or partially) have been constructed for the limited number of ternary sys- tems (22), and in other systems only the samples of specific compositions were synthesized and investigated structurally with respect to the formation of isotypic compounds. This paucity of data complicates the pursuance of a proper analysis and the derivation of regularities.

7.2.1. R–s-element–Sb

Few experimental data are available only for lithium and magnesium containing systems how- ever the isothermal section is constructed for Gd–Li–Sb (5 ternary compounds have been ob- served). The replacement of R element in theRLi2Sb2compounds leads to the formation of different structure type: CaAl2Si2(R=Ce)→CaBe2Ge2(R=Pr, Nd)→unknown struc- ture (R=Tb). No comparative analysis can be made for the magnesium containing systems since only the information regarding the existence of three compounds in the La–Mg–Sb sys- tem is presented in the literature.

7.2.2. R–p-element–Sb

The isothermal sections have been constructed for the La–Al–Sb and Ce–Si(Ge)–Sb systems.

RARE EARTH – ANTIMONY SYSTEMS 137

Ternary compounds have been observed for theR–Si, Ge, Sn, Ga, In, Se, Te–Sb systems.

The systems with arsenic and bismuth are characterized by formation of substitutional solid solutions between isotypic binary pnictides. No compounds have been found in the partly investigated ternary La–Al–Sb system at 773 K (Muravjova, 1971). For the Yb–Al–Sb, the formation and crystal structure of the Yb14AlSb11have been reported (Fisher et al., 2000).

7.2.3. R–d-element–Sb

In spite of the fact that the isothermal sections have been investigated for the 18 ternary sys- tems from 448 possible R–d-element–Sb combinations, a considerable number of publica- tions is devoted to the crystal structure investigations of ternary compounds that enables one to consider more thoroughly the effect ofR-element and d-element interaction as well as the formation, composition and crystal structure of ternary antimonides.

7.2.3.1. R–Ti(V, Cr, Zr, Nb, Mo, Hf, Ta, W, Re)–Sb. For this combination of elements, the R–Mo (Ta, W, Re)–Sb systems have not been studied, and as well no information is available on the interaction of Eu and Yb with these d-elements. The R3MSb5series of compounds was observed only for the light lanthanides and theRZrSb structure is typical for the yttric subgroup.

The CeVSb3type occurs in theR–V–Sb systems for the ceric subgroup and in theR–Cr–Sb systems for both subgroups (R=La–Sm, Gd–Dy) (table 58).

7.2.3.2. R–Mn(Cd, Zn)–Sb. Analysis of the compositions and crystal structures of the inves- tigatedR–3d-element–Sb systems established a vague similarity betweenR–Mn–Sb and the cadmium and zinc containing systems (table 59):

(i) the HfCuSi2and La6MnSb15structures are typical for the ceric subgroup and Gd;

(ii) Eu and Yb form the CaAl2Si2and Ca14AlSb11types;

(iii) no compounds have been found in the Tb–Tm, Lu and Y, Sc containing systems.

7.2.3.3. R–Fe(Co, Ru, Rh, Os, Ir)–Sb. Among the ternaryR–Fe(Co, Ru, Rh, Os, Ir)–Sb sys- tems, the Nd–Fe–Sb system is the most completely studied (Sologub and Salamakha, 1999;

Table 58

Isotypic compounds of the ternaryR–Ti(V, Cr, Zr, Nb, Hf)–Sb systemsa

Structure type La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Sc

U3CrSb5 Ti + + + + +

Zr + + + + +

Nb + + + +

Hf + + + + +

CeVSb3 V + + + + +

Cr + + + + + + + +

CeScSi Zr + + + + + + + +

aSign+means that the compound with corresponding structure type exists; – the compound was not observed.

138 O.L. SOLOGUB AND P.S. SALAMAKHA Table 59

Isotypic compounds of the ternaryR–Mn(Zn, Cd)–Sb systemsa

Structure type La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Sc

HfCuSi2 Mn + + + + +

Zn + + + + + +

Cd + + + + +

CaAl2Si2 Mn + +

Zn + +

Cd + +

Ca14AlSb11 Mn + +

Zn + +

La6MnSb15 Mn + +

Zn + + + + + +

NdAgSb2 Zn + +

aSign+means that the compound with corresponding structure type exists; – the compound was not observed.

Table 60

Isotypic compounds of the ternaryR–Fe(Co, Ru, Rh, Os, Ir)–Sb systemsa

Structure type La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Sc

HfCuSi2 Fe + + + + + +

Co + + + + +

LaFe4Sb12 Fe + + + + + + +

Ru + + + + + +

Rh +

Os + + + + + + +

TiNiSi or Co +

KHg2 Rh + + + + +

Nd6Fe13Si Fe + + + +

Co +

aSign+means that the compound with corresponding structure type exists; – the compound was not observed.

Leithe-Jasper, 1994). Information on the systematic investigations of the interaction of rare earths and antimony with other metals of this subgroup is still lacking. The survey of the isotypic compounds is presented in table 60.

No information is available on the ternaryR–Ir–Sb systems.

7.2.3.4. R–Ni(Pd, Pt)–Sb. Interaction of the components in these systems is the most com- plicated and highly diversified (table 61).

The greatest efforts have concentrated on the systematic studies of the nickel containing systems. The annealing temperature of theR–Ni–Sb alloys strongly affects the phase equilib- ria as well as the crystal structure of ternary compounds. The isothermal section of Y–Ni–Sb phase diagram at 870 K (0–50 at.% Sb) was studied by Zavalii (1982). For the La–Ni–Sb, Ce–

Ni–Sb and Nd–Ni–Sb systems the isothermal sections at 870 K were constructed by Zavalii (1982), Pecharsky et al. (1983a, 1983b) and Salamakha (1998), respectively. Mozharivskyj

RARE EARTH – ANTIMONY SYSTEMS 139 Table 61

Isotypic compounds of the ternaryR–Ni(Pd, Pt)–Sb systemsa

Structure type La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Sc

CeGa2Al2 Ni + + + + + + +

Pd

CaBe2Ge2 Ni + + + + + + + + + +

Pd + + + + + +

AlB2or ZrBeSi Ni + + + + +

CaIn2or Pd + + + + + + + +

LiGaGe Pt + + + +

MgAgAs Ni + + + + + + + + + +

Pd + + + + +

Pt + + + + + + + + + + +

Mo5B2Si Ni + + + + + + + +

Pd + + + + + + + +

Pt + + + + + + + +

HfCuSb2 Ni + + + + + + + + +

Pd + + + + + + +

MgCu2Al Pd + + + + +

TiNiSi Pd +

Pt +

aSign+means that the compound with corresponding structure type exists; – the compound was not observed.

et al. (1997) investigated the phase equilibria in the ternary Ho–Ni–Sb system at 770 K (0–50 at.% Sb) and 1070 K (50–100 at.% Sb). Hoffman and Jeitschko (1988) reported some results of phase equilibria studies of the La–Ni–Sb and Gd–Ni–Sb systems at 1070 K. The compoundsRNi2xSb2with a defect CaBe2Ge2structure were found and evaluated as the highest antimony content compounds. In variance to these data, Zavalii (1982), Pecharsky et al. (1983a, 1983b) and Salamakha (1998) reported on the existence and crystal structure for theRNiSb2(HfCuSi2type structure) andRNi2Sb2(CeGa2Al2type structure) (R=La, Ce, Nd) compounds from the alloys annealed at 870 K. Various authors investigated the crystal structure of theRNiSb compounds (R=La–Sm) and found them to crystallize either with AlB2type (LT form) or ZrBeSi type (HT modification).

Although no phase diagram has been studied for the Ce–Pd–Sb system, seven ternary com- pounds were observed and their crystal structures were investigated.

In theR–Pt–Sb systems, the compounds with Y3Au3Sb4structure are found for both the light and heavy rare earth elements. This structure occurs typically for copper and gold con- taining antimonides, and unexpectedly, it was not observed for the systems with Ni and Pd.

7.2.3.5. R–Cu(Ag, Au)–Sb. The most prevailing structure types among the compounds withinR–Cu(Ag, Au)–Sb systems are the HfCuSi2 and Y3Au3Sb4types. The compounds of the Y3Au3Sb4type have not been observed for the systems with silver. Table 62 lists the isotypic series of compounds in theR–Cu(Ag, Au)–Sb systems.

140 O.L. SOLOGUB AND P.S. SALAMAKHA Table 62

Isotypic compounds of the ternaryR–Cu(Ag, Au)–Sb systemsa

Structure type La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Sc

HfCuSi2 Cu + + + + + + + + + + + + + +

Ag + + + + + + + + + + + +

Au + + + + +

Y3Au3Sb4 Cu + + + + + + + + + + +

Au + + + + + + + + + + + + +

ZrBeSi or Cu + +

LiGaGe Ag +

Au + + +

La6MnSb15 Cu + +

CeGa2Al2 Cu + + + +

Ag + +

TiNiSi Ag + +

aSign+means that the compound with corresponding structure type exists; – the compound was not observed.

7.2.4. R–f-element–Sb

Only the formation of solid solutions between isotypic compounds has been observed in the RR–Sb systems. For theR–U–Sb the formation of both solid solutions (Frick et al., 1984) and ternary compounds (Schmidt and Jeitschko, 1998; Slovyanskikh et al., 1990) have been reported.

7.3. Interconnection of the ternary antimonides with the binary structure types

The structure types of binary antimonides have been described by Hulliger (1984) in chap- ter 33 of the Handbook.

Several families of ternary antimonides crystallize with structure types derived from those of binary types by an insertion of third component in the structure of binary compounds, i.e., LaFe4P12from CoAs3, Y3Au3Sb4from Th4P3, U3CrSb5from Mn5Si3.

Another subgroup of structure types of ternary antimonides contains the superstructures of binary structures: LiGaGe→CaIn2, ZrBeSi→Ni2In, Mo5B2Si→Cr5B3, MgAgAs→ CaF2, TiNiSi→Co2Si.

The structure of the MnCu2Al type compound can be considered as both an insertion phase (NaCl) and a superstructure (BiF3).

The crystal chemistry of the ternary antimonides is discussed in the original papers. Here we present only some regularities and peculiarities of the formation of ternary antimonides and their structures depending on the qualitative and quantitative composition.

7.4. Ternary antimonides with the equiatomic composition

The RMSb compounds crystallize in eight structure types, for some of them the existence of two polymorphic modifications have been reported (table 63). The crystal structure of EuMSb compounds is always different than the structure of other RMSb compounds.

RARE EARTH – ANTIMONY SYSTEMS 141 Table 63

Structure types of theRMSb ternary antimonidesa

M/R La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Sc

Ni 1,2 1,2 1,2 1,2 1,2 1,3 3 3 3 3 3 3 3 3 3

Pd 4 4 4 4 4 5 4 4 3,4 3 3 3 3 3

Pt 4 4 6 4,6 3 5 3 3 3 3 3 3 3 3 3 3

Co 5

Rh 7 5,7 7 7

Cu 2 6

Ag 2 5 5

Au 4 2 6

Zr 8 8 8 8 8 8 8 8

aNumber 1 corresponds to AlB2 structure type; 2 – ZrBeSi; 3 – MgAgAs; 4 – CaIn2; 5 – TiNiSi; 6 – LiGaGe;

7 – KHg2; 8 – CeScSi.

7.5. Ternary antimonides with theR:Sb ratio equal to 1:2

A BaAl4 fragment is a filled up tetragonal antiprism. The structure types of ternary anti- monides related to the BaAl4 type are presented in table 64. In the La(Ni, Sb)4compound (BaAl4structure type), the atoms of (Ni, Sb) statistical mixture occupy two different crystal- lographic positions. For the 1:2:2 composition, two ordered modifications of tetragonal cell – CeGa2Al2 and CaBe2Ge2 – are known. An orthorhombic deformation of the BaAl4with unit cell dimensions similar to the BaAl4-type unit cell was found for the CeNi2+xSb2x compound.

The LaPt2Ge2and Ce3Pd6Sb5structure types can be formed in consequence of ordering and distortion of the unit cell of the CaBe2Ge2structure.

In the HfCuSi2 structure, a portion of the tetragonal antiprisms is unfilled. The outer de- formation of this structure leads to the formation of two new structure types – NdAgAs2and LaInSb2.

Table 64

Structure types of antimonides with structures related to BaAl4type structure Structure types Space group Lattice parameters

a b c

BaAl4 I4/mmm a1 a1 c1

CeGa2Al2 I4/mmm a1 a1 c1

CaBe2Ge2 P4/nmm a1 a1 c1

CeNi2+xSb2x Immm a1 a1 c1

LaPt2Ge2 P21 a1 a1 c1

β91

Ce3Pd6Sb5 Pmmn 3a1 a1 c1

HfCuSi2 P4/nmm a1 a1 c1

NdAgAs2 Pmmn a1 a1 c1

LaInSb2 P21/m a1 a1 c1

β99

142 O.L. SOLOGUB AND P.S. SALAMAKHA

The structure of the LaSnSb2compound (Cmcm space group) is related to the structure of YbSb2(ZrSi2structure type, Cmcm space group).

The structure of NdFe2Sb2and NdFe3Sb2compounds can be classified to the structures with two short (∼4 Å) and one much more longer period (∼25 Å). These structures contain the fragments of simple structures connected along long period.

The insertion of additional Li atom in the 0 0 0.5 site in the structure of the RLi2Sb2

compounds (CaAl2Si2structure type) leads to the formation of the YLi3Sb2structure type.

Acknowledgement

This work was partially supported by FCT grant in ITN, Portugal (P.S) and NATO Research Fellowship in ITN, Portugal (O.S.).

References

Abdusalamova, M.N., Rachmatov, O.I., 2000. J. Alloys Compd. 299, L1.

Abdusalamova, M.N., Burnashev, O.R., Mironov, K.E., 1981. J. Less-Common Met. 77, 81.

Abdusalamova, M.N., Burnashev, O.R., Mironov, K.E., 1984. J. Alloys Compd. 102, L19.

Abdusalamova, M.N., Burnashev, O.R., Mironov, K.E., 1986. J. Less-Common Met. 125, 1.

Abdusalamova, M.N., Rakhmatov, O.I., Fazlyeva, N.D., Tchuiko, A.C., 1988. J. Less-Common Met. 141, L23.

Abdusalamova, M.N., Faslyeva, N.D., Eliseev, A.A., Shishkin, E.A., Rakhmatov, O.I., Chuiko, A.G., Shu- makova, T.P., 1990. J. Less-Common Met. 166, 229.

Abdusalamova, M.N., Rakhmatov, O.I., Fazlyeva, N.D., Tchuiko, A.C., 1991. Izv. Akad. Nauk SSSR, Neorg.

Mater. 27 (8), 1386.

Abulkhaev, V.D., Abdusalamova, M.N., 1989. Phase diagram of the system Ce–Sb. In: V Vsesoyuzn Soveshchan. “Diagrammy Sost. Metall. Sistem”, Tezisy dokl., Moskva 1989, p. 137.

Abulkhaev, V.D., Abdusalamova, M.N., Chuiko, A.G., Timofeev, S.S., 1989. Conditions of formation and crystal chemistry of continuous solutions GdxLn5−xSb3 (Ln=Y, Tb, Dy, Ho). In: V All- Union Conference on the Crystal Chemistry of Inter- metallic Compounds, Abstracts, Lvov, 1989, p. 123.

Adroja, D.T., Rainford, B.D., Malik, S.K., Takeya, H., Gschneidner, K.A., Pecharsky, V.K., 1999. J. Alloys Compd. 288, 7.

Albering, J.H., Ebel, T., Jeitschko, W., 1997. Z. Kristal- logr. 12, 242.

Aliev, F.G., Moshchalkov, V.V., Kozyrkov, V.V., Zalya- lyutdinov, M.K., Pryadun, V.V., Skolozdra, R.V., 1988. J. Magn. Magn. Mat. 76–77, 295.

Aliev, O.M., Rustamov, P.G., 1978. Z. Neorgan.

Khimii 23 (10), 1551.

Aliev, O.M., Magerramov, E.V., Rustamov, P.G., 1977.

Z. Neorgan. Khimii 22 (10), 1539.

Aliev, O.M., Rustamov, P.G., Guseinov, G.G., Gu- seinov, M.S., 1978. Izv. Akad. Nauk SSSR, Neorgan.

Mater. 14 (7), 1052.

Aliev, O.M., Maksudova, T.F., Rustamov, P.G., 1985.

Izv. Akad. Nauk SSSR, Neorgan. Mater. 21 (9), 1292.

Aliev, O.M., Maksudova, T.F., Samsonova, N.D., Finkelshtein, L.D., Rustamov, P.G., 1986. Izv. Akad.

Nauk SSSR, Neorgan. Mater. 22 (1), 23.

Altmeyer, R.O., Jeitschko, W., 1988. Z. Kristallogr. 182, 3.

Altmeyer, R.O., Jeitschko, W., 1989. Z. Kristallogr. 186, 5.

André, G., Bourée, F., Kolenda, M., Le´snievska, B., Ole´s, A., Szytuła, A., 2000. Physica B 1–2, 176.

Bodnar, R.E., Steinfink, H., 1967. Inorg. Chem. 6 (2), 527.

Bollore, G., Ferguson, M.J., Hushagen, R.W., Mar, A., 1995. Chem. Mater. 7, 2229.

Borsese, A., Borzone, G., Mazzone, D., Ferro, R., 1981.

J. Less-Common Met. 79 (1), 57.

Borzone, G., Borsese, A., Delfino, S., Ferro, R., 1985. Z.

Metallkunde 76 (3), 208.

Borzone, G., Fornasini, M.L., Parodi, N., Ferro, R., 2000. Intermetallics 8, 189.

RARE EARTH – ANTIMONY SYSTEMS 143 Braun, D.J., Jeitschko, W., 1980. J. Less-Common

Met. 72, 147.

Brylak, M., Jeitschko, W., 1995. Z. Naturforsch. 50b, 899.

Brylak, M., Moller, M.H., Jeitschko, W., 1995. J. Solid State Chem. 115, 305.

Burlet, P., Quezel, S., Rossat-Mignod, J., Bartholin, H., Vogt, O., 1980. Physica B+C 102B, 353.

Cacciamani, G., Borzone, G., Parodi, N., Ferro, R., 1996.

Z. Metallkd. 87, 562.

Cava, R.J., Ramirez, A.P., Takagi, H., Krayevski, J.J., Peck Jr., W.F., 1993. J. Magn. Magn. Mater. 128, 124.

Chan, J.Y., Wang, M.E., Rehr, A., Kauzlarich, S.M., Webb, D., 1997. Chem. Mater. 9, 3132.

Chan, J.Y., Olmstead, M.M., Kauzlarich, S.M., Webb, D.J., 1998. Chem. Mater. 10, 3583.

Chan, J.Y., Olmstead, M.M., Hope, H., Kauzlarich, S.M., 2000. J. Solid State Chem. 155 (1), 168.

Charvillat, J.-P., Damien, D., Wojakowski, A., 1977. Re- vue de Chemie Minerale 14, 178.

Cordier, G., Schaffer, H., Woll, P., 1985. Z. Natur- forsch. 40b, 1097.

Deakin, L., Lam, R., Mar, A., 2001. Inorg. Chem. 40, 960.

Dunner, J., Mewis, A., Reppke, M., Michels, G., 1995.

Z. Annorg. Allg. Chemie 621, 1523.

Dwight, A.E., 1974. Crystal structure of DyNiSb, DyPtSb and related compounds. In: Proc. Rare Earth Res. Conf., 11th, Michigan, Vol. 2, p. 642.

Dwight, A.E., 1977. Acta Cryst. 33B, 1579.

Evers, Ch.B.H., Jeitschko, W., Boonk, L., Braun, D.J., Ebel, T., Scholz, U.D., 1995. J. Alloys Compd. 224, 184.

Ferguson, M.J., Ryan, W., Hushagen, W., Mar, A., 1996.

Inorg. Chem. 35, 4505.

Ferguson, M.J., Hushagen, R.W., Mar, A., 1997. J. Al- loys Compd. 249, 191.

Ferguson, M.J., Ellenwood, R.E., Mar, A., 1999. Inorg.

Chem. 38, 4503.

Ferro, R., Borzone, G., Cacciamani, G., 1988. Ther- mochem. Acta 129, 99.

Fischer, H.O., Schuster, H.U., 1982. Z. Anorg. Allgem.

Chem. 491, 119.

Fisher, I.R., Bud’ko, S.L., Song, C., Canfield, P.C., Ozawa, T.C., Kauzlarich, S.M., 2000. Physical Re- view Letter 85 (5), 1120.

Flandorfer, H., Sologub, O., Godart, C., Hiebl, K., Leithe-Jasper, A., Rogl, P., Noël, H., 1996. Solid State Commun. 97 (7), 561.

Flandorfer, H., Hiebl, K., Godart, C., Rogl, P., Saccone, A., Ferro, R., 1997. J. Alloys Compd. 256, 170.

Frick, B., Schoenes, J., Hulliger, F., Vogt, O., 1984. Solid State Communications 49 (12), 1133.

Gambino, R.J., 1967. J. Less-Common Met. 12, 344.

Ganguli, A.K., Kwon, Y.U., Corbett, J.D., 1993. Inorg.

Chem. Acta 32, 4354.

Geidarova, E.A., Rustamov, P.G., 1985. Z. Neorgan.

Khimii 30 (11), 1705.

Geydarova, E.N., Bagirova, S.D., Aliyev, I.Ya., Ab- basov, A.S., Mustafayev, F.M., 1985. Doklady Akad.

Nauk Azerbaijan. SSR 41 (11), 35.

Gordon, R.A., DiSalvo, F.J., 1996. Z. Naturforsch. 51b, 52.

Gordon, R.A., DiSalvo, F.J., Pöttgen, R., 1995. J. Alloys Compd. 228, 16.

Gordon, R.A., DiSalvo, F.J., Poettgen, R., Brese, N.E., 1996. J. Chem. Soc., Faraday Trans 92, 2167.

Grund, I., Schuster, H.-U., Müller, M., 1984. Z. Anorg.

Algem. Chem. 515, 151.

Guloy, A.M., Corbett, J.D., 1994. J. Solid State Chem. 109, 352.

Guzik, A., Kaczmarska, K., Pierre, J., Murani, A.P., 1996. J. Magn. Magn. Mat. 161, 103.

Guzik, A., Pierre, J., 1998. J. Alloys Compd. 264, 8.

Hartjes, K., Jeitschko, W., 1995. J. Alloys Compd. 226, 81.

Hoffman, W.K., Jeitschko, W., 1985. Monatshefte Chemie 116, 569.

Hoffman, W.K., Jeitschko, W., 1988. J. Alloys Compd. 138, 313.

Hulliger, F., 1984. Rare earth pnictides. In: Gschneid- ner Jr., K.A., Eyring, L. (Eds.), Handbook on the Physics and Chemistry of Rare Earth, Vol. 4. North- Holland Physics Publishing, Amsterdam, pp. 153–

237.

Hulliger, F., Ott, H.R., 1977. J. Alloys Compd. 55, 103.

Ishikawa, M., Jorda, J.L., Junod, A., 1982. New ternary superconductors of the YPd2Sn type. In: Supercon- ductivity in D- and F-band Metals, Proceedings of the 4th conference, Karlsruhe, p. 141.

Kaczmarska, K., Pierre, J., Slebarski, A., Skolozdra, R., 1993. J. Alloys Compd. 196, 165.

Kaczmarska, K., Pierre, J., Guzik, A., Slebarski, A., 1995. J. Magn. Magn. Mat. 147, 81.

Kaiser, J.W., Jeitschko, W., 1999. J. Alloys Compd. 291, 66.

Kasaya, M., Katoh, K., Takegahara, K., 1991. Solid State Commun. 78 (9), 797.

Kasaya, M., Katoh, K., Kohgi, M., Osakabe, T., Sato, N., 1994. Physica B 199–200, 534.

Katoh, K., Kasaya, M., 1993. Physica B 186–188, 428.

Katoh, K., Kasaya, M., 1996. J. of Physical Society of Japan 65 (11), 3654.

144 O.L. SOLOGUB AND P.S. SALAMAKHA Katoh, K., Takabatake, T., Minami, A., Oguro, I., Sawa,

H., 1997. J. Alloys Compd. 261, 32.

Kim, S.-J., Ireland, J.R., Kannewurf, C.R., Kanatsidis, M.G., 2000. J. Solid State Chem. 155, 55.

Kimura, S., Sato, Y., Arai, F., Ikezawa, M., Kamada, M., Katoh, K., Kasaya, M., 1995. J. of Physical Society of Japan 64 (11), 4278.

Kleinke, H., 1998. Z. Anorg. Algem. Chem. 624, 1771.

Klüfers, P., Neumann, H., Mewis, A., Schuster, H.-U., 1980. Z. Naturforsch. 35b, 1317.

Kobzenko, G.F., Chernogorenko, V.B., Martinchuk, E.L., Lynchak, K.A., Skolozdra, R.V., 1972. Russ.

Metall. 3, 176.

Kuliev, A.N., Safaraliev, G.I., Guseinov, G.A., 1990. Izv.

Akad. Nauk SSSR. Neorg. Mater. 26 (3), 422.

Lam, R., Zhang, J., Mar, A., 2000. J. Solid State Chem. 153, 371.

Lam, R., McDonald, R., Mar, A., 2001. Inorg. Chem. 40, 952.

Lebedev, V.A., Pyatkov, V.I., Ushenin, S.N., 1983. Ther- modynamic properties and phase composition of the alloys of the La–Sb system. In: IV All-Union Confer- ence on the Crystal Chemistry of Intermetallic Com- pounds, Abstracts, Lvov, p. 206.

Leithe-Jasper, A. 1994. Ph.D. thesis, Vienna University, 84 p.

Leithe-Jasper, A., Rogl, P., 1994. J. Alloys Compd. 203, 133.

Malik, S.K., Adroja, D.T., 1991a. Physical Review B 43 (7), 6295.

Malik, S.K., Adroja, D.T., 1991b. Physical Review B 43 (7), 6277.

Malik, S.K., Adroja, D.T., 1991c. J. Magn. Magn.

Mat. 102, 42.

Malik, S.R., Menon Latica, Ghosh, K., Ramakrishnan, S., 1995. Physical Review B 51 (1), 399.

Marazza, R., Rossi, D., Ferro, R., 1980. J. Less-Common Met. 75, P25.

Marchand, R., Jeitschko, W., 1978. J. Solid State Chem. 24, 351.

Massalski, T.B., Subramanian, P.R., Okamoto, H., Kacprzak, L. (Eds.), 1991. Binary Alloy Phase Dia- grams, 2nd ed. and updates. ASM International, Ma- terials Park, OH.

Mehta, A., Malik, S.K., Yelon, W.B., 1995. J. Magn.

Magn. Mater. 147, 309.

Menon Latica, Malik, S.K., 1996. Physica B (Amster- dam) 223–224 (1–4), 286.

Mentink, S.A.M., van Rossum, B.J., Nieuwenhuys, G.J., Mydosh, J.A., Buschow, K.J., 1994. J. Alloys Compd. 216, 131.

Merlo, F., Pani, M., Fornasini, M.L., 1990. J. Less- Common Met. 166, 319.

Mills, A.M., Mar, A., 2000. Inorg. Chem. 39, 4599.

Morozkin, A.V., Sviridov, L.A., 2001. Alloys J.

Compd. 320, L1.

Morozkin, A.V., Sviridov, L.A., Leonov, A.V., 2002. Al- loys J. Compd. 335, 139.

Mozharivskyj, Yu., Kuz’ma, Yu.B., 1996. J. Alloys Compd. 236, 203.

Mozharivskyj, Yu., Franzen, H.F., 2000a. J. Alloys Compd. 319, 100.

Mozharivskyj, Yu., Franzen, H.F., 2000b. J. Solid State Chem. 152, 478.

Mozharivskyj, Yu., Franzen, H.F., 2001. Alloys J.

Compd. 327, 78.

Mozharivskyj, Yu., Tremel, W., Kuz’ma, Yu.B., 1997.

The ternary systems Ho–Ni–(P, As, Sb, Bi). In: 12th International Conference on Solid Compounds of Transition Elements. Saint-Malo, France, UMR6511.

Muravjova, A.A., 1971. Visnyk L’viv. University, Ser.

Khim. 12, 8.

Niu, X.J., Gschneidner Jr., K.A., Pecharsky, A.O., Pecharsky, V.K., 2001. J. Magu. Magu. Mat. 234 (2), 193.

Ott, H.R., Hulliger, F., Stucki, F., 1978. Conference Se- ries – Institute of Physics 37, 72.

Pankevich, Yu.V., Pecharsky, V.K., Bodak, O.I., 1983.

Russian Metallurgy (5), 198. Transl. from Izvestiya AN SSSR Metally.

Patil, S., Hossain, Z., Paulose, P.L., Nagarajan, R., Gupta, L.C., Godart, C., 1996. J. Solid State Com- mun. 99 (6), 419.

Patil, S., Paulose, P.L., Gupta, L.C., 1998. Solid State Commun. 109 (4), 217.

Pavlyuk, V.V. 1993. Synthesis and crystal chemistry of the intermetallic compounds of lithium, Dr.Sc. Chem- istry Thesis, Abstracts, L’viv (L’viv State University, L’viv) pp. 1–46.

Pecharsky, V.K., Bodak, O.I., Zavalii, I.Yu., 1981. Vest- nik Lvov. Univers. Ser. Khim. 23, 38.

Pecharsky, V.K., Pankevich, Yu.V., Bodak, O.I., 1982.

Dopov. Akad. Nauk URSR, Ser. B, 46.

Pecharsky, V.K., Pankevich, Yu.V., Bodak, O.I., 1983a.

Sov. Physics Crystallogr. 28 (1), 97.

Pecharsky, V.K., Bodak, O.I., Pankevich, Yu.V., 1983b.

Russian Metallurgy (1), 173. Transl. from Izvestiya AN SSSR Metally.

Protsyk, O., Salamakha, P., Sologub, O., 2000. Ternary R–Cu–Sb systems, R=La, Ce. In: 4th Interna- tional Conference on f-elements, Madrid, Spain, 17–

21 September 2000, Book of abstracts, AP41.

Dalam dokumen Handbook on the Physics and (Halaman 151-163)