• Tidak ada hasil yang ditemukan

Structure types of the ternary antimonides

Dalam dokumen Handbook on the Physics and (Halaman 111-128)

RARE EARTH – ANTIMONY SYSTEMS

5. Structure types of the ternary antimonides

LaFe4P12structure type. See fig. 21, table 8. SG Im3,Z=2,a=0.9300 nm for NdOs4Sb12 (Evers et al., 1995).

Ce2Pd9Sb3 structure type. See table 9. SG Cmcm,Z=8, a=1.3769,b=0.80412,c= 0.93482 (Gordon et al., 1996).

96 O.L. SOLOGUB AND P.S. SALAMAKHA

Fig. 21. Projection of the NdOs4Sb12unit cell and co- ordination polyhedra of atoms.

Table 8

Atom Wyckoff notation x/a y/b z/c G, %

Nd 2(a) 0 0 0 100

Os 8(c) 1/4 1/4 1/4 100

Sb 24(g) 0 0.34021 0.15591 100

Table 9

Atom Wyckoff notation x/a y/b z/c G, %

Ce1 8(g) 0.34547 0.32828 1/4 100

Pd1 16(h) 0.17109 0.17061 0.08478 100

Pd2 8(f) 0 0.3323 0.5268 100

Pd3 4(c) 0 0.1457 1/4 100

Pd4 8(g) 0.09840 0.4582 1/4 100

Sb1 4(a) 0 0 0 100

Sb2 8(e) 0.32369 0 0 100

Table 10

Atom Wyckoff notation x/a y/b z/c G, %

Nd1 2(a) 0 0 0.1527 100

Fe1 8(g) 0 1/2 0.0517 100

Fe2 2(b) 0 0 1/2 100

Fe3 2(a) 0 0 0 100

Sb1 4(e) 0 0 0.3895 100

Sb2 4(d) 0 1/2 1/4 100

NdFe3Sb2 structure type. See fig. 22, table 10. SG I4/mmm, Z =4, a =0.42879, c= 2.57048 (Leithe-Jasper, 1994).

LaLi3Sb2structure type. See table 11. SG P3m1,Z=1, a=0.4619,c=0.7445 (Grund et al., 1984).

RARE EARTH – ANTIMONY SYSTEMS 97

Fig. 22. Projection of the NdFe3Sb2unit cell and coordination polyhedra of atoms.

Table 11

Atom Wyckoff notation x/a y/b z/c G, %

La 1(a) 0 0 0 100

Li1 2(d) 1/3 2/3 0.658 100

Li2 1(b) 0 0 1/2 100

Sb 2(d) 1/3 2/3 0.2577 100

Fig. 23. Projection of the Ce3Pd6Sb5unit cell and coordination polyhedra of atoms.

Ce3Pd6Sb5structure type. See fig. 23, table 12. SG Pmmn,Z=2,a=1.3481,b=0.4459, c=1.0050 nm (Gordon et al., 1995).

98 O.L. SOLOGUB AND P.S. SALAMAKHA Table 12

Atom Wyckoff notation x/a y/b z/c G,%

Ce1 2(a) 1/4 1/4 0.75756 100

Ce2 4(f) 0.57480 1/4 0.75467 100

Pd1 4(f) 0.41109 1/4 0.00819 100

Pd2 2(b) 1/4 3/4 0.01545 100

Pd3 4(f) 0.56761 1/4 0.39730 100

Pd4 2(b) 1/4 3/4 0.47745 100

Sb1 4(f) 0.37627 1/4 0.47697 100

Sb2 4(f) 0.58653 1/4 0.13700 100

Sb3 2(a) 1/4 1/4 0.16899 100

Fig. 24. Projection of the YbZn2Sb2unit cell and coordination polyhedra of atoms.

Table 13

Atom Wyckoff notation x/a y/b z/c G, %

Yb 1(a) 0 0 0 100

Zn 2(d) 1/3 2/3 0.3619 100

Sb 2(d) 1/3 2/3 0.7407 100

Table 14

Atom Wyckoff notation x/a y/b z/c G, %

La 2(a) 0 0 0 100

X1 4(d) 0 1/2 1/4 100

X2 4(e) 0 0 0.383 100

X1=0.83Sb+0.17Ni X2=0.17Sb+0.83Ni

CaAl2Si2structure type. See fig. 24, table 13. SG P3m1,Z=1,a=0.444194,c=0.741913 nm for YbZn2Sb2(Salamakha and Mudryi, 2001b).

BaAl4 structure type. See table 14. SG I4/mmm, Z=2, a=0.4433,c=1.0024 nm for LaNi2Sb2(Pecharsky et al., 1981).

RARE EARTH – ANTIMONY SYSTEMS 99

Fig. 25. Projection of the EuNi1.53Sb2 unit cell and coordination polyhedra of atoms.

Table 15

Atom Wyckoff notation x/a y/b z/c G, %

Eu 2(a) 0 0 0 100

Ni 4(d) 0 1/2 1/4 76.6

Sb 4(e) 0 0 0.35895 99.5

Fig. 26. Projection of the LaNi1.51Ge2 unit cell and coordination polyhedra of atoms.

CeGa2Al2structure type. See fig. 25, table 15. SG I4/mmm,Z=2,a=0.4340,c=1.0597 nm for EuNi1.53Sb2(Hoffman and Jeitschko, 1988).

CaBe2Ge2structure type. See fig. 26, table 16. SG P4/nmm,Z=2,a=0.4466,c=0.9918 nm for LaNi1.51Sb2(Hoffman and Jeitschko, 1988).

100 O.L. SOLOGUB AND P.S. SALAMAKHA Table 16

Atom Wyckoff notation x/a y/b z/c G, %

La 2(c) 1/4 1/4 0.74000 100

Ni1 2(a) 3/4 1/4 0 89.8

Ni2 2(c) 1/4 1/4 0.368 61.2

Sb1 2(b) 3/4 1/4 1/2 100

Sb2 2(c) 1/4 1/4 0.12653 100

Fig. 27. Projection of the CeNi2.36Sb1.64 unit cell and coordination polyhedra of atoms.

Table 17

Atom Wyckoff notation x/a y/b z/c G, %

Ce 2(a) 0 0 0 100

X1 4(j) 1/2 0 0.256 100

X2 4(i) 0 0 0.3800 100

X=0.59Ni+0.41Sb

LaPt2Ge2 structure type. SG P21m,Z=2,a=0.4365,b=0.4355,c=0.9969 nm,β= 90.20for PrNi2Sb2(Slebarski et al., 1996). Atomic coordinates have not been determined.

CeNi2+xSb2-xstructure type. See fig. 27, table 17. SG Immm,Z=2,a=0.4285,b=0.4312, c=1.0205 for CeNi2.36Sb1.64(Pecharsky et al., 1982).

NdFe2Sb2structure type. See fig. 28, table 18. SG Imm2,Z=2,a=0.42965,b=0.42759, c=2.57887 (Leithe-Jasper, 1994).

Ce8Pd24Sb structure type. See table 19. SG Pm3m,Z =1, a=0.8461 nm (Gordon and DiSalvo, 1996).

RARE EARTH – ANTIMONY SYSTEMS 101

Fig. 28. Projection of the NdFe2Sb2unit cell and coordination polyhedra of atoms.

Table 18

Atom Wyckoff notation x/a y/b z/c G, %

Nd1 2(a) 0 0 0.1526 100

Nd2 2(a) 0 0 0.8462 100

Sb1 2(a) 0 0 0.3888 100

Sb2 2(a) 0 0 0.6109 100

Sb3 2(b) 1/2 0 1/4 100

Sb4 2(b) 1/2 0 0.7499 100

Fe1 2(a) 0 0 0.5044 100

Fe2 2(a) 0 0 0.0105 100

Fe3 2(b) 1/2 0 0.0513 100

Fe4 2(b) 1/2 0 0.4490 100

Table 19

Atom Wyckoff notation x/a y/b z/c G, %

Ce1 8(g) 0.25140 0.25140 0.25140 100

Pd1 6(f) 0.25552 1/2 1/2 100

Pd2 6(e) 0.31118 0 0 100

Pd3 12(h) 0.26675 1/2 0 100

Sb 1(a) 0 0 1/4 100

Table 20

Atom Wyckoff notation x/a y/b z/c G, %

Y 4(a) 0 0 0 100

Sb 4(b) 1/2 1/2 1/2 100

Pd 8(c) 1/4 1/4 1/4 100

MnCu2Al structure type. See table 20. SG Fm3m, Z =4, a =0.6691 nm for YPd2Sb (Ishikawa et al., 1982).

102 O.L. SOLOGUB AND P.S. SALAMAKHA

Fig. 29. Projection of the CeAgSb2 unit cell and coordination polyhedra of atoms.

Table 21

Atom Wyckoff notation x/a y/b z/c G, %

Ce 2(c) 1/4 1/4 0.23788 100

Ag 2(b) 3/4 1/4 1/2 99

Sb1 2(a) 3/4 1/4 0 100

Sb2 2(c) 1/4 1/4 0.67363 100

Table 22

Atom Wyckoff notation x/a y/b z/c G, %

La 2(a) 1/4 1/4 0.74071 100

Zn 2(b) 1/4 3/4 0.00299 60

Sb1 2(b) 3/4 1/4 0.49962 100

Sb2 2(a) 1/4 1/4 0.15410 100

Table 23

Atom Wyckoff notation x/a y/b z/c G, %

La 2(e) 0.8440 1/4 0.2160 100

In 2(e) 0.2139 1/4 0.4846 81

Sb1 2(e) 0.6158 1/4 0.6951 100

Sb2 2(e) 0.2489 1/4 0.0016 100

HfCuSi2structure type. See fig. 29, table 21. SG P4/nmm,Z=2,a=0.43641,c=1.0722 nm for CeAgSb2(Sologub et al., 1995a).

NdAgAs2structure type. See table 22, SG Pmmn,Z=2,a=0.437935,b=0.440222,c= 1.050438 nm for LaZnSb2(Salamakha and Mudryi, 2001a).

LaInSb2structure type. See table 23. SG P21/m,Z=2,a=0.4521,b=0.4331,c=1.1913 nm,β=99.66(Ferguson et al., 1999).

RARE EARTH – ANTIMONY SYSTEMS 103 Table 24

Atom Wyckoff notation x/a y/b z/c G, %

La 4(c) 0 0.86085 1/4 100

Sb1 4(c) 0 0.24860 1/4 81

Sb2 4(c) 0 0.59076 1/4 100

Sn1 8(f) 0 0.0065 0.1238 18.6

Sn2 4(c) 0 0.0089 1/4 18.6

Sn3 4(a) 0 0 0 19.7

Fig. 30. Projection of the La6MnSb15unit cell and coordination polyhedra of atoms.

LaSnxSb2 (x =0.75) structure type. See table 24. SG Cmcm, Z=4, a =0.42435,b = 2.3121,c=0.45053 nm (Ferguson et al., 1996).

La6MnSb15structure type. See fig. 30, table 25. SG Imm2,Z=2,a=1.51538,b=1.93646, c=0.427422 nm for Ce6Mn0.4Sb15(Sologub et al., 1996b).

La6Ge5-xSb11+xstructure type. See table 26. SG Immm, Z=2, a=0.43034,b=1.0851, c=27.073 nm (Lam et al., 2001).

104 O.L. SOLOGUB AND P.S. SALAMAKHA Table 25

Atom Wyckoff notation x/a y/b z/c G, %

Ce1 8(e) 0.1408 0.1322 0.0787 100

Ce2 4(d) 0 0.3232 0.0787 100

Mn 4(c) 0.2751 0 0.0787 40

Sb1 8(e) 0.2139 0.2979 0.0787 100

Sb2 8(e) 0.3595 0.1062 0.0787 100

Sb3 4(d) 0 0.1968 0.5787 100

Sb4 4(c) 0.1603 0 0.5787 100

Sb5 4(c) 0.4066 0 0.5787 100

Sb6 2(a) 0 0 0.0000 100

Table 26

Atom Wyckoff notation x/a y/b z/c G, %

La1 4(i) 0 0 0. 26676 100

La2 8(l) 0 0.19435 0.40544 100

Sb1 4(j) 1/2 0 0.35768 100

Sb2 8(l) 0 0.30535 0.28862 100

Sb3 4(g) 0 0.29207 0 100

Sb4 4(f) 0.4300 1/2 0 50

Sb5 4(f) 1/2 0 0.07187 100

X1 8(l) 0 0.1205 0.14765 100

X2 4(g) 0 0.03926 0 50

X1=61% Ge+39% Sb X2=19% Ge+31% Sb

Table 27

Atom Wyckoff notation x/a y/b z/c G, %

La1 6(m) 0.58274 0.16547 1/2 100

La2 6(m) 0.16800 0.33600 1/2 100

La3 1a 0 0 0 86

Ga1 12(n) 0.1343 0 0.443 47

Ga2 4(h) 1/3 2/3 0.0663 47

Sb1 6(l) 0.24818 0.49636 0 100

Sb2 6(j) 0.24697 0 0 100

Sb3 6(k) 0.37508 0 1/2 100

Sb4 3(f) 1/2 0 0 100

La13Ga8Sb21structure type. See table 27. SG P6/mmm,Z=1,a=1.7657,c=0.43378 nm (Mills and Mar, 2000).

Pr12Ga4Sb23 structure type. See table 28. SG Immm,Z =2, a=0.42162,b=1.94070, c=2.63972 nm (Mills and Mar, 2000).

Nd6Fe13Si structure type. See fig. 31, table 29. SG I4/mcm,Z=4,a=0.80978,c=2.32317 nm for Nd6Fe13Sb (Leithe-Jasper, 1994).

RARE EARTH – ANTIMONY SYSTEMS 105 Table 28

Atom Wyckoff notation x/a y/b z/c G, %

Pr1 8(l) 0 0.27695 0.40559 100

Pr2 8(l) 0 0.38900 0.26312 100

Pr3 4(j) 1/2 0 0.09340 100

Pr4 4(j) 1/2 0 0.38118 100

Ga1 4(i) 0 0 0.18986 96

Ga2 4(h) 0 0.181 1/2 2.7

Ga3 4(g) 0 0.43337 0 100

Sb1 8(l) 0 0.11138 0.43300 97.3

Sb2 8(l) 0 0.11584 0.14030 100

Sb3 8(l) 0 0.22151 0.28669 100

Sb4 8(l) 0 0.33456 0.14421 100

Sb5 4(i) 0 0 0.28911 100

Sb6 4(h) 0 0.38335 1/2 100

Sb7 4(g) 0 0.23336 0 100

Sb8 2(a) 0 0 0 100

Fig. 31. Projection of the Nd6Fe13Sb unit cell and coordination polyhedra of atoms.

Table 29

Atom Wyckoff notation x/a y/b z/c G, %

Nd1 16(l) 0.1691 0.6691 0.18595 100

Nd2 8(f) 0 0 0.39777 100

Fe1 16(l) 0.3824 0.8824 0.0917 100

Fe2 16(l) 0.1767 0.6767 0.0557 100

Fe3 16(k) 0.0652 0.2103 0 100

Fe4 4(d) 0 1/2 0 100

Sb 4(a) 0 0 1/4 100

106 O.L. SOLOGUB AND P.S. SALAMAKHA

Fig. 32. Projection of the Ce3Au3Sb4 unit cell and coordination polyhedra of atoms.

Table 30

Atom Wyckoff notation x/a y/b z/c G, %

Ce 12(a) 3/8 0 1/4 100

Au 12(b) 7/8 0 1/4 100

Sb 16(c) 0.0844 0.0844 0.0844 100

Table 31

Atom Wyckoff notation x/a y/b z/c G, %

Sm 1(a) 0 0 0 100

X 2(d) 1/3 2/3 1/2 100

X=0.5Ni+0.5Sb

Y3Au3Sb4structure type. See fig. 32, table 30. SG I43d,Z=4,a=1.00443 for Ce3Au3Sb4 (Sologub et al., 1998).

AlB2structure type. See fig. 33, table 31. SG P6/mmm,Z=1,a=0.4372,c=0.3843 nm for SmNiSb (Pecharsky et al., 1983a, 1983b).

ZrBeSi structure type. See fig. 34, table 32. SG P63/mmc,a=0.4404,c=0.8403 nm for LaNiSb (Hartjes and Jeitschko, 1995).

CaIn2structure type. See table 33. SG P63/mmc,Z=2,a=0.4580,c=0.7716 for NdPdSb (Marazza et al., 1980).

RARE EARTH – ANTIMONY SYSTEMS 107

Fig. 33. Projection of the SmNiSb unit cell and coordination polyhedra of atoms.

Fig. 34. Projection of the LaNiSb unit cell and coordi- nation polyhedra of atoms.

Table 32

Atom Wyckoff notation x/a y/b z/c G, %

La 2(a) 0 0 0 100

Ni 2(c) 1/3 2/3 1/4 100

Sb 2(d) 1/3 2/3 3/4 100

Table 33

Atom Wyckoff notation x/a y/b z/c G, %

Nd 2(b) 0 0 0.25 100

X 4(f) 1/3 2/3 0.04 100

X=0.5Pd+0.5Sb

NdPtSb (or LiGaGe) structure type. See fig. 35, table 34. SG P63mc, Z=2,a=0.4534, c=0.7866 nm (Wenski and Mewis, 1986a).

108 O.L. SOLOGUB AND P.S. SALAMAKHA

Fig. 35. Projection of the NdPtSb (or LiGaGe) unit cell and coordination polyhedra of atoms.

Table 34

Atom Wyckoff notation x/a y/b z/c G, %

Nd 2(a) 0 0 0.000 100

Pt 2(b) 1/3 2/3 0.7137 100

Sb 2(b) 1/3 2/3 0.2635 100

Fig. 36. Projection of the YZrSb unit cell and coordination polyhedra of atoms.

KHg2structure type. SG ImmaZ=4,a=0.4584,b=0.7329,c=0.7838 nm for NdRhSb (Malik and Adroja, 1991b). Atomic coordinates have not been determined.

CeScSi structure type. See fig. 36, table 35. SG I4/mmm,Z=4,a=0.4245,c=1.6306 nm for YZrSb (Morozkin and Sviridov, 2001).

RARE EARTH – ANTIMONY SYSTEMS 109 Table 35

Atom Wyckoff notation x/a y/b z/c G, %

Y 4(e) 0 0 0.335 100

Zr 4(c) 0 1/2 0 100

Sb 4(e) 0 0 0.143 100

Table 36

Atom Wyckoff notation x/a y/b z/c G, %

Ce 4(c) 0.0118 1/4 0.7008 100

Rh 4(c) 0.2997 1/4 0.4172 96.6

Sb 4(c) 0.1908 1/4 0.0900 100

Fig. 37. Projection of the ScNiSb unit cell and coordina- tion polyhedra of atoms.

Table 37

Atom Wyckoff notation x/a y/b z/c G, %

Sc 4(b) 1/2 1/2 1/2 100

Ni 4(c) 1/4 1/4 1/4 100

Sb 4(a) 0 0 0 100

Table 38

Atom Wyckoff notation x/a y/b z/c G, %

Ce 4(g) 0.1406 0 0 100

Ge 2(d) 0 0 0 100

Sb1 2(b) 1/2 0 0 100

Sb2 4(h) 0.3047 0 1/2 100

TiNiSi structure type. See table 36. SG Pnma,Z=4,a=0.7581,b=0.4642,c=0.7893nm for CeRhSb (Salamakha et al., 2000).

MgAgAs structure type. See fig. 37, table 37. SG F43m,Z=4,a=0.6055 nm for ScNiSb (Pecharsky et al., 1983a, 1983b).

Te2Ag3Tl structure type. See fig. 38, table 38. SG Cmmm,Z=4,a=1.8894,b=0.4650, c=0.4299 for Ce2GeSb3(Stetskiv et al., 1998).

110 O.L. SOLOGUB AND P.S. SALAMAKHA

Fig. 38. Projection of the Ce2GeSb3unit cell and coordination polyhedra of atoms.

Table 39

Atom Wyckoff notation x/a y/b z/c G, %

La 6(g) 0.6176 0 1/4 100

Ti 2(b) 0 0 0 100

Sb1 6(g) 0.2507 0 1/4 100

Sb2 4(d) 1/3 2/3 0 100

Table 40

Atom Wyckoff notation x/a y/b z/c G, %

La1 2(d) 1/3 2/3 0.07041 100

La2 2(c) 0 0 0.21173 100

Mg1 2(d) 1/3 2/3 0.4031 83

Mg2 2(d) 1/3 2/3 0.6733 100

Mg3 1(b) 0 0 1/2 82

Sb1 2(d) 1/3 2/3 0.28754 100

Sb2 2(d) 1/3 2/3 0.56417 100

Sb3 2(d) 1/3 2/3 0.85691 100

Sb4 1(a) 0 0 0 100

U3CrSb5 structure type (Hf5CuSb3-anti type). See table 39. SG P63/mcm, Z=2, a = 0.95294,c=0.62801 nm for La3TiSb5(Bollore et al., 1995).

La4Mg5-xSb7structure type. See table 40. SG P3m1,Z=1, a=0.46201,c=2.6069 for La4Mg4.48Sb7structure (Ganguli et al., 1993).

La5-yMg2-xSb6 structure type. See table 41. SG R3m, Z=3, a =0.4616, c=6.767 for La4.89Mg1.539Sb6(Ganguli et al., 1993).

La3Mg5-xSb6 structure type. See table 42. SG R3m, Z=3, a =0.4625, c=6.691 for La3Mg4.6Sb6(Ganguli et al., 1993).

RARE EARTH – ANTIMONY SYSTEMS 111 Table 41

Atom Wyckoff notation x/a y/b z/c G, %

La1 6(c) 0 0 0.27869 100

La2 6(c) 0 0 0.44266 94.5

La3 3(a) 0 0 0 100

Mg 6(c) 0 0 0.15230 83.0

Sb1 6(c) 0 0 0.08289 100

Sb2 6(c) 0 0 0.19509 100

Sb3 6(c) 0 0 0.36087 100

Table 42

Atom Wyckoff notation x/a y/b z/c G, %

La1 6(c) 0 0 0.38795 100

La2 3(a) 0 0 0 100

Mg1 6(c) 0 0 0.12927 90

Mg2 6(c) 0 0 0.23407 100

Mg3 3(b) 0 0 1/2 80

Sb1 6(c) 0 0 0.08404 100

Sb2 6(c) 0 0 0.19154 100

Sb3 6(c) 0 0 0.30550 100

Table 43

Atom Wyckoff notation x/a y/b z/c G, %

Eu1 16(e) 1/4 0.6432 1/8 100

Eu2 32(g) 0.9565 0.6768 0.9528 100

Eu3 32(g) 0.9786 0.8741 0.1260 100

Eu4 32(g) 0.1808 0.1589 0.9679 100

Mn 8(a) 0 0 0 100

Sb1 8(b) 0 0 1/4 100

Sb2 16(f) 0.1332 0.1332 1/4 100

Sb3 32(g) 0.0034 0.8614 0.9374 100

Sb4 32(g) 0.8685 0.7244 0.0783 100

Ca14AlSb11structure type. See table 43. SG I41/acd,Z=8,a=1.7300,c=2.2746 nm for Eu14MnSb11(Rehr and Kauzlarich, 1994).

Ba5Al2Sb6 structure type. See table 44. SG Pbam,Z=2, a =0.73992,b=2.3001, c= 0.45139 nm for Yb5In2Sb6(Mills and Mar, 2000).

La3InGe structure type. SG I4/mcm,Z=16,a=1.2012,c=1.5485 nm for Ce3GeSb (Stet- skiv et al., 1998). Atomic coordinates have not been determined.

Mo5B2Si structure type. See table 45. SG I4/mcm,Z=4, a=0.7593,c=1.3258 nm for Dy5Ni2Sb (Mozharivskyj and Kuz’ma, 1996).

112 O.L. SOLOGUB AND P.S. SALAMAKHA Table 44

Atom x/a y/b z/c G, %

Yb1 0.9584 0.0895 1/2 100

Yb2 0.0269 0.2446 1/2 100

Yb3 1/2 0 1/2 100

In 0.3244 0.1202 0 100

Sb1 0.5465 0.1369 0 100

Sb2 0.05465 0.1897 0 100

Sb3 0.1989 0.9992 0 100

Table 45

Atom Wyckoff notation x/a y/b z/c G, %

Dy1 4(c) 0 0 0 100

Dy2 16(i) 0.1597 0.6597 0.1385 100

Ni 8(h) 0.372 0.872 0 100

Sb 4(a) 0 0 1/4 100

6. Physical properties of the ternary antimonides

Dalam dokumen Handbook on the Physics and (Halaman 111-128)