RARE EARTH – ANTIMONY SYSTEMS
5. Structure types of the ternary antimonides
LaFe4P12structure type. See fig. 21, table 8. SG Im3,Z=2,a=0.9300 nm for NdOs4Sb12 (Evers et al., 1995).
Ce2Pd9Sb3 structure type. See table 9. SG Cmcm,Z=8, a=1.3769,b=0.80412,c= 0.93482 (Gordon et al., 1996).
96 O.L. SOLOGUB AND P.S. SALAMAKHA
Fig. 21. Projection of the NdOs4Sb12unit cell and co- ordination polyhedra of atoms.
Table 8
Atom Wyckoff notation x/a y/b z/c G, %
Nd 2(a) 0 0 0 100
Os 8(c) 1/4 1/4 1/4 100
Sb 24(g) 0 0.34021 0.15591 100
Table 9
Atom Wyckoff notation x/a y/b z/c G, %
Ce1 8(g) 0.34547 0.32828 1/4 100
Pd1 16(h) 0.17109 0.17061 0.08478 100
Pd2 8(f) 0 0.3323 0.5268 100
Pd3 4(c) 0 0.1457 1/4 100
Pd4 8(g) 0.09840 0.4582 1/4 100
Sb1 4(a) 0 0 0 100
Sb2 8(e) 0.32369 0 0 100
Table 10
Atom Wyckoff notation x/a y/b z/c G, %
Nd1 2(a) 0 0 0.1527 100
Fe1 8(g) 0 1/2 0.0517 100
Fe2 2(b) 0 0 1/2 100
Fe3 2(a) 0 0 0 100
Sb1 4(e) 0 0 0.3895 100
Sb2 4(d) 0 1/2 1/4 100
NdFe3Sb2 structure type. See fig. 22, table 10. SG I4/mmm, Z =4, a =0.42879, c= 2.57048 (Leithe-Jasper, 1994).
LaLi3Sb2structure type. See table 11. SG P3m1,Z=1, a=0.4619,c=0.7445 (Grund et al., 1984).
RARE EARTH – ANTIMONY SYSTEMS 97
Fig. 22. Projection of the NdFe3Sb2unit cell and coordination polyhedra of atoms.
Table 11
Atom Wyckoff notation x/a y/b z/c G, %
La 1(a) 0 0 0 100
Li1 2(d) 1/3 2/3 0.658 100
Li2 1(b) 0 0 1/2 100
Sb 2(d) 1/3 2/3 0.2577 100
Fig. 23. Projection of the Ce3Pd6Sb5unit cell and coordination polyhedra of atoms.
Ce3Pd6Sb5structure type. See fig. 23, table 12. SG Pmmn,Z=2,a=1.3481,b=0.4459, c=1.0050 nm (Gordon et al., 1995).
98 O.L. SOLOGUB AND P.S. SALAMAKHA Table 12
Atom Wyckoff notation x/a y/b z/c G,%
Ce1 2(a) 1/4 1/4 0.75756 100
Ce2 4(f) 0.57480 1/4 0.75467 100
Pd1 4(f) 0.41109 1/4 0.00819 100
Pd2 2(b) 1/4 3/4 0.01545 100
Pd3 4(f) 0.56761 1/4 0.39730 100
Pd4 2(b) 1/4 3/4 0.47745 100
Sb1 4(f) 0.37627 1/4 0.47697 100
Sb2 4(f) 0.58653 1/4 0.13700 100
Sb3 2(a) 1/4 1/4 0.16899 100
Fig. 24. Projection of the YbZn2Sb2unit cell and coordination polyhedra of atoms.
Table 13
Atom Wyckoff notation x/a y/b z/c G, %
Yb 1(a) 0 0 0 100
Zn 2(d) 1/3 2/3 0.3619 100
Sb 2(d) 1/3 2/3 0.7407 100
Table 14
Atom Wyckoff notation x/a y/b z/c G, %
La 2(a) 0 0 0 100
X1 4(d) 0 1/2 1/4 100
X2 4(e) 0 0 0.383 100
X1=0.83Sb+0.17Ni X2=0.17Sb+0.83Ni
CaAl2Si2structure type. See fig. 24, table 13. SG P3m1,Z=1,a=0.444194,c=0.741913 nm for YbZn2Sb2(Salamakha and Mudryi, 2001b).
BaAl4 structure type. See table 14. SG I4/mmm, Z=2, a=0.4433,c=1.0024 nm for LaNi2Sb2(Pecharsky et al., 1981).
RARE EARTH – ANTIMONY SYSTEMS 99
Fig. 25. Projection of the EuNi1.53Sb2 unit cell and coordination polyhedra of atoms.
Table 15
Atom Wyckoff notation x/a y/b z/c G, %
Eu 2(a) 0 0 0 100
Ni 4(d) 0 1/2 1/4 76.6
Sb 4(e) 0 0 0.35895 99.5
Fig. 26. Projection of the LaNi1.51Ge2 unit cell and coordination polyhedra of atoms.
CeGa2Al2structure type. See fig. 25, table 15. SG I4/mmm,Z=2,a=0.4340,c=1.0597 nm for EuNi1.53Sb2(Hoffman and Jeitschko, 1988).
CaBe2Ge2structure type. See fig. 26, table 16. SG P4/nmm,Z=2,a=0.4466,c=0.9918 nm for LaNi1.51Sb2(Hoffman and Jeitschko, 1988).
100 O.L. SOLOGUB AND P.S. SALAMAKHA Table 16
Atom Wyckoff notation x/a y/b z/c G, %
La 2(c) 1/4 1/4 0.74000 100
Ni1 2(a) 3/4 1/4 0 89.8
Ni2 2(c) 1/4 1/4 0.368 61.2
Sb1 2(b) 3/4 1/4 1/2 100
Sb2 2(c) 1/4 1/4 0.12653 100
Fig. 27. Projection of the CeNi2.36Sb1.64 unit cell and coordination polyhedra of atoms.
Table 17
Atom Wyckoff notation x/a y/b z/c G, %
Ce 2(a) 0 0 0 100
X1 4(j) 1/2 0 0.256 100
X2 4(i) 0 0 0.3800 100
X=0.59Ni+0.41Sb
LaPt2Ge2 structure type. SG P21m,Z=2,a=0.4365,b=0.4355,c=0.9969 nm,β= 90.20◦for PrNi2Sb2(Slebarski et al., 1996). Atomic coordinates have not been determined.
CeNi2+xSb2-xstructure type. See fig. 27, table 17. SG Immm,Z=2,a=0.4285,b=0.4312, c=1.0205 for CeNi2.36Sb1.64(Pecharsky et al., 1982).
NdFe2Sb2structure type. See fig. 28, table 18. SG Imm2,Z=2,a=0.42965,b=0.42759, c=2.57887 (Leithe-Jasper, 1994).
Ce8Pd24Sb structure type. See table 19. SG Pm3m,Z =1, a=0.8461 nm (Gordon and DiSalvo, 1996).
RARE EARTH – ANTIMONY SYSTEMS 101
Fig. 28. Projection of the NdFe2Sb2unit cell and coordination polyhedra of atoms.
Table 18
Atom Wyckoff notation x/a y/b z/c G, %
Nd1 2(a) 0 0 0.1526 100
Nd2 2(a) 0 0 0.8462 100
Sb1 2(a) 0 0 0.3888 100
Sb2 2(a) 0 0 0.6109 100
Sb3 2(b) 1/2 0 1/4 100
Sb4 2(b) 1/2 0 0.7499 100
Fe1 2(a) 0 0 0.5044 100
Fe2 2(a) 0 0 0.0105 100
Fe3 2(b) 1/2 0 0.0513 100
Fe4 2(b) 1/2 0 0.4490 100
Table 19
Atom Wyckoff notation x/a y/b z/c G, %
Ce1 8(g) 0.25140 0.25140 0.25140 100
Pd1 6(f) 0.25552 1/2 1/2 100
Pd2 6(e) 0.31118 0 0 100
Pd3 12(h) 0.26675 1/2 0 100
Sb 1(a) 0 0 1/4 100
Table 20
Atom Wyckoff notation x/a y/b z/c G, %
Y 4(a) 0 0 0 100
Sb 4(b) 1/2 1/2 1/2 100
Pd 8(c) 1/4 1/4 1/4 100
MnCu2Al structure type. See table 20. SG Fm3m, Z =4, a =0.6691 nm for YPd2Sb (Ishikawa et al., 1982).
102 O.L. SOLOGUB AND P.S. SALAMAKHA
Fig. 29. Projection of the CeAgSb2 unit cell and coordination polyhedra of atoms.
Table 21
Atom Wyckoff notation x/a y/b z/c G, %
Ce 2(c) 1/4 1/4 0.23788 100
Ag 2(b) 3/4 1/4 1/2 99
Sb1 2(a) 3/4 1/4 0 100
Sb2 2(c) 1/4 1/4 0.67363 100
Table 22
Atom Wyckoff notation x/a y/b z/c G, %
La 2(a) 1/4 1/4 0.74071 100
Zn 2(b) 1/4 3/4 0.00299 60
Sb1 2(b) 3/4 1/4 0.49962 100
Sb2 2(a) 1/4 1/4 0.15410 100
Table 23
Atom Wyckoff notation x/a y/b z/c G, %
La 2(e) 0.8440 1/4 0.2160 100
In 2(e) 0.2139 1/4 0.4846 81
Sb1 2(e) 0.6158 1/4 0.6951 100
Sb2 2(e) 0.2489 1/4 0.0016 100
HfCuSi2structure type. See fig. 29, table 21. SG P4/nmm,Z=2,a=0.43641,c=1.0722 nm for CeAgSb2(Sologub et al., 1995a).
NdAgAs2structure type. See table 22, SG Pmmn,Z=2,a=0.437935,b=0.440222,c= 1.050438 nm for LaZnSb2(Salamakha and Mudryi, 2001a).
LaInSb2structure type. See table 23. SG P21/m,Z=2,a=0.4521,b=0.4331,c=1.1913 nm,β=99.66◦(Ferguson et al., 1999).
RARE EARTH – ANTIMONY SYSTEMS 103 Table 24
Atom Wyckoff notation x/a y/b z/c G, %
La 4(c) 0 0.86085 1/4 100
Sb1 4(c) 0 0.24860 1/4 81
Sb2 4(c) 0 0.59076 1/4 100
Sn1 8(f) 0 0.0065 0.1238 18.6
Sn2 4(c) 0 0.0089 1/4 18.6
Sn3 4(a) 0 0 0 19.7
Fig. 30. Projection of the La6MnSb15unit cell and coordination polyhedra of atoms.
LaSnxSb2 (x =0.75) structure type. See table 24. SG Cmcm, Z=4, a =0.42435,b = 2.3121,c=0.45053 nm (Ferguson et al., 1996).
La6MnSb15structure type. See fig. 30, table 25. SG Imm2,Z=2,a=1.51538,b=1.93646, c=0.427422 nm for Ce6Mn0.4Sb15(Sologub et al., 1996b).
La6Ge5-xSb11+xstructure type. See table 26. SG Immm, Z=2, a=0.43034,b=1.0851, c=27.073 nm (Lam et al., 2001).
104 O.L. SOLOGUB AND P.S. SALAMAKHA Table 25
Atom Wyckoff notation x/a y/b z/c G, %
Ce1 8(e) 0.1408 0.1322 0.0787 100
Ce2 4(d) 0 0.3232 0.0787 100
Mn 4(c) 0.2751 0 0.0787 40
Sb1 8(e) 0.2139 0.2979 0.0787 100
Sb2 8(e) 0.3595 0.1062 0.0787 100
Sb3 4(d) 0 0.1968 0.5787 100
Sb4 4(c) 0.1603 0 0.5787 100
Sb5 4(c) 0.4066 0 0.5787 100
Sb6 2(a) 0 0 0.0000 100
Table 26
Atom Wyckoff notation x/a y/b z/c G, %
La1 4(i) 0 0 0. 26676 100
La2 8(l) 0 0.19435 0.40544 100
Sb1 4(j) 1/2 0 0.35768 100
Sb2 8(l) 0 0.30535 0.28862 100
Sb3 4(g) 0 0.29207 0 100
Sb4 4(f) 0.4300 1/2 0 50
Sb5 4(f) 1/2 0 0.07187 100
X1 8(l) 0 0.1205 0.14765 100
X2 4(g) 0 0.03926 0 50
X1=61% Ge+39% Sb X2=19% Ge+31% Sb
Table 27
Atom Wyckoff notation x/a y/b z/c G, %
La1 6(m) 0.58274 0.16547 1/2 100
La2 6(m) 0.16800 0.33600 1/2 100
La3 1a 0 0 0 86
Ga1 12(n) 0.1343 0 0.443 47
Ga2 4(h) 1/3 2/3 0.0663 47
Sb1 6(l) 0.24818 0.49636 0 100
Sb2 6(j) 0.24697 0 0 100
Sb3 6(k) 0.37508 0 1/2 100
Sb4 3(f) 1/2 0 0 100
La13Ga8Sb21structure type. See table 27. SG P6/mmm,Z=1,a=1.7657,c=0.43378 nm (Mills and Mar, 2000).
Pr12Ga4Sb23 structure type. See table 28. SG Immm,Z =2, a=0.42162,b=1.94070, c=2.63972 nm (Mills and Mar, 2000).
Nd6Fe13Si structure type. See fig. 31, table 29. SG I4/mcm,Z=4,a=0.80978,c=2.32317 nm for Nd6Fe13Sb (Leithe-Jasper, 1994).
RARE EARTH – ANTIMONY SYSTEMS 105 Table 28
Atom Wyckoff notation x/a y/b z/c G, %
Pr1 8(l) 0 0.27695 0.40559 100
Pr2 8(l) 0 0.38900 0.26312 100
Pr3 4(j) 1/2 0 0.09340 100
Pr4 4(j) 1/2 0 0.38118 100
Ga1 4(i) 0 0 0.18986 96
Ga2 4(h) 0 0.181 1/2 2.7
Ga3 4(g) 0 0.43337 0 100
Sb1 8(l) 0 0.11138 0.43300 97.3
Sb2 8(l) 0 0.11584 0.14030 100
Sb3 8(l) 0 0.22151 0.28669 100
Sb4 8(l) 0 0.33456 0.14421 100
Sb5 4(i) 0 0 0.28911 100
Sb6 4(h) 0 0.38335 1/2 100
Sb7 4(g) 0 0.23336 0 100
Sb8 2(a) 0 0 0 100
Fig. 31. Projection of the Nd6Fe13Sb unit cell and coordination polyhedra of atoms.
Table 29
Atom Wyckoff notation x/a y/b z/c G, %
Nd1 16(l) 0.1691 0.6691 0.18595 100
Nd2 8(f) 0 0 0.39777 100
Fe1 16(l) 0.3824 0.8824 0.0917 100
Fe2 16(l) 0.1767 0.6767 0.0557 100
Fe3 16(k) 0.0652 0.2103 0 100
Fe4 4(d) 0 1/2 0 100
Sb 4(a) 0 0 1/4 100
106 O.L. SOLOGUB AND P.S. SALAMAKHA
Fig. 32. Projection of the Ce3Au3Sb4 unit cell and coordination polyhedra of atoms.
Table 30
Atom Wyckoff notation x/a y/b z/c G, %
Ce 12(a) 3/8 0 1/4 100
Au 12(b) 7/8 0 1/4 100
Sb 16(c) 0.0844 0.0844 0.0844 100
Table 31
Atom Wyckoff notation x/a y/b z/c G, %
Sm 1(a) 0 0 0 100
X 2(d) 1/3 2/3 1/2 100
X=0.5Ni+0.5Sb
Y3Au3Sb4structure type. See fig. 32, table 30. SG I43d,Z=4,a=1.00443 for Ce3Au3Sb4 (Sologub et al., 1998).
AlB2structure type. See fig. 33, table 31. SG P6/mmm,Z=1,a=0.4372,c=0.3843 nm for SmNiSb (Pecharsky et al., 1983a, 1983b).
ZrBeSi structure type. See fig. 34, table 32. SG P63/mmc,a=0.4404,c=0.8403 nm for LaNiSb (Hartjes and Jeitschko, 1995).
CaIn2structure type. See table 33. SG P63/mmc,Z=2,a=0.4580,c=0.7716 for NdPdSb (Marazza et al., 1980).
RARE EARTH – ANTIMONY SYSTEMS 107
Fig. 33. Projection of the SmNiSb unit cell and coordination polyhedra of atoms.
Fig. 34. Projection of the LaNiSb unit cell and coordi- nation polyhedra of atoms.
Table 32
Atom Wyckoff notation x/a y/b z/c G, %
La 2(a) 0 0 0 100
Ni 2(c) 1/3 2/3 1/4 100
Sb 2(d) 1/3 2/3 3/4 100
Table 33
Atom Wyckoff notation x/a y/b z/c G, %
Nd 2(b) 0 0 0.25 100
X 4(f) 1/3 2/3 0.04 100
X=0.5Pd+0.5Sb
NdPtSb (or LiGaGe) structure type. See fig. 35, table 34. SG P63mc, Z=2,a=0.4534, c=0.7866 nm (Wenski and Mewis, 1986a).
108 O.L. SOLOGUB AND P.S. SALAMAKHA
Fig. 35. Projection of the NdPtSb (or LiGaGe) unit cell and coordination polyhedra of atoms.
Table 34
Atom Wyckoff notation x/a y/b z/c G, %
Nd 2(a) 0 0 0.000 100
Pt 2(b) 1/3 2/3 0.7137 100
Sb 2(b) 1/3 2/3 0.2635 100
Fig. 36. Projection of the YZrSb unit cell and coordination polyhedra of atoms.
KHg2structure type. SG ImmaZ=4,a=0.4584,b=0.7329,c=0.7838 nm for NdRhSb (Malik and Adroja, 1991b). Atomic coordinates have not been determined.
CeScSi structure type. See fig. 36, table 35. SG I4/mmm,Z=4,a=0.4245,c=1.6306 nm for YZrSb (Morozkin and Sviridov, 2001).
RARE EARTH – ANTIMONY SYSTEMS 109 Table 35
Atom Wyckoff notation x/a y/b z/c G, %
Y 4(e) 0 0 0.335 100
Zr 4(c) 0 1/2 0 100
Sb 4(e) 0 0 0.143 100
Table 36
Atom Wyckoff notation x/a y/b z/c G, %
Ce 4(c) 0.0118 1/4 0.7008 100
Rh 4(c) 0.2997 1/4 0.4172 96.6
Sb 4(c) 0.1908 1/4 0.0900 100
Fig. 37. Projection of the ScNiSb unit cell and coordina- tion polyhedra of atoms.
Table 37
Atom Wyckoff notation x/a y/b z/c G, %
Sc 4(b) 1/2 1/2 1/2 100
Ni 4(c) 1/4 1/4 1/4 100
Sb 4(a) 0 0 0 100
Table 38
Atom Wyckoff notation x/a y/b z/c G, %
Ce 4(g) 0.1406 0 0 100
Ge 2(d) 0 0 0 100
Sb1 2(b) 1/2 0 0 100
Sb2 4(h) 0.3047 0 1/2 100
TiNiSi structure type. See table 36. SG Pnma,Z=4,a=0.7581,b=0.4642,c=0.7893nm for CeRhSb (Salamakha et al., 2000).
MgAgAs structure type. See fig. 37, table 37. SG F43m,Z=4,a=0.6055 nm for ScNiSb (Pecharsky et al., 1983a, 1983b).
Te2Ag3Tl structure type. See fig. 38, table 38. SG Cmmm,Z=4,a=1.8894,b=0.4650, c=0.4299 for Ce2GeSb3(Stetskiv et al., 1998).
110 O.L. SOLOGUB AND P.S. SALAMAKHA
Fig. 38. Projection of the Ce2GeSb3unit cell and coordination polyhedra of atoms.
Table 39
Atom Wyckoff notation x/a y/b z/c G, %
La 6(g) 0.6176 0 1/4 100
Ti 2(b) 0 0 0 100
Sb1 6(g) 0.2507 0 1/4 100
Sb2 4(d) 1/3 2/3 0 100
Table 40
Atom Wyckoff notation x/a y/b z/c G, %
La1 2(d) 1/3 2/3 0.07041 100
La2 2(c) 0 0 0.21173 100
Mg1 2(d) 1/3 2/3 0.4031 83
Mg2 2(d) 1/3 2/3 0.6733 100
Mg3 1(b) 0 0 1/2 82
Sb1 2(d) 1/3 2/3 0.28754 100
Sb2 2(d) 1/3 2/3 0.56417 100
Sb3 2(d) 1/3 2/3 0.85691 100
Sb4 1(a) 0 0 0 100
U3CrSb5 structure type (Hf5CuSb3-anti type). See table 39. SG P63/mcm, Z=2, a = 0.95294,c=0.62801 nm for La3TiSb5(Bollore et al., 1995).
La4Mg5-xSb7structure type. See table 40. SG P3m1,Z=1, a=0.46201,c=2.6069 for La4Mg4.48Sb7structure (Ganguli et al., 1993).
La5-yMg2-xSb6 structure type. See table 41. SG R3m, Z=3, a =0.4616, c=6.767 for La4.89Mg1.539Sb6(Ganguli et al., 1993).
La3Mg5-xSb6 structure type. See table 42. SG R3m, Z=3, a =0.4625, c=6.691 for La3Mg4.6Sb6(Ganguli et al., 1993).
RARE EARTH – ANTIMONY SYSTEMS 111 Table 41
Atom Wyckoff notation x/a y/b z/c G, %
La1 6(c) 0 0 0.27869 100
La2 6(c) 0 0 0.44266 94.5
La3 3(a) 0 0 0 100
Mg 6(c) 0 0 0.15230 83.0
Sb1 6(c) 0 0 0.08289 100
Sb2 6(c) 0 0 0.19509 100
Sb3 6(c) 0 0 0.36087 100
Table 42
Atom Wyckoff notation x/a y/b z/c G, %
La1 6(c) 0 0 0.38795 100
La2 3(a) 0 0 0 100
Mg1 6(c) 0 0 0.12927 90
Mg2 6(c) 0 0 0.23407 100
Mg3 3(b) 0 0 1/2 80
Sb1 6(c) 0 0 0.08404 100
Sb2 6(c) 0 0 0.19154 100
Sb3 6(c) 0 0 0.30550 100
Table 43
Atom Wyckoff notation x/a y/b z/c G, %
Eu1 16(e) 1/4 0.6432 1/8 100
Eu2 32(g) 0.9565 0.6768 0.9528 100
Eu3 32(g) 0.9786 0.8741 0.1260 100
Eu4 32(g) 0.1808 0.1589 0.9679 100
Mn 8(a) 0 0 0 100
Sb1 8(b) 0 0 1/4 100
Sb2 16(f) 0.1332 0.1332 1/4 100
Sb3 32(g) 0.0034 0.8614 0.9374 100
Sb4 32(g) 0.8685 0.7244 0.0783 100
Ca14AlSb11structure type. See table 43. SG I41/acd,Z=8,a=1.7300,c=2.2746 nm for Eu14MnSb11(Rehr and Kauzlarich, 1994).
Ba5Al2Sb6 structure type. See table 44. SG Pbam,Z=2, a =0.73992,b=2.3001, c= 0.45139 nm for Yb5In2Sb6(Mills and Mar, 2000).
La3InGe structure type. SG I4/mcm,Z=16,a=1.2012,c=1.5485 nm for Ce3GeSb (Stet- skiv et al., 1998). Atomic coordinates have not been determined.
Mo5B2Si structure type. See table 45. SG I4/mcm,Z=4, a=0.7593,c=1.3258 nm for Dy5Ni2Sb (Mozharivskyj and Kuz’ma, 1996).
112 O.L. SOLOGUB AND P.S. SALAMAKHA Table 44
Atom x/a y/b z/c G, %
Yb1 0.9584 0.0895 1/2 100
Yb2 0.0269 0.2446 1/2 100
Yb3 1/2 0 1/2 100
In 0.3244 0.1202 0 100
Sb1 0.5465 0.1369 0 100
Sb2 0.05465 0.1897 0 100
Sb3 0.1989 0.9992 0 100
Table 45
Atom Wyckoff notation x/a y/b z/c G, %
Dy1 4(c) 0 0 0 100
Dy2 16(i) 0.1597 0.6597 0.1385 100
Ni 8(h) 0.372 0.872 0 100
Sb 4(a) 0 0 1/4 100
6. Physical properties of the ternary antimonides