• Tidak ada hasil yang ditemukan

STEP 6: IMPLEMENT THE SOLUTION

Dalam dokumen RFID and Auto-ID in Planning and Logistics (Halaman 182-197)

GID 96 Code Structure

12.7 STEP 6: IMPLEMENT THE SOLUTION

Effective.project.management.is.the.key.to.implementing.an.RFID.solution..Coordinating.efforts.

and.identifying.key.milestone.using.techniques.such.as.PERT.and.CPM.are.critical..More.details.

are.provided.in.the.project.management.chapter.

APPENDIX 12.A

12.A.1 sAmpLe RfId dock dooR suRvey

A.dock.door.survey.may.allow.users.to.evaluate.performance.expectations/specifications.to.identify.

and/or.model.potential.RF,.EMI,.and.other.interference.sources..These.elements.hinder.RFID.sys- tem.of.its.performance,.reliability,.and.introduce.uncertainty.regarding.the.overall.system.through- put.and.integrity.

This. sample. may. allow. understanding. on. how. to. measure. RF. signal. strength,. stray. signal,.

multipath,.bounce,.RF.signal.absorption/reflection.characteristics,.harmonic.effects,.shading,.emit- ted. and. conducted. RF. signal. strength,. loss. profiles,. and. full. spectral. analyses. for. the. intended.

operational.RFID..Recommended.practices.prior.to.a.survey.include.the.following:

•. Gather.business.requirements

•. Interview.managers.and.users

•. Define.information.for.security.requirements

•. Gather.site-specific.documentation

•. Document.existing.network.characteristics

•. Gather.permits,.license.(electrical).and.zoning.(fire.marshal).requirements

•. Note.indoor.or.outdoor-specific.information Other.operational.considerations.include

•. Bill.of.material.items.comprising.materials,.components,.subassembly,.assembly,.or.prod- uct.nature

•. Packaged.items—individual.or.mixed.fundamental.items.in.a.single.package

•. Transport.units.comprising.packages.or.other.discernible.items

•. Unit.load.or.palletized.unit—to.carry.transport.units.or.other.discernible.items

•. Container.units—for.accommodating.pallets.or.other.discernible.items

•. Transportation.vehicles—to.carry.container.units.or.other.discernible.items

•. Through-put.speeds.of.pallets,.cartons,.or.items.on.fork-lifts,.pallet.jacks,.or.conveyors

RFID System Design 153 The. site. survey. may. identify. the. variables. that. would. most. affect. your. client’s. RFID. project..

Understanding.the.conflicts.of.these.variables.helps.to.ensure.that.the.RFID.technology.will.be.

optimized..Some.of.the.variables.that.can.affect.positive.RFID.outcomes.are

•. RF-absorbing.water/liquid.content.in.food.stuffs.and.manufactured.goods

•. RF-absorbing.water.content.in.corrugated.cardboard.packaging,.with.added.variability.due.

to.changing.relative.humidity.of.indoor/outdoor.climates

•. RF-reflecting.and/or.RF-shielding.metal.content.in.both.goods.and.packaging,.even.foils.

and.metallic.inks

12.A.1.1 Dock Doors Checklist . 1..Dock.door.characterization

. a.. Dimensions.(height.×.width.×.depth) . b.. Note.reflective.surfaces

. i.. Leveling.ramp

. ii.. Door

. iii.. Side.posts

. c.. Are.there.protective.posts/fences.for.the.antennas?

. d.. Does.the.door.go.straight.up,.parallel.to.the.floor.or.roll?

. e.. What.is.the.distance.between.the.dock.doors?

. f.. Are.all.docks.the.exact.same.configuration?

. g.. Do.they.use.a.screen?

. h.. Can.the.dock.door.or.screen.be.partially.open?

. i.. Are.there.fire.extinguishers.present,.which.cannot.block.their.view?

. 2..Study.customers’.work.flow.process.and.note.exactly.what.each.employee.does . 3..Note.the.kind.of.traffic,.busy.periods,.quit.period,.volume

. a.. Do.they.use.fork.lifts?.What.speed?

. b.. Do.they.use.pallet.jacks?.What.speed?

. c.. Do.they.manually.load.with.totes?.What.speed?

. 4..Are.wireless.handhelds.or.forklifts.used.at.dock?.Note.any.communication.devices.includ- ing.cellular.phones

. 5..Are.adjacent.docks.typically.used.simultaneously?

. 6..Do.they.stage.pallets.between.docks?.Do.they.park.or.store.other.items.temporarily?

. 7..How.do.they.load.pallets.in.the.trailer?

. a.. Do.they.pivot.pallets,.e.g.,.one.loaded.from.narrow.side,.one.from.the.wide.side.of.the.

pallet?

. b.. What.kind.of.product.is.loaded?

. c.. Do.they.double.stack.(or.more).pallets?

. d.. Do.they.dual.stack.pallets,.e.g.,.two.adjacent?

. e.. Do.they.quadruple.load.pallets,.e.g.,.two.adjacent,.double.stacked?

. 8..Mounting

. a.. Best.location.for.reader.mounting . i.. Center.of.dock.is.not.very.serviceable . ii.. Are.antenna.cables.sufficiently.long?

. iii.. What.kind.of.brackets.will.be.required?

. iv.. How.can.you.protect.the.antennas.from.fork.lifts?

. 9..Input sensors

. a.. Where.can.photoelectric.sensors.be.mounted.if.required?

. b.. Do.you.need.a.narrow.detection.beam.or.is.a.less.expensive.wide.beam.sensor.okay?

. c.. Can.the.sensors.be.inadvertently.activated?.Is.that.an.issue?

. d.. Where.can.magnetic.door.or.screen.switches.be.mounted.if.required?

. e.. Is.direction.detection.required.(this.may.be.complex—don’t.want.to.push.for.this)?

. 10..Output sensors

. a.. Are.visual.indicators.required?

. i.. Does.the.site.have.restrictions.on.visual.indicator.colors?

. 11..Are.audible.outputs.required?

. 12..Equipment.requirements

. a.. How.many.readers.per.dock?

. b.. How.many.antennas.per.dock?

. c.. What.types.of.antennas.per.dock?

. d.. Mounting.brackets.required.for.readers.and.antennas?

. e.. How.do.you.keep.the.antennas.from.getting.misaligned?

. f.. Are.spare.readers.and.antennas.required?

. g.. Will.you.need.to.attenuate.power?

. h.. Network.design.and.connectivity.to.each.reader . i.. LAN.test.panel

. j.. Electrical.power.for.readers . k.. Security.issues.for.location . l.. Grounding.availability

12.A.2 RfId envIRonment evALuAtIon

Many.operations.contain.metal,.carbon,.and.absorptive.instruments.in.their.physical.environment..

Operations. such. as. maintenance. warehouses,. electronics. manufacturers,. and. some. distribution.

operations.operate.in.these.conditions..System.design.should.be.well.thought.out.for.RFID.tech- nologies.to.be.successful..Dirty.environment.is.defined.in.the.text.as.operation.in.which.RF.trans- missions.may.be.difficult.and.provide.an.unreliable.environment.for.RFID.technologies.to.operate..

Tagged.materials.that.present.difficulties.for.RF.include.lucent.materials.and.opaque.materials.

Lucent materials:.Lucent.materials.or.materials.that.allow.RF.energy.to.penetrate,.such.as.paper,.

plastics,.cloth,.and.cardboard,.have.the.highest.successful.confirmed.successful.read.in.an.RFID.

system..These.items.can.be.tagged.arbitrarily.and.can.be.scanned.successfully.

Opaque materials:.Opaque.materials.present.the.most.problems..First,.conductive.materials.that.

block.or.reflect.RF.energy.such.as.metals,.pastes,.carbon-impregnated.plastic.(black),.conductive.

plastics,.and.foil-lined.packaging.scatter.or.block.RF.signals..Second,.absorptive.materials,.which.

weaken.RF.energy,.such.as.most.liquids.and.moist.fibers,.green.wood,.moist.wipes,.and.damp.paper.

absorb.RF.energy,.preventing.the.tag.from.reaching.full.capacitance.

The.best.practice.is.to.containerize.the.opaque.materials.into.some.type.of.RF.lucent.material.

and.scan.those.products.

12.A.2.1 Common Problems

. 1..Liquid.items.such.as.water.do.not.scan

. 2..Metal.items.such.as.metal.cans.and.toothpaste.do.not.scan . 3..Items.located.in.the.middle.of.pallets.do.not.scan

. 4..Fast-moving.pallets.do.not.scan.all.tagged.items 12.A.2.2 Best Practices

. 1..Re-containerize.into.scannable.containers.

. 2..Use.alternate.scanning.method.

. 3..Move.tags.to.outside.of.items.

RFID System Design 155 . 4..Speed.through.the.portal.is.insignificant.

. 5..In.a.dense.reader.environment,.change.the.reader.from.Talk.first,.then.listen.to.Listen.first,.

then.talk..This.solution.will.affect.your.read.rate.causing.longer.time.to.attain.reads,.but.

you.may.still.attain.the.scan.

. 6..Limit.speeds.for.mobile.reader.to.allow.time.for.the.waves.to.manipulate.the.environment.

. 7..Tag.pallets.with.difficult.items.such.that.the.tags.are.facing.outward.toward.the.reader.

. 8..Tag.materials.such.as.water.where.there.is.conductive.material.such.as.the.bottle.cap.

. 9..Antennas.may.have.to.be.adjusted.in.order.to.capture.effective.read.area.for.your.specific.

application.

. 10..The.reader.may.need.to.be.configured.and.adjusted.similar.to.a.portal.configuration.to.

account.for.dead.areas.within.the.scanning.area..Antennas.may.also.have.to.be.adjusted.

such.that.the.wrong.product.is.not.scanned.at.the.wrong.area.

. 11..Mount.RFID.tags.to.allow.for.the.greatest.possible.surface.area.presentation.to.the.reader.

. 12..Configure.pallet.to.minimize.shadowing,.which.is.when.tags.are.oriented.on.top.of.each.

other.with.a.container.in.between..This.shadowing.causes.the.signal.of.one.tag.to.mask.the.

signal.of.all.the.tags.situated.behind.it.

. 13..Consider.the.liquid.line.and.air.space.within.cases.and.pallets.to.enable.better.reads.on.

absorptive.materials.

. 14..Utilize.alternative.tag.types.for.better.results.on.absorptive.products.

. 15..For.opaque.items,.seek.to.add.a.scannable.layer.to.the.tag,.or.change.the.tag.substrate.to.be.

reflective.so.the.tags.will.scan.

. 16..Tag.products.on.the.outer.side.of.the.carton.facing.the.antennas.

. 17..Test.the.pallet.portal.limits.and.dead.zones.

. 18..Alter. the. multiplexing. sequence. of. multiple. antennas. to. give. preferential. read. by. the.

antenna.better.suited.for.capturing.difficult.tag.geometry.

. 19..Ensure.that.the.reader.wake.and.sleep.settings.are.optimized.to.capture.scans.

. 20..Evaluate.the.link.margin.if.the.reader.field.appears.limited..Evaluate.settings.by

•. Increasing.gain.in.antenna

•. Increasing.output.power

•. Evaluating.VSWR.for.reader.power.airborne

•. Evaluating.connectors.and.coaxial.cables

•. Evaluating.tag.to.reader.polarization

•. Enhancing.tag.with.packaging.on.hard.to.scan.packages,.adding.1.in..of.airspace.with.

packaging.or.spacers.such.as.foam,.paper,.or.other.more.conducive.materials

. 21..Include.movements.such.as.rotation.to.improve.scanning..Utilize.stretch.wrap.locations.

that.rotate.360°.multiple.times.for.hard.to.scan.products.on.mixed.pallets.

12.A.3 usIngA spectRum AnALyzeRto test emI

Oftentimes,.electronic.devices.operate.by.radiating.excessive.amounts.of.electromagnetic.energy,.

and.are.susceptible.to.such.energy.from.internal.or.external.sources..Thus,.the.need.for.determin- ing.electromagnetic.compatibility.or.EMC.is.necessary..EMI.occurs.when.radiated.or.conducted.

energy.adversely.affects.circuit.performance.and.disrupts.a.device’s.EMC..Many.types.of.elec- tronic.circuits.radiate.or.are.susceptible.to.EMI.and.may.need.to.be.shielded.to.ensure.proper.per- formance..Establishing.basic.EMC.in.any.electronic.device.generally.requires.detail.engineering..

The.first.goal.is.to.identify.and.reduce.EMI.generated.from.internal.sources..Many.manufacturers.

accomplish.the.reduction.through.engineering.designs.in.which.an.electronic.circuit.is.shielded.in.

such.a.manner.to.generate.less.EMI..Residual.EMI.may.then.be.suppressed.or.contained.within.

the.enclosure.by.appropriate.filtering.and.shielding.methods..Filtering.cables.at.the.point.where.

they.enter.or.leave.the.enclosure.will.reduce.conducted.emissions..A.tool.that.is.commonly.utilized.

to identify.the.EMI.levels.in.a.facility.is.known.as.a.spectrum.analyzer..A.sample.spectrum.ana- lyzer.is.shown.in.Figure.12.A.1.

12.A.3.1 General Directions for Using a Spectrum Analyzer

The.analyzer.displays.the.frequency.spectrum.from.100.kHz.to.3.GHz..See.Figure.12.A.2.for.the.

sample.start.screen.

•. At.100.MHz,.the.generator.signal.is.displayed.as.a.vertical.line..Generator.harmonics.can.

also.be.seen.as.lines.at.frequencies.that.are.multiples.of.100.MHz.

•. To.analyze.the.generator.signal.at.100.MHz.in.more.detail,.reduce.the.frequency.span..Set.

the.R&S.FSH’s.center.frequency.to.100.MHz.and.reduce.the.span.to.10.MHz.

Centering.the.frequency.to.915.MHz.to.capture.RFID.frequencies.is.necessary.for.identifying.prob- lems.in.the.right.frequencies.

FIGURE 12.A.1 Sample.spectrum.analyzer.

–30

Detect : Auto Pk

Ref : –20 dBm Trig : Freq

Trace : CI/Wr RBW: 1 MHz

VBW: 1 MHz SWT: 100 ns –40

–50 –60 –70 –80 –90 –100 –110

Center: 1.5 GHz CENTER

FREQ CF

STEPSIZE : START

FREQ STOP

FREQ CENTER: 1.5 GHz

Span: 3 GHz

OFFSETFREQ

: :

FIGURE 12.A.2 Sample.start.screen.

RFID System Design 157

The.general.procedures.are

•. Press.“Frequency”.button

•. Enter.915.MHz

•. Set.Span.=.30.MHz

•. Press.“Span”.Button

•. Enter.30.MHz

•. Press.the.Marker.button

•. The.marker.automatically.selects.the.trace.maximum

•. Use.the.soft.keys.to.set.marker

•. Or.rotate.dial.to.move.marker See.Figure.12.A.3.for.more.details.

12.A.3.2 General Guidelines and Notes Setting.the.resolution.and.bandwidths.(BWs)

•. Resolution.bandwidth.controls.the.density.of.frequencies.displayed..Lower.resolution.BWs.

will.have.a.cleaner.display.but.at.the.expense.of.accuracy

•. BW.settings.are.displayed.on.the.top.right.of.the.screen

•. A.video.BW.setting.rule.of.thumb.is.ResBW/10 General.Method.to.set.BW

. 1..Press.the.BW.function.key . 2..Press.the.manual.Res.BW.soft.key

. 3..Use.the.up/down.arrows.or.alphanumeric.keypad.to.enter.100.kHz . 4..Press.the.“manual.video.BW”.soft.key

. 5..Use.the.up/down.arrows.or.the.alphanumeric.keypad.to.enter.10.kHz

–30

Detect : Auto PK

Ref : –20 dBm Trig : Freq

Trace : CI/Wr RBW: 300 kHz VBW: 300 kHz SWT: 100 ns –40

–50 –60 –70 –80 –90 –100 –110

Center: 100 MHz

SPAN: 10 MHz Span: 10 MHz MANUAL

SPAN : FULL

SPAN ZERO

SPAN LAST

SPAN :

: :

FIGURE 12.A.3 More.details.

•. To.facilitate.our.measurement.readings,.we.will.activate.“Video.Averaging”

•. Press.the.Trace.function.key

•. Press.the.Trace.Mode.soft.key

•. Use.the.up/down.arrow.or.the.dial.to.select.average

•. Save.settings 12.A.3.3 Other

•. Monitor.the.relative.interference.amplitude.using.the.spectrum.analyzer

•. Your.measurements.should.correspond.with.the.gridlines

•. Throughout.your.measurements,.maintain.consistency.with

•. Relative.orientation.with.respect.to.the.spectrum.analyzer,.e.g.,.antenna.orientation

•. Your.body.position.relative.to.the.spectrum.analyzer.antenna

•. Observers.should.maintain.a.good.distance.away.so.as.not.to.interfere.with.the.measurements 12.A.4 oveRvIewof woRk meAsuRementAnd tImes studIes

12.A.4.1 Brief History of Industrial Engineering

A.good,.detailed.overview.and.introduction.to.industrial.and.systems.engineering.is.provided.by.

Turner,.Mize,.and.Case.(1987);.we.provide.a.brief.overview..Work.measurement.and.time.studies.

is.a.common.skill.that.is.developed.by.industrial.engineers..Though.it.is.a.foundational.skill,.most.

industrial.engineers.utilize.this.understanding.to.implement.ERP,.WMS,.and.other.decision.support.

systems.in.today’s.workforce..Operations.research,.statistical.quality.control.(SQC),.and.logistics.

training. provide. future. decisions. support. decision. designers. for. complex. computer. systems,. six.

sigma. black. belt’s. and. champions,. and. logistics. engineers,. respectively.. Before. our. overview. of.

work.measurement,.we.will.provide.an.overview.of.today’s.industrial.engineer.

The.following.formal.definition.of.industrial.engineering.(IE).has.been.adopted.by.the.institute.

for.industrial.engineers:

Industrial.Engineering.is.concerned.with.the.design,.improvement,.and.installation.of.integrated.systems.

of.people,.materials,.information,.equipment,.and.energy..It.draws.upon.specialized.knowledge.and.skill.

in.the.mathematical,.physical,.and.social.sciences.together.with.the.principles.and.methods.of.engineer- ing.analysis.and.design.to.specify,.predict,.and.evaluate.the.results.to.be.obtained.from.such.systems.

Although. the. term. industrial. is. often. associated. with. manufacturing. organizations,. here. it. is.

intended.to.apply.to.any.organization..The.basic.principles.of.IE.are.being.applied.widely.in.agri- culture,.hospitals,.banks,.government.organizations,.and.others.

There.is.considerable.commonality.among.the.different.branches.of.engineering,.each.branch.has.

distinguishing.characteristics.that.are.important.to.recognize..IE.emerged.as.a.profession.as.a.result.

of.the.industrial.revolution.and.the.accompanying.need.for.technically.trained.people.who.could.

plan,.organize,.and.direct.the.operations.of.large.complex.systems..In.1880,.industrial.operations.

were.conducted.in.more.of.specialty.jobs.shop.manner.and.many.first-line.supervisors.commonly.

abused. the. workers.. Most. operations. did. not. provide. training. or. procedures. and. so. supervisors.

managed.from.personal.perspective,.commonly.abusing.good.workers.who.they.personally.did.not.

care.for..Supervisors.were.expected.to.work.as.hard.as.he.could..Any.improved.efficiency.in.work.

methods.usually.came.from.the.worker.himself.in.his.effort.to.find.an.easier.way.to.get.his.work.

done..There.was.virtually.no.attention.given.to.overall.coordination.of.a.factory.or.process.

12.A.4.1.1 Emergence of Work Measurement

Frederick.W..Taylor.commonly.referred.to.as.the.father.of.scientific.management.and.IE.is.credited.

with.recognizing.the.potential.improvements.to.be.gained.from.analyzing.the.work.content.of.a.job.

and.redesigning.the.job.for.greater.efficiency..Taylor’s.methods.brought.about.significant.and.rapid.

RFID System Design 159 increases.in.productivity..Later,.developments.stemming.from.Taylor’s.work.led.to.improvements.in.

the.overall.planning.and.scheduling.of.an.entire.production.process.

Frank.B..Gilbreth.extended.Taylor’s.work.by.his.contribution.work.management,.which.involved.

the.identification,.analysis,.and.measurement.of.fundamental.motions.involved.in.performing.work..

Work.motions.were.classified.as.“reach,”.“grasp,”.“transport,”.and.so.on,.and.by.using.motion.pic- tures.of.workers.performing.their.tasks,.Gilbreth.was.able.to.measure.the.average.time.to.perform.

each.basic.motion.under.varying.conditions..This.permitted,.for.the.first.time,.jobs.to.be.designed.

and.the.time.required.to.perform.the.job.known.before.the.fact..This.was.a.fundamental.step.in.the.

development.of.IE.as.a.profession.based.on.“science”.rather.than.“art.”

Time.studies,.as.it.is.practiced.today.at.companies.such.as.United.Parcel.Service.(UPS),.consist.

of.understanding.operations,.following.best.practices,.and.allowing.for.a.normal.work.pace..Work.

measurement.and.standardizing.operations.is.the.precursor.to.performing.a.time.study..Workers.

who.are.timed.should.be.seasoned.workers.who.have.been.trained.in.prescribed.work.methods,.

and.should.be.timed.on.a.normal.day..Consequently,.time.studies.are.mostly.used.to.confirm.a.pre- determined.motion.system.

Gilbreth’s.work.derived.into.databases.that.have.captured.this.information.over.many.different.

environments.into.databases.that.can.create.predetermined.work.standards..These.predetermined.

work.measurement.systems.such.as.MODAPS,.MTM,.and.others.are.computerized.and.consulting.

firms.implement.standards.using.these.systems..Most.consultants.boast.a.20%.increase.in.worker.

productivity.implementing.these.standards.

Another.early.pioneer.in.IE.was.Henry.L..Gantt,.who.devised.the.so-called.Gantt.chart..The.

Gantt.chart.was.a.significant.contribution.in.that.it.provided.a.systematic.graphical.procedure.for.

preplanning.and.scheduling.work.activities,.reviewing.progress,.and.updating.the.schedule..Gantt.

charts.are.still.in.widespread.use.today.

W.A..Shewhart.developed.the.fundamental.principles.of.SQC.in.1924..This.was.another.impor- tant.development.in.providing.a.scientific.base.to.IE.practice..Many.other.IE.pioneers.contributed.

to.the.early.development.of.the.profession..During.the.1920s.and.1930s,.much.fundamental.work.

was.done.on.economic.aspects.of.managerial.decisions,.inventory.problems,.incentive.plans,.factory.

layout.problems,.material.handling.problems,.and.principles.of.organization.

12.A.4.1.2 More on Industrial Engineering

The.period.from.1900.to.1930.is.generally.referred.to.as.scientific.management..The.next.IE.period.

begins.in.the.late.1920s.and.is.shown.extending.to.the.present.time..This.period.is.when.operations.

research.begins.to.influence.IE.practices..Next.period.of.IE.includes.computer.systems.and.distribu- tion.and.logistics.and.continues.to.grow..Though.not.an.exhaustive.list.of.all.IE.teachings.such.as.

total.quality.management,.Six.Sigma,.Lean,.JIT,.manufacturing.engineering,.and.others.are.com- monly.taught.in.IE,.the.foundational.periods.provide.foundations.for.the.latter.

12.A.4.2 Industrial Engineering Organizations

Much.can.be.learned.about.any.profession.by.tracing.the.organizations.that.members.of.the.profes- sion.form.and/or.join..The.American.Society.of.Mechanical.Engineers.provided.the.first.forum.for.

a.discussion.of.the.works.of.die.early.pioneers,.particularly.Taylor.and.his.associates..Then,.in.1912,.

the.Society.to.Promote.the.Science.of.Management.was.formed..The.name.was.changed.in.1915.to.

the.Taylor.Society.

The. Society. of. Industrial. Engineers. was. formed. prior. to. 1920.. The. American. Management.

Association.was.formed.in.1922,.and.many.industrial.engineers.were.active.in.this.organization..In.

1934,.the.Taylor.Society.and.the.Society.of.Industrial.Engineers.were.combined.to.form.the.Society.

for.die.Advancement.of.Management.

The.American.Institute.of.Industrial.Engineers.(AIIE).was.founded.in.1948..The.AIIE.provided,.

for.the.first.time,.a.professional.organization.devoted.exclusively.to.the.interests.and.development.of.

Dalam dokumen RFID and Auto-ID in Planning and Logistics (Halaman 182-197)