Journal of Sound and Vibration 505 (2021) 116135
ContentslistsavailableatScienceDirect
Journal of Sound and Vibration
journalhomepage:www.elsevier.com/locate/jsv
A graph-theory approach to optimisation of an acoustic absorber targeting a specific noise spectrum that approaches the causal optimum minimum depth
Ian Davis
a,∗, Andrew McKay
b, Gareth J. Bennett
baEfficient Energy Transfer ( ηET) Department, Nokia Bell Labs, Blanchardstown Business & Technology Park, Dublin 15, Ireland
bDepartment of Mechanical & Manufacturing Engineering, Trinity College Dublin, Dublin 2, Ireland
a rt i c l e i nf o
Article history:
Received 7 September 2020 Revised 16 March 2021 Accepted 12 April 2021 Available online 14 April 2021 Keywords:
Sound absorption Optimisation Graph theory Metamaterials Numerical modelling
a b s t ra c t
Equivalent circuit analysis is a powerful tool for analysing acoustic systems where a lumped elementmodelisvalid.Theseequivalentcircuits allowanoverallimpedanceof thestructuretobeestimatedwhichfacilitatespredictionsofthereflectivity,transmissibil- ityand/orabsorptivityofthesystem.Complexacousticsystemsarerepresentedbynon- planarequivalentcircuitswhicharechallengingtosimplifytoasingleoverallimpedance valueusingtraditionalKirchoff’sLawsimplifications.Atwo-pointimpedancemethodus- inggraphtheoryallows theimpedanceofacircuitto beestimated withoutsimplifica- tion.Thegraphtheorymethodisappliedtoatypeofacousticabsorberstructurenamed SeMSA (SegmentedMembraneSound Absorber)whichhadpreviouslybeen investigated foratwo-segmentcelldesign.ThismethodallowstheSeMSAanalysistobeexpandedto multi-sectordesignswithawiderparameterspace.Alocaloptimisationroutineisapplied tothegraphtheoryimpedanceestimationtomaximiseacousticabsorptionofSeMSAun- derconsiderationofabsorberdepth,causaloptimalityandthetargetednoisespectra.An- alyticalpredictionsarevalidatedusingnumericalsimulations.Theoptimisedmulti-sector absorberdemonstrates70.5%whitenoiseabsorptioninthe20–4500Hzfrequencyrange withanabsorberdepthof16mmandisjust0.5mmfromthetheoreticalminimumdepth toachievethisabsorptionresponse.
© 2021 The Authors. Published by Elsevier Ltd.
ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/)
1. Introduction
Acousticmaterialsforsoundabsorptionhaveevolvedsignificantlyfromtraditionalbulkporous/fibrousabsorberstomod- ernmaterialssuchasmembrane-basedmetamaterials[1],absorbersconsistingofarrangementsofaxially-coupledchannels [2], acousticblack holes that direct acoustic wavesto an absorptivecore[3] andcoiled Helmholtz resonators [4]. These modern materialstypicallytargetsub-wavelengthabsorptioni.e.absorptioncoefficientsofclosetounityareachievedwith materialdepthsoforder
λ
/100,whereλ
istheacousticwavelength.Asummaryofrecentdevelopmentmaybefoundina∗Corresponding author.
E-mail address: [email protected] (I. Davis).
https://doi.org/10.1016/j.jsv.2021.116135
0022-460X/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
Fig. 1. A cylindrical Segmented Membrane Sound Absorber (SeMSA). The cylindrical volume is divided into two air cavity segments by a microperforated plate.
recentreviewpaperbyYangetal.[5].Traditionalbulkabsorberssuchasmelamineorpolyurethaneacousticfoamsgenerally exhibitpoorabsorptionperformancebelow1kHzunlessdepthsoforder100mmareused[6].
While differentmetamaterials utilisedifferentphysicalphenomenasuch asFabry-Perotresonances[7]andelastic cur- vature profilesinside amembrane-plateletsystemthat coupleweaklywithacousticradiation[1],mostmetamaterialsare basedonresonantsystemsthatabsorbeffectivelyinnarrowfrequencybands.Extendingthisfrequencyrangetowiderband- widthsisdesirableinordertocreatebroadbandsoundabsorptioninasmallfootprint.Thekeychallengeforextendingthe absorption bandwidthofan acousticabsorber isatlow frequencieswheretheabsorberdepthissmallerthantheacoustic wavelength.
Anotherkeyconsiderationforthedesignofacousticmaterialsisthesimplicityoftheirconstruction.Inpractical terms theefficacyofanacousticabsorbers(astypicallycharacterisedbyitsabsorptionperunitdepth)mustbeconsideredalong- side thecostandcomplexityofmanufacturingthematerial.Furthermore,ifanacousticabsorberisbeingmanufacturedat scale andacrossa variety ofenvironments andtargetedsoundsources, itisdesirable that theperformance ofthe mate- rialmaybepredicted,tuned andoptimisedforthespecificapplicationunderconsiderationofavailablevolume,thesound sourcespectrumandotherenvironmentalfactors.
Absorber technologiesthat are made up oflinear combinationsof resistiveandreactive elements canbe represented bylumped-elementmodels.Theselumped-elementmodelsallowtheimpedanceoftheacousticmaterialtoberepresented usingequivalentmechanicalorelectriccircuitmodels [8],andcircuitsimplifications usingKirchoff’sandOhm’sLawscan allowthecircuittobesimplifiedtoasingleoverallimpedancevalue.Oncesimplified,thecircuitcanbeoptimisedtoachieve atargetedabsorptionprofilesuchasmaximalwhitenoiseabsorptioninaprescribedfrequencybandinagivenvolume,as wasdemonstratedusingthe SeMSA(SegmentedMembraneSoundAbsorber)technology [6].Dondaetal.[9]alsopresent an acousticabsorber thatusesanetworkoflumped elementstotargetnarrowband,highabsorptionwithabsorberdepths ofjust
λ
/527.In the SeMSA technology previously investigated in McKay et al. [6]and shownin Fig. 1, the incident sound causes resonance ofthe membrane-cavity systems which are coupledthrough a microperforatedplate. Thedifferential pressure betweenthetwo cavitiesdrives airthroughthemicroperforateswherethereare largevisco-thermallosses. Soundis also absorbedbydampinginsidethemembranes.SeMSAhadpreviouslybeeninvestigatedforatwo-segmentcylindricaldesign withan equivalentcircuitmodel(see Fig.2(a)) basedonthe impedancesofthetwo membranesplus addedmasses(zm1
I. Davis, A. McKay and G.J. Bennett Journal of Sound and Vibration 505 (2021) 116135
Fig. 2. Comparison between the impedance estimated by simplifying the equivalent circuit shown in (a) to the two-point impedance model based on Tzeng & Wu’s graph theory approach [13] which analyses the adjacency matrix shown in (b).
andzm2),thetwoaircavityvolumes(zc1 andzc2)andthemicroperforatedplatedividingthetwoaircavities(zmpp).Alocal absorptionroutinewasusedtotunethecircuitimpedances(andhencegeometricparameters)toachieve significantwhite noiseabsorptionintherange20–1200Hzatarangeofoveralldepths.
InordertoextendtheanalysisofSeMSAtomorecomplexdesignswithmoresegmentsorsectorsthanthetwo-segment design showninFig.1, amore complexequivalentcircuitwouldbe requiredthan Fig.2(a). Asthe numberofsectorsor segmentsincreasestherewillbemultiplemicroperforatedplatesdividingadjacentaircavitieswhichresultsinanon-planar equivalent circuit. Adding additional parameters to the model allows for additional tuneability ofthe overall impedance which mayextend the bandwidth of the absorber’s performance or allow multiple narrowband frequencyranges to be targeted. However, as the complexity of the circuit increases it becomes more challenging to simplify the circuit using a system of−Y andY− transforms.Examplesimplifications of threeand four-sector SeMSAcellsmay be found in sectionS1ofthesupplementarymaterial.Itisproposedthatratherthanattemptingtosimplifythesecomplex,non-planar circuits thatan alternativeapproachistakenby applyinga graphtheory methodtocalculatetheimpedancebetweenany two nodesof anycircuit regardless of its complexity(a two-point impedance model).This method doesnot necessitate simplificationofthecircuit.
Inthispaperthetwo-pointimpedancemodelbasedongraphtheoryisfirstvalidatedagainstaKirchoff’sLawsimplifica- tionofatwo-segmentSeMSAimpedancemodel.Thegraphtheorymethodisthenappliedtomulti-sectorcylindricalSeMSA designswithinalocaloptimisationroutineinordertoachievemaximalabsorptioninthefrequencyrange20–4500Hzata rangeofcelldepths.Thismethodmaybeappliedtoanyacousticsystemwherealumpedelementmodelisvalidwhether thegoalissoundabsorptionornotandisparticularlyusefulforanalysingcomplexacousticsystemswithmultipleparallel branchespernode.Acylindricalcelldesignhasbeenselectedtoallowcomparisonwithapreviousstudyofatwo-segment SeMSAdesign[6]andfacilitatefutureexperimentaltestsusingacylindricalimpedancetube.
2. Two-pointimpedancemodelusinggraphtheory
Graphtheory isthe studyofstructures whichrepresenttherelationsbetweenobjects.Thegraphsthat arestudiedare madeupofmultipleverticesornodesandtheconnectionsbetweenthesenodeswhichareknownasedgesorlinks.Graph theory isapplied in a wide range offields frommathematical topology [10] to the analysisof social media interactions [11]andallowsforverycomplexnetworksofverticesandedgestobestudied.
A graphtheory approach maybe applied to solvethe two-point resistances betweenarbitrarynodes ina real-valued resistancenetworkregardlessoftheorderornumberofdimensionsofthecircuit[12].Thissameapproachmaybeextended toRLCcircuitswithcomplex-valuedimpedances[13].Electricalcircuitscanbethoughtofasfinitegraphswheretheedges arethecircuitelements(RLCcomponents)andtheverticesarethepointsbetweenthesecircuitelements.
Finitegraphsaremathematicallydescribedbysquarematriceswhichrepresenttheconnectivitybetweennodes/edgesin thenetwork. Theadjacencymatrixisasymmetricmatrixwhichdescribestheadmittances(reciprocaloftheimpedances) betweentheN nodesinthenetwork:
Y=
⎛
⎜ ⎜
⎝
0 y12 ... y1N
y21 0 ... y2N
..
. ... ... ... yN1 yN2 ... 0
⎞
⎟ ⎟
⎠
(1)The elementsyi j are theadmittancesbetweennodesi and j.The degreematrixisadiagonal matrixwhichdescribesthe totaladmittanceconnectedtoeachnodeinthenetwork:
D=
⎛
⎜ ⎜
⎝
d1 0 ... 0 0 d2 ... 0
..
. ... ... ... 0 0 ... dN
⎞
⎟ ⎟
⎠
(2)Eachelementonthemaindiagonalofthedegreematrixdiisthesumofalladmittancesconnectedtonodei: di=
N j=1
yi j where i=j (3)
ALaplacematrixLisformedfromtheadjacencyanddegreematricesofthenetwork:
L=D−Y (4)
InordertocalculatetheimpedanceofthenetworkrepresentedbytheLaplacematrixLthefollowingeigenvalueequation issolved:
L†L
ψ
β=η
βψ
β,η
β≥0,β
=0,1,...,N. (5) where † denotes the hermitian conjugation,η
β are the eigenvalues andψ
β are the eigenvectors of L†L. Details on the regularisationandpotentialforsingularitieswhensolvingthisequationwillbeomittedforbrevity,butcanbefoundinthe originalarticle[13].Oncethiseigendecompositionhasbeenperformedtheimpedancebetweenanytwonodesiand jmay becalculatedasfollows:Zi j= N β=2
1
η
β( ψ
βi−ψ
βj)
2 (6)The impedanceofan acousticsystemsuch asa soundabsorberwhich maybedescribedby a lumped-elementmodel may be represented by an electrical circuit analogy, assuming that flow effects and non-linear effects maybe assumed to be negligible. Theimpedance betweenanytwo nodesin thisequivalentcircuit maythereforebe calculated usingthe graph theory method described above. In order to validate this approach, the impedance calculated for a two-segment cylindricalSeMSAabsorberisfoundbysimplifyingthecircuit(seeFig.2(a))toasingleimpedancevalueusingKirchoff’sLaw simplifications (seetheoriginal article[6]fordetail) andcomparedwiththeimpedancevaluecalculated usingEq.6.The two impedancevaluesarecomparedforarangeoffrequenciesinFig.2(c).Thetwoimpedancevaluesareidenticalwhich demonstrates the efficacy ofthe graph theory approach.This graph theory method isapplied to more complex acoustic systemsinthefollowingsections.
Foranelectroacousticcircuitanalogy,thereflectioncoefficientofthematerialundernormal-incidencecanbecalculated fromthetwo-pointimpedancecalculatedfromthegraphtheorymethod:
R1N =
(
zˆ1N−zˆ0)
/(
zˆ1N+zˆ0)
(7)where zˆ0 isthe characteristicspecific impedanceofthefluid medium.Notethe (ˆ·) symboldenotes that thisis aspecific impedanceinunitsofRaylsorkg/m2s.Theother impedanceelementsdiscussedhereinwithouta (ˆ·)symbol areinunits
I. Davis, A. McKay and G.J. Bennett Journal of Sound and Vibration 505 (2021) 116135
Fig. 3. Isometric view of the cylindrical sound absorbers under investigation: a microperforated plate backed by a sealed air cavity, a two-segment SeMSA design and a multi-sector SeMSA design. The acoustic impedances are labelled for each example.
of kg/m4s andmust be convertedto a specificimpedance value beforeestimating thereflectioncoefficient. The normal- incidenceacousticabsorptioncoefficientmaybecalculatedfromthereflectioncoefficient:
α
=1−|
R1N|
2 (8)Note that the acoustic impedances, reflection coefficients andabsorption coefficientsare dependent on the frequency f whichhasbeenomittedforbrevity.
Thekeybenefitofthegraphtheorymethoddiscussedhereinisitssimplicity.Alternativemethodsofanalysingacoustic networkssuch asthe generalisedtwo-portmobility-matrixformalismintroduced byGlav and ˚Abom[14]alsoaccount for flow effects, makingit a veryusefulmodel forestimatingimpedances inflow ductsforexample. Theacoustic absorbers analysedhereinaregeometricallycompactwithrespecttotheacousticwavelengthandthereforealumpedelementmodel isconsideredvalid.
3. SeMSAwithmultiplesectors 3.1. Lumpedelementimpedances
Theproposed soundabsorberdesignisan evolutionofthetwo-segmentSeMSAdesigntoamorecomplexmulti-sector design.Theabsorbergeometryisstillcylindrical,butinsteadofbeingsubdividedintotwosegmentsthecylindricalvolume issubdividedintoNsectors. Acylindricalgeometryisusedsothatthemulti-sectorSeMSAmaybeexperimentallyinvesti- gated usingacylindricalimpedancetube(in thesamemannerasthetwo-segmentdesign [6]),although thestudyherein islimitedto analyticalpredictionswithnumericalvalidation.Inordertoanalyticallycomparethe morecomplexsectored SeMSAdesignswithexistingdesigns,themicroperforatedplatesoundabsorberbackedbyasealedaircavityexaminedby Maa [15]as well as the two-segment SeMSA design are used asbenchmarks. The threeabsorber typesinvestigated are shownschematicallyinFig.3.
Inalumpedelementsystemtheindividuallumpedimpedancescanbethoughtofasboththebuildingblocksandtune- ableelementsoftheoverallsystem.Forexample,awoodwindinstrumentcanbeanalysedusinglumpedelementstopredict thetonalityandtimbreofits responsewithdifferentfingerings[16].Foran absorberweseektotunetheelementslikea musicalinstrumenttoachieveadesiredabsorptionresponse.Therearethreebuildingblocksweuseinthemicroperforated plateabsorberandSeMSAdesigns(eachoftheseacousticimpedancetermshaveunitskg/m4s):
zmi=
ζ
+ jω
0miS2i (9)
zci= kci
j
ω
0where kci=c20
ρ
0SiD (10)
zmppi=−ˆz0
jk0
σ
iJ0
di 2 −jω0ν0
J2
di 2 −jω0ν0
[t+0.85di·( σ
i)
]Smpp (11)
Table 1
Definitions of symbols representing the physical parameters listed in Table 2 for the acoustic absorbers shown in Fig. 3 .
Symbol Physical parameter Units Minimum value Maximum value
N Number of subdivisions in multi-sector cell 3 7
R SeMSA cell radius mm 20 40
D SeMSA cell depth mm 10 50
σi Porosity of plate i 0 0.25
t i Thickness of plate i mm 0.1 1
θi Angle between plate i and plate (i −1) rads 2 π/N0 . 25(2 π/N) 2 π/N+ 0 . 25(2 π/N)
d i Diameter of holes in plate i mm 0.2 1
m i Mass of membrane & added mass at sector i g 0.02 1 ζ Damping inside membrane kg/m 4s 2 . 78 ×10 5 2 . 78 ×10 5
Table 2
Parameter space for the sound absorbers under study (see Fig. 3 ) for a fixed cell radius R : a microperforated plate backed by a sealed air cavity, a two-segment SeMSA design and an N-sector SeMSA design where N > 2 .
Absorber type z mParameters z cParameters z mppParameters No. of parameters
Microperforated Plate – D σ;t;d 4
Two-Segment SeMSA m 1, m 2; ζ D ;θ σ;t ;d 8
Three-Sector SeMSA m 1, m 2, m 3; ζ D ;θ1, θ2 σ1, σ2, σ3;t 1, t 2, t 3; d 1, d 2, d 3 16 Four-Sector SeMSA m 1, m 2, m 3, m 4; ζ D ;θ1, θ2, θ3 σ1, σ2, σ3, σ4; t 1, t 2, t 3, t 4; d 1, d 2, d 3, d 4 21 . .
. . . . . . . . . . . . .
N-Sector SeMSA m 1, m 2, . . . , m N; ζ D ; θ1, . . . , θN−1 σ1, . . . , σN; t 1, . . . , t N; d 1, . . . , d N 5 N + 1
where
ω
0 intheangularfrequency,zˆ0isthecharacteristicimpedanceofthefluidmedium,ν
0isthekinematicviscosityof the fluidmedium, k0 isthewavenumber,ρ
0 is thedensity of the fluidmedium, j=√−1andJn are thenthorder Bessel functions. TheFok function(
σ
i)accountsforhole-to-holeinteractions[17].Manyalternativeestimations ofthe acoustic impedanceofamicroperforatedplateimpedanceareavailable;Eq.(11)wasselectedasitmatchestheimplementationused by the COMSOL’sinteriorperforatedplateboundarycondition[18]whicheases comparisons betweentheanalysisherein andanumericalmodel.Thismicroperforatedplateimpedancemodelassumesthatthermaleffectsarenegligiblecompared toviscouseffects,platevibrationsarenegligibleandnon-lineareffectsareignored.TheequationsdescribingimpedanceszmandzcmaybefoundinMerhaut[8].
ThecavityareatermSivariesdependingonthetypeofabsorberbeinginvestigated:
Si=
⎧ ⎪
⎨
⎪ ⎩
Scell, foramicroperforatedplateabsorber,wherei=1. 0.5
( θ
−sin( θ ))
R2, foratwosegmentSeMSAdesign,wherei=1. Scell−0.5( θ
−sin( θ ))
R2, foratwosegmentSeMSAdesign,wherei=2. Scell( θ
i/2π )
forallmulti-sectorSeMSAdesigns.(12)
whereScell=
π
R2.DefinitionsforallothertermsmaybefoundinTable1.Allparametersaregeometricandthereforefreelytuneablewiththeexceptionof
ζ
,thedampingfactorinsidethemembrane.Thisparametermustbeestimatedempirically.In thisstudythedampingparameterfor0.2mmlatexmembraneasdeterminedbyMcKayetal.[6]isapplied.Theparameter spaceincreasesasmoresectorsareaddedaspertable2.Themicroperforatedplatethicknesscanbeaslowas0.1mmwhich wouldmaketheassumptionofnegligibleplatevibrationsinaccurate,howeverinapracticalimplementationathickerplate maybe usedwhoseplatethicknessisreducedlocallytothemicroperforationsby counter-boringlarger diameterholes in serieswiththemicroperforatedholes.FormoredetailsonthismanufacturingprocessseeMcKayetal.[6].3.2. EffectofcellsizeontheimpedanceofaSeMSAabsorber
For thecaseof acircularcell, the area oftheMPPs isproportional to the cellradius butthe area ofthe membranes andprojectedareaofthecavitiesarebothproportionaltothesquareoftheradius.Eqs.(9)–(11)thenshowthatzmi∝1/r4 (or zmi∝1/r2 ifthearealdensity,mi/Si, iskeptconstant),zci∝1/r2 andzmppi∝1/r.Thismeans that asthe cell radius is changed,theimpedancesofthecell’scomponentsdonotallchangeatthesameratewhichleadstoachangeinabsorption responsewithcellsize.
Formostother SeMSAarrangements a similar argumentholds:the sizeof thecell cannot beincreasedin awaythat causesallthemembraneareasandMPPareastogrowatthesamerate.Onecounterexampleisthatofarectangulartwo- segment SeMSAwhichisallowed togrowalong onedimensionto whichtheMPPisalignedandthearealdensityofthe membraneiskeptconstant.
I. Davis, A. McKay and G.J. Bennett Journal of Sound and Vibration 505 (2021) 116135
Fig. 4. Adjacency matrices and circuit layouts for multi-sector SeMSA designs. The vertical connections between node 1 and nodes ( 2 , . . . , N + 1 ) have acoustic impedances z mi. The vertical connections between node N + 2 and nodes ( 2 , 3 , . . . , N + 1 ) have acoustic impedances z ci. The horizontal connections joining nodes ( 2 , . . . , N + 1 ) have acoustic impedances z mppi.
3.3. Graphtheorymodel
TheLaplacematrixrepresentationoftheimpedancesoftheequivalentcircuitsfortheabsorberdesignsunderinvestiga- tionwillhaveanincreasingnumberofnodesN asthenumberofdesignsparametersincreases:
N =
2, foramicroperforatedplateabsorber.N+2 forallSeMSAdesigns. (13)
The adjacency matricesfor arange ofmulti-sector SeMSA designs are shownin Fig. 4.This demonstrates that thenon- planarequivalentcircuitsformulti-sectorSeMSAdesignshaveabipyramidstructure.NotethattheLaplacematrixapproach toestimatingtheimpedancesisnotlimitedtotheSeMSAdesignsbutcouldbeappliedtoanyacousticsystemregardlessof theshapeandlayoutofitsequivalentcircuit,assumingalumped-elementmodelisvalid.
4. Causaloptimality
Theacousticcausalityconstraint[7]tellsusthetheoreticalminimumdepththatcanachieveagivenabsorptionspectrum
α
(λ
),wherewhereα
isthenormal-incidenceabsorptioncoefficientandλ
istheacousticwavelength:D≥ 1 4
π
2Beff B0
∞
0
ln[1−
α ( λ )
]dλ
=Dmin (14)whereBeffrepresentsthebulkmodulusofthesoundabsorberinthestaticlimit.ForthemicroperforatedplateandSeMSA designs underinvestigationthisstaticlimitisequaltothebulkmodulusofairB0 becausethemembranephysicsisaccu- rately represented asa limp mass(under the assumptionof nopre-tension andnegligiblebending stiffness).If thelimp membranewastensionedorstiff thenBeffwouldbeequaltoB0plustheadditionalstiffeningeffect.AccordingtoEq.(14)it isnotpossibletoachievebroadbandperfectabsorptioninafinitethicknessbutitispossibletohavepeakswheretheab- sorptionisperfectatasinglepoint.Theequationalsoshowsusthattheminimumthicknessofanabsorbertoachievehigh absorptioninawidefrequencybandisdominatedbytheabsorptionresponseatlowfrequencies/largewavelengths.
In reference to the absorption coefficient spectra for the the acoustic absorbers underinvestigation, it is prudent to comparetheactualdepthoftheabsorberDusedtoachieveagivenabsorptionspectrum
α
(f)withthetheoreticalminimum depthachievableascalculatedbyEq.(14):D=Dmin
( α )
−D (15)As Dtendstowardszerotheabsorptionspectrumisclosertothecausallimitthatisachievableattheprescribed depth.
For a singleabsorber design we can calculate themean offset fromthe actual absorber depth andthe causally optimal minimumdepth:
Dm= 1 ND N
D i=1
(
Dmin( α
i)
−Di)
(16)
whereiistheindexofthedepthoftheabsorber,
α
iistheabsorptionspectrumgeneratedbytheabsorberunderinvestiga- tionatdepthiandandNDisthenumberofabsorberdepthsinvestigated.Intheresultsdiscussedbelow21absorberdepths aretestedfrom10mmto50mmat2mmincrements.5. Objectivefunctionforoptimisation
The performance ofanacoustic absorbermaybe quantified bylinearaveraging oftheabsorption coefficientspectrum inadefinedfrequencyrangetogiveanoverallabsorptioncoefficient,
α
¯.Thisapproachwaspreviously appliedtothetwo- segmentSeMSAdesigninthefrequencyrange20–1200Hz.Inordertoextendthisanalysis,theoverallabsorptioncoefficient maybeconsideredalongsidethedepthoftheabsorber(D)andhowcloselyitreachesthecausallimit(D)tofurtherquan- tifyits effectiveness.Furthermore,simply averagingthe absorptioncoefficient spectrumis onlysuitable forcharacterising the effectiveness of the absorber forspectrally-flat (white noise)absorption. If the targetedsound source forabsorption has a non-white noise spectrumit is sensibleto consider the powerspectrum of the soundsource when estimatingan absorber’seffectiveness.Considerasourcesoundwhosesoundspectrumisdescribedbythediscreteauto-spectraldensityfunctionGxx[k]where k isthefrequencybinindex. Thesoundpowerreductionthat asoundabsorber witha discreteabsorption spectrum
α
[k]wouldachieveinDecibelsisgivenby:
Cα=10log10
(
1−cα)
(17)wherecα istheoverallabsorptioncoefficentweightedbythesoundspectrumofthetargetednoisesource:
cα=
k2
k=k1
α
[k]Gxx[k]k2
k=k1
Gxx[k]
(18)wherek1 isthefrequencybinindexofthelowestfrequencyandk2isthefrequencybinindexofthehighestfrequencyin thebandwidthofinterest.
ThesoundpowerreductionfactorCα providesasuitablecostfunctionthatcanbeminimisedinanoptimisationroutine inordertogeneratetheparametersetforasuitableN-SeMSAdesign.Thestepsforthisoptimisationareasfollows:
1. ThecelldepthD,cellradiusRandnumberofsubdivisionsNareprescribed/fixed.
2. AninitialparametersetisselectedasthemeanvaluesoftheremainingfreeparametersinTable2.
3. An optimisation routine (interior-point stochastic gradient descent algorithm) minimises the cost function Cα in Eq.(17)by modifying thefree parameters within the boundsspecifiedin Table1.The absorption spectrum
α
isesti-matedfromtheacousticimpedancez1N calculatedfromEq.(6).
4. Theoptimalabsorptionspectrumisreturnedbytheoptimisationroutineaswellastheparametersetthatachievedthis result.
ThisprocedureensuresthattheoptimisationroutinegeneratestheidealSeMSAgeometricparametersforthetargetsound spectrum.
6. Results
6.1. Analyticalsimulations
Fig. 5 showsthe predicted absorption responses of the three absorber types tested: a microperforated plate, a two- segment SeMSAdesign anda rangeofmulti-sector SeMSAdesigns with(N=3,...,6).The absorber sizewasfixed with R=40mm.ThecostfunctioninEq.(17)hasbeenminimisedinordermaximisewhitenoiseabsorptioninthe20–4500Hz frequencyrange(Gxx[k]=1,forallk).Thisoptimisationprocedurewasrepeatedforarangeofabsorberdepths.Themini- mumdepth(10mm)caseisshowninblue,themaximumdepth(50mm)caseisshowninredandtheintermediatedepths aregradedbetweenblueandred.Astheabsorberdepthisincreasedtheabsorptionbandwidthextendstolowerfrequencies foreachdesign,asispredictedbyEq.(14).
Forthe microperforatedplatedesign,the bandwidthof theabsorber doesnot extendastheabsorber depth increases butthefrequencyresponseshiftstolowerfrequencies,bringingmoreabsorptionintothefrequencyrangeunderstudy.For
I. Davis, A. McKay and G.J. Bennett Journal of Sound and Vibration 505 (2021) 116135
Fig. 5. Absorption spectra for a range of absorber depths from 10 mm (dark/blue) to 50 mm (light/yellow). Target spectrum = white noise. Frequency range = 20–4500 Hz. R = 40 mm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Overall absorption coefficient and causal optimality of a microperforated plate (MPP), two-segment SeMSA (2SS) and multi-sector SeMSA ( NSS, where N > 2 ) absorber. Target spectrum = white noise. Frequency range = 20–4500 Hz. Each curve is the absorption response at a different depth from 10 mm to 50 mm in 2 mm increments.
all theSeMSAdesignsthebandwidthextendsconsiderablyastheabsorber depthincreases.Itisdifficulttodiscern which SeMSA designperforms best intermsof overallabsorption by observingthe absorptioncurves,so the overallabsorption weighted by theinput sound spectrum (cα) isshown asa function ofabsorber depth in Fig.6(a). Forwhite noisecα is equal to thelinear averageof theabsorption curvesshownin Fig.5. Theoverall absorption increasesmarkedly between themicroperforatedplateabsorber(MPP)andallSeMSAdesigns.BetweenallSeMSAdesignstheoverallabsorptionisquite similar, butpeaks fora multi-sectordesign withN=4atthe maximumdepth. Atsmaller absorber depths closerto the minimumtheabsorptionresponse ishigherwhenmoresectorsareadded.Theoverallabsorption increasesmonotonically withabsorberdepthineachcase.
Fig. 7. Absorption spectra for a range of absorber depths from 10 mm (dark/blue) to 50 mm (light/yellow). Target spectrum = fan noise. Frequency range
= 20–4500 Hz. R = 40 mm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
TheoptimisationroutinewasrepeatedforasmallerabsorberdesignwithR=20mmwhichdemonstratesverydifferent behaviour to the R=40mm absorbers, seeFig. 6(b).In thisexamplethe two-segment SeMSA (2SS) clearlyoutperforms the other designsin termsofoverall absorptionatall depths. TheSeMSAabsorption performance decreases considerably as more sectors are added andactually performs worse than the MPP for N>3. The individual sectors are constrained to smallervolumesasthe numberofsectorsincreases whichlimitsthe abilityofthe optimisationroutine toextend the absorptionresponseofthemulti-sectorabsorberdesignswithinthissmalleroverallabsorbervolume.Notethatthemicrop- erforatedplate(MPP) absorber responseis identicalfortheR=20 mmandR=40mm casessince theimpedanceofan MPPabsorberisunaffectedbythecross-sectionaldimensionsoftheabsorber.
Fig.6(a)and(b)quantifytheabsorptionperformanceoftheabsorberdesignsanddemonstratethebenefitsandpotential limitationstoaddingmoresectorstoaSeMSAdesign.However,itisunclearbyanalysingtheabsorptioncoefficientsalone whetherwehaveachievedclosetothetheoreticallimitsofabsorptionperformanceateachabsorberdepth.Inordertoasses this, Eq.(16)wascalculatedusingeachoftheabsorptionspectrainFig.5asinputs.Thisquantifiesthedifferencebetween theactualabsorber depthandtheminimumabsorberdepththatcantheoreticallygeneratethesameabsorptionresponse, see Fig. 6(c) and (d). For the MPP absorber we see that the absorber is, on average, 18 mm from the causal optimum minimumdepthtoachievethesameabsorptionresponse.Thisshowsagreatdealofroomforimprovement,whichexplains howSeMSAisabletoachievesignificantlyhigherabsorptionresponseswithinthesamedepth.FortheSeMSAdesignsthe Dmvalue remainsbelow1mmforall designsforbothabsorbersizes. Interestingly,thisholds trueevenformulti-sector SeMSAdesignswhichshowloweroverallabsorptionresponsesforR=20mm.Thisisduetothefactthatthemulti-sector SeMSAabsorbersgenerateabsorptionpeaksatrelativelylowfrequencieswhichareclosetowhatistheoreticallypossibleat eachdepth,howeverthebandwidthoftheseabsorptionpeaksissmallandleadstolowercα values.Theabsorptionspectra fortheR=20mmabsorberdesignsmaybefoundinsectionS2ofthesupplementarymaterial.
In real acoustic mitigation scenarios the target soundsource(s) for absorption may not be spectrally flat asanalysed above. The optimisationroutine isrepeatedasabove withthecost function(see Eq.(17)) modifiedby a changeofinput spectrum Gxx[k].Inthiscasethe auto-spectraldensityfunctionGxx[k] estimatedfora compactaxialfan (SanyoDenkiSan Ace,120mmdiameter)frommicrophonemeasurementstakeninsideananechoicchamberisusedtoweightcα inEq.(18). Theanalysedfrequencyrangeismaintainedat20Hzto4500Hz.TheabsorptionspectraforarangeofoptimisedR=40mm absorbers are shown in Fig. 7 that target the acoustic signature of this axial fan. The normalised auto-spectral density functionofthefanisalsoshownineachsub-figurewithblack-dashedlines.
The absorptionspectraforthefan noisecasedemonstrateverydifferentbehaviourwhencomparedtothewhitenoise example.Fannoiseshowsstrongtonalpeaksattheblade-passfrequencyofthefanandits harmonicswhichisat683Hz forthisfandesignatthisrotationalspeed.Atlowfrequenciesclosetotheblade-passfrequency(500–750Hz)thereisalso considerablebroadbandnoisegeneration.Theoptimisationroutineproducesabsorptionspectrawhichtradethewideband- widthabsorptionobservedforthewhitenoisecaseforanarrowbandabsorption responsecentredclosetotheblade-pass frequency.Thistrade-off isillustratedinthecausalityconstraintinEq.(14).As moresectorsareaddedtothemulti-sector designstheabsorptionresponsemaybefurthertunedtoexhibitpeaksofabsorptionattheharmonicsofthefanblade-pass frequency. Theseadditionalabsorptionpeaksallowthe multi-sectordesignto achievean overallabsorption responsethat
I. Davis, A. McKay and G.J. Bennett Journal of Sound and Vibration 505 (2021) 116135
Fig. 8. Colormap of overall absorption coefficent c α(left). Delta between the causally optimal minimum distance and the SeMSA cell depth for the absorp- tion spectra shown in the previous section (right). Target spectrum = axial fan. Frequency range = 20–4500 Hz. R = 40 mm.
increasesasmoresectorsareadded,seeFig.8.Interestinglythetwo-segmentSeMSAdesigndeliverstheworstabsorption response at low depths as the optimisationroutine struggles to locate significant absorption close tothe fan blade-pass frequency. As the absorber depth increases the superior bandwidth ofthe two-segment absorber leads to higheroverall absorptionthanfortheMPPdesign.
Giventhewidebandwidthofsoundbeingtargetedforabsorptioninthisstudy,theacousticabsorptionperformance of a bulkporousabsorberisalsoconsideredforcomparison.Absorptionspectraforamelamineacousticfoamwasextracted froma manufacturer’s datasheet[19]andcα wascalculated forboth thewhitenoise andfan noisecases.For a25mm thick melaminefoamsamplecα wasestimatedas0.62forwhitenoiseabsorptionand0.48forfannoiseabsorptionwhich isconsiderablelowerthantheabsorptionvaluesobservedinFigs.6and8.
6.2. Numericalsimulations
Theanalyticalpredictionsoftheabsorptionresponses ofboththeMPPandSeMSAabsorbersdescribedabovearebased onthegraphtheoryapproachdescribedearlierinthisarticle.Inordertovalidatethattheseanalyticalpredictionsareinfact accurate predictionsof therealabsorptionresponses, theanalytical predictionsare comparedwithnumericalsimulations using COMSOLMultiphysics.However, the membranemodelused withinthe simulationaccountsfor dampinginsidethe membranesusingadifferentphysicalmodeltoan acousticimpedancevalueaslistedinTable1.Toamendthis,theeffect ofmembrane dampingvaluewasnot factoredintothe simulationsi.e.anyacousticabsorption occursintheholesof the microperforatedplates.Inordertoaligntheanalyticalpredictionswiththisundampedmodel,theoptimisationroutinewas runwith
ζ
=0andallother parametersinTable1wereleftfreeintheoptimisation.Thetargetspectrumtominimisethe costfunctioninEq.(17)istheaxialfanspectrumasdiscussedabove.Fig. 9(a) showsthegeometryofthe threesector SeMSAdesign that hasbeengenerated bythe optimisationroutine.
Thedetails ofthismodelmaybe foundintheMethodssectionbelow.Fig.9(b)comparestheabsorptionspectrumforthis 10mmdeepabsorberaspredictedusingthegraphtheorymethod(analytical)andascalculatedbytheCOMSOLmodel(nu- merical).Thetwospectrashowexcellentagreement.Fig.9(c)showstheintegrateddissipationinthethreemicroperforated plates(MPPs)insidetheSeMSAcell,andtheacousticpressureamplitudesaveragedovereachsectorareshowninFig.9(d).
TheannotationsinFig.9(a)indicatethelocationsofMPPsandsectors1–3.Eachoftheabsorptionpeaksisassociatedwith a spikeinpowerdissipationinthemicroperforatedplateswhichisdriven byhighacousticvelocitiesthoughthe perfora- tions drivenbythemotionofthemembranes.Eachsector’sresonancealsocorrespondstoasharpincreaseintheacoustic pressure inall sectors, demonstratingthecoupling oftheacoustic systembetweensectors.The highestacousticpressure amplitudeisobservedinadifferentsectorateachresonancefrequency.Fig.9(e)–(g)showtheacousticpressurefieldsinside the SeMSAcell atthethreeresonancefrequencies.Theseimagesillustratetheuniformity oftheacousticpressurefield in thethreesectors. Thisuniformitydemonstratesthevalidityofthelumped-elementmodelforanalysingthephysics ofthe SeMSAcellandexplainsthecloseagreementintheabsorptionspectrainFig.9(b).
7. Discussion
Thepresentedgraphtheorymethodforcalculatingthetwo-pointimpedanceofacircuitmaybeappliedtoanyacoustic systeme.g.waveguide,absorberorbarrierwherealumped-elementmodelisvalid.Themethodhasbeenappliedtomodel theresponseofanoptimisedacousticabsorberunderconsiderationofabsorbersizeandthespectrumofthetargetedsound source forabsorption,generatingthegeometric parameters tomaximiseoverallabsorption. Thismethodensures thatthe mosteffectiveabsorberpossibleperunitvolumeisgeneratedforeachabsorberdesigninvestigated,asevidentbythehigh overallabsorptionvaluesandcloseproximitytocausaloptimaldepthsforthegeneratedabsorptionspectra.Fundamentally thecausaloptimalityconstraintensuresthatnoabsorbercanexhibitperfectbroadbandresponseinafinitevolume.
This study has demonstrated that adding sectors can improve the absorption response of SeMSA, howeverthe ideal SeMSA design isgenerally dependent on thecross-sectional size of theabsorber. Forwhite noise absorption witha R= 20mmabsorberthehighestabsorptionresponseisobservedwithatwo-segmentdesign.However,theabsorptionresponse ofa larger(R=40mm)SeMSAdesignpeaksfora four-sectordesignathigherabsorber depthanda seven-sectordesign
Fig. 9. Numerical simulation results for a three sector SeMSA cell, R = 20 mm, D = 10 mm. Target spectrum = axial fan. Frequency range = 20–2500 Hz.
Analytical: C = −2 . 91 dB. Numerical: C = −2 . 95 dB.
atlower absorberdepths. Thereisnosingleabsorber whichdeliversthebestabsorption performanceacross allscenarios investigated; forpractical implementation, the correct choice must be madeunder consideration of available space and the characteristics of the soundsource. Furthermore, the manufacturing complexity of the absorber must be takeninto considerationaswellastheabsorptionperformance.SpectralweightingfunctionssuchasA-weightingmayalsobefactored into the cost function to account forpsychoacoustic effects ofsounds atdifferent frequencies. Adding moresectors may increase the absorption bandwidthwhich isespecially beneficial forthe noiseabsorption ofbroadband sources, however manufacturingtheseabsorbersatscalemaybechallengewithoutadditivemanufacturing.
Theproximityoftheabsorberdepthtothecausaloptimalminimumdepth(D)isnotasufficientpredictorofahigh- performing absorber in terms ofoverall absorption. However, thisvalue does indicate that the absorber’s low-frequency response isclosetomaximumfortheprescribed absorberdepth. Inthisanalysisthe backwallsoftheabsorbershasnot been factored into the absorber depths D.In accordance withthe mass law, theideal wall material should have a high density in order to keep the overall absorber volume ascompact aspossible while ensuring minimal sound leakage. It would be possible to extend the graph theory analysis to include the effects of this soundleakage with a given set of materialpropertiesandtooptimisetheabsorberwallthicknessesforafinitevolume.
The overallimpedanceoftheabsorbershasbeenthe focusofthisstudy,howeveritwouldalsobepossibleto analyse theimpedancebetweenanypairofnodeswithin theequivalentcircuit.Thiscouldbeused forexampletoquantifylosses throughspecificelementssuchasindividualmicroperforatedplatesandmembranes.Thisstudyhasalsofocusedonnormal-
I. Davis, A. McKay and G.J. Bennett Journal of Sound and Vibration 505 (2021) 116135
Fig. 10. Adjacency matrix (left) for a 3 ×3 rectangular grid form of SeMSA (right).
incidenceabsorptionbutcouldbeextendedtograzingincidencesoundbyapplyingadifferentpotentialatdifferentpoints oftheequivalentcircuit.Thisanalysiscouldbeappliedtoacousticliners.
The soundabsorbersanalysed inthisstudyhaveallbeencylindricalinordertoaidfutureexperimental investigations usinga cylindricalimpedancetube.An additionalexampleofarectangulargridSeMSAabsorber isshowninFig.10.This geometryhastheadvantagethatitcantessellate.Thecentralrectangularsub-volumeinthegridhasfourmicroperforated platesjoiningneighbouringsub-volumeswhichwillfurthercomplicatethe equivalentcircuit.Thegraphtheory methodis thereforeidealforanalysingsuchacomplexdesign,whichrepresentsjustoneofawidearrayofpotentialfuturepossibilities forstudyusingthemethodologyoutlinedinthisarticle.
8. Methods
8.1. Analyticaloptimisationroutine
The analytical optimisation routinewas performedinMATLAB using thefmincon function forincreasing depths, D.In ordertoprevent errorsintheminimisationofthecostfunctionwherethesolutionconvergesonalocalminimawhichis notgloballyoptimal,anumberofcheckswereinplace.If, attheendoftheoptimisationroutineatagivenDthesolution doesnotexceedthefollowingthresholds:
• cα>0.1,ascalculatedbyEq.(18),
• Dm>−1 mm,ascalculatedbyEq.(15).
the optimisation routine at the currentdepth is re-initialisedwith a random combinationof thefree parameters inthe rangesdefinedbyTable1.
8.2. Numericalsimulations
ThenumericalmodelsinvestigatedinthisstudywereanalysedinCOMSOLMultiphysicsinthefrequencydomain.Thetop facesofthemodelweremodelledasalinearelasticmembranewiththematerialpropertiesoflatexrubber.Themembrane isfixedalongtheperimeterofeachsector.Additionalmasswasaddedtothemembranescoveringeachsectortomatchthe prescribed mi termsgivenbytheanalyticaloptimisation routine.Anormally-incident,uniformacousticpressureof0.1Pa wasappliedtoeachmembraneforeveryfrequencytested.
Each sector cavityinthe cell wasmodelled usingpressure acoustics domains(no thermoviscouslossesare included).
The microperforations weremodelled usingthermoacousticsdomains inorderto capturethethermoviscouslossesinside the perforations with a boundary layer mesh. Twenty mesh nodeswere placed inside the viscous penetration depth at thehighestfrequencytestedinordertoaccuratelycapturetheviscousboundarylayer.Thethermoacousticsdomainswere extended 0.5mm eithersideof theendsof theperforations inorderto captureendeffects.Theabsorptivelossesinside theSeMSAcellwere quantifiedbyintegratingthetotalthermoviscouslossesinsidethethermoacousticdomains.Allother boundariesinthesimulationweremodelledashardwallsi.e.haveinfiniteacousticimpedance.
Additionalinformation
The authorsdeclarethat theresearch wasconductedintheabsenceofanyrelationshipsthat could beconstruedasa potentialconflictofinterest.
DeclarationofCompetingInterest
The authors declare that they have no knowncompeting financial interests or personal relationshipsthat could have appearedtoinfluencetheworkreportedinthispaper.
CRediTauthorshipcontributionstatement
Ian Davis:Conceptualization, Methodology, Software,Visualization,Writing - originaldraft. Andrew McKay:Investiga- tion,Software,Datacuration,Writing-review&editing.GarethJ.Bennett:Supervision,Writing-review&editing.
Acknowledgements
This research was partly funded under the Irish Research Council Enterprise Partnership Scheme (Postdoctoral) EP- SPD/2017/123withfinancialcontributionsfromTrinityCollegeDublin,NokiaBellLabsandtheIrishResearchCouncil Supplementarymaterial
Thesupplementarymaterialdocumentincludesthefollowing:
• Examplesof theKirchoff’sLaw simplificationsofthe biypramidequivalentcircuits fora three-andfour-sector SeMSA design.
• AdditionalabsorptionspectraforawidecombinationofparameterssuchasSeMSAcellradius,absorberdepth,targeted frequencyrangeandtargetedsoundspectrum.
• Colormapsof(cα)andplotsofDmforalltheabove.
• An additionalnumericalsimulation forafour-sector SeMSAdesign,further validatingtheefficacyofthe graphtheory method.
Supplementarymaterialassociatedwiththisarticlecanbefound,intheonlineversion,at10.1016/j.jsv.2021.116135 References
[1] J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, P. Sheng, Dark acoustic metamaterials as super absorbers for low-frequency sound, Nat. Commun. 3 (1) (2012), doi: 10.1038/ncomms1758 . http://www.nature.com/articles/ncomms1758
[2] C. Chen, Z. Du, G. Hu, J. Yang, A low-frequency sound absorbing material with subwavelength thickness, Appl. Phys. Lett. 110 (22) (2017), doi: 10.1063/
1.4984095 .
[3] A.S. Elliott, R. Venegas, J.P. Groby, O. Umnova, Omnidirectional acoustic absorber with a porous core and a metamaterial matching layer, J. Appl. Phys.
115 (20) (2014) 204902, doi: 10.1063/1.4876119 .
[4] X. Cai, Q. Guo, G. Hu, J. Yang, Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators, Appl.
Phys. Lett. 105 (12) (2014) 121901, doi: 10.1063/1.4895617 . http://aip.scitation.org/doi/10.1063/1.4895617
[5] M. Yang, P. Sheng, Sound absorption structures: from porous media to acoustic metamaterials, Annu. Rev. Mater. Res. 47 (1) (2017) 83–114, doi: 10.
1146/annurev- matsci- 070616- 124032 . https://doi.org/10.1146/annurev- matsci- 070616- 124032
[6] A. McKay, I. Davis, J. Killeen, G.J. Bennett, SeMSA: a compact super absorber optimised for broadband, low-frequency noise attenuation, Sci. Rep. 10 (1) (2020) 1–15. https://www.nature.com/articles/s41598- 020- 73933- 0
[7] M. Yang, S. Chen, C. Fu, P. Sheng, Optimal sound-absorbing structures, Mater. Horiz. 4 (4) (2017) 673–680, doi: 10.1039/C7MH00129K . http://xlink.rsc.
org/?DOI=C7MH00129K
[8] J. Merhaut, Theory of Electroacoustics, Advanced Book Program, McGraw-Hill International Book Company, 1981. https://books.google.ie/books?id=
Zx0fAQAAIAAJ
[9] K. Donda, Y. Zhu, S.-W. Fan, L. Cao, Y. Li, B. Assouar, Extreme low-frequency ultrathin acoustic absorbing metasurface, Appl. Phys. Lett. 115 (17) (2019) 173506, doi: 10.1063/1.5122704 .
[10] S. Kar , S. Aldosari , J.M. Moura , Topology for distributed inference on graphs, IEEE Trans. Signal Process. 56 (6) (2008) 2609–2613 . [11] A. Chakraborty , T. Dutta , S. Mondal , A. Nath , Application of graph theory in social media, Int. J. Comput. Sci. Eng. 6 (2018) 722–729 .
[12] F.-Y. Wu , Theory of resistor networks: the two-point resistance, J. Phys. A 37 (26) (2004) 6653 https://iopscience.iop.org/article/10.1088/0305-4470/37/26/004/pdf . [13] W.-J. Tzeng , F.-Y. Wu , Theory of impedance networks: the two-point impedance and LC resonances, J. Phys. A 39 (27) (2006) 8579
https://iopscience.iop.org/article/10.1088/0305-4470/39/27/002/meta .
[14] R. Glav, M. ˚Abom, A general formalism for analyzing acoustic 2-port networks, J. Sound Vib. 5 (202) (1997) 739–747, doi: 10.1006/jsvi.1996.0808 . [15] D.-Y. Maa, Potential of microperforated panel absorber, J. Acoust. Soc. Am. 104 (5) (1998) 2861–2866, doi: 10.1121/1.423870 .
[16] J.C. Price, How well do lumped-element models describe acoustic amplification in the recorder? J. Acoust. Soc. Am. 140 (4) (2016) 3253, doi: 10.1121/
1.4970296 .
[17] V. Fok , Teoreticheskoe issledovanie provodimosti kruglogo otverstiya v peregorodke, postavlennoi poperek truby (theoretical study of the conductance of a circular hole in a partition across a tube), Dokl. Akad. Nauk SSSR (Soviet Physics Doklady) 31 (9) (1941) 875–882 .
[18] COMSOL Multiphysics v. 5.4, COMSOL AB, Stockholm, Sweden, Acoustics Module User’s Guide, 2018, pp. 232–237.
[19] BASF, Basotect Room Acoustics and Design (Technical information), Accessed 28-December-2020. Data extracted using the WebPlotDigitizer tool., https:
//insights.basf.com/files/pdf/Basotect _ Brochure.pdf .