• Tidak ada hasil yang ditemukan

Abstract - Open Library Telkom University

N/A
N/A
Protected

Academic year: 2023

Membagikan "Abstract - Open Library Telkom University"

Copied!
1
0
0

Teks penuh

(1)

ii

Abstract

Nowadays, when searching documents, the search result will sort retrived documents based on their rank. The results sometimes irrelevant and different from user’s expectation.

One alternative to improve the search results is to clusterize it.

Documents in this final project will be document collection in Indonesian language and be clustered using LINGO algorithm. LINGO is clustering algorithm which ensure that both contents and description (labels) of the resulting groups are meaningful to the users.

After implementation, this algorithm produce clusters that contains relevant documents to cluster label due to for each document is allocated to the cluster based on it’s similarity to the label cluster.

To determine the labels to describing cluster, this algorithm will check the occurrence of the term and complete phrase in the documents. So the algorithm will become effective if processed documents contains recurrent topic terms, otherways it will become uneffective if topic terms or phrases in the documents are interpreted in many different terms.

Due cluster label testing process using precision and recall on Term Frequency (TF) weighting and Term Frequency – Inverse Document Frequency (TF-IDF) generate good result for the both weighting methods.

Keywords: cluster, clustering, LINGO, complete phrase, precision, recall.

Referensi

Dokumen terkait

We combined Term Importance Weighting using TF-IDF and Sentiment Weighting to define risk level in each cluster generated from the Risk Clustering process.. The idea was came to

Term Frequency – Inverse Document Frequency (TF-IDF) merupakan salah satu metode pembobotan fitur yang umum digunakan dalam mengolah data teks [5]. Pada dasarnya,

Pada penelitian ini, pengujian yang dilakukan pada pengaruh proses pembobotan fitur dan seleksi fitur pada Term Frequency-Inverse Document Frequency (TF-IDF) dengan

Metode Term Frequency-Inverse Document Frequency (TF-IDF) digunakan untuk memberikan rekomendasi tempat makan berdasarkan kata pencarian (keyword) dari pengguna dan

Metode pembobotan kata yang dipergunakan dalam skripsi ini ialah Term Frequency–Inverse Document Frequency (TF-IDF) & memakai K-Nearest Neighbor (K-NN) untuk

ii HALAMAN PENGESAHAN TESIS ANALISIS ULASAN HOTEL DI SITUS TRIPADVISOR MENGGUNAKAN METODE TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY TF-IDF DAN K-NEAREST NEIGHBOR KNN Oleh:

PRODUCT CODEFICATION ACCURACY WITH COSINE SIMILARITY AND WEIGHTED TERM FREQUENCY AND INVERSE DOCUMENT FREQUENCY TF-IDF Sintia1*, Sarjon Defit2, Gunadi Widi Nurcahyo3 Department of

Supplemental Figure Titles and Captions Supplemental Figure 1: Term Frequency – Inverse Document Frequency TF-IDF Equation Supplemental Figure 2: Model Development and Validation