49
BAB V
KESIMPULAN DAN SARAN
5.1 Kesimpulan
Berdasarkan hasil penelitian ini didapatkan beberapa kesimpulan sebagai berikut : 1. Pati sagu dapat direaksikan dengan minyak goreng bekas 10x penggorengan dalam
pelarut CO2 bertekanan menghasilkan pati ester, namun diperlukan pre-treatment untuk mengurangi terjadinya reaksi samping.
2. Nilai Ester Content terbesar yaitu 195,7 (DS=0,035) diperoleh pada kondisi 100oC dengan rasio minyak/pati sebesar 2 mol/mol AGU. Hasil ini masih perlu ditingkatkan agar mencapai nilai DS yang umum digunakan dalam pembuatan bioplastik, yaitu 1,5-2,5.
3. Nilai Ester Content terkecil yaitu 85,4 diperoleh pada kondisi 120oC dengan rasio minyak/pati sebesar 4 mol/mol AGU.
4. Analisa FTIR menunjukkan adanya penambahan jumlah gugus C=O pada pati ester, yaitu pada rentang 1720-1750 cm-1
5. Analisa HNMR menunjukkan adanya gugus-gugus asam lemak pada pati ester yaitu pada rentang 0,7-2,3 ppm.
6. Analisa XRD menunjukkan terjadinya perubahan kristalinitas pada pati ester.
7. Analisa SEM menunjukkan terjadinya penggumpalan antar granula pati ester.
5.2 Saran
Beberapa saran yang dapat diberikan untuk penelitian selanjutnya adalah :
1. Dilakukan pencegahan terjadinya reaksi hidrolisis pada minyak goreng bekas dengan cara mengurangi kadar air pada sistem.
50
2. Penggunaan temperatur 100oC untuk kondisi operasi karena pada temperatur tersebut nilai EC yang maksimum.
3. Pengkajian kembali besar rasio minyak/pati untuk didapatkan hasil optimum pada perolehan EC dengan memakai rasio reagen di bawah 2 mol/mol AGU.
51
Daftar Pustaka
[1] Glenn, G. M., Orts, W., Imam, S., Bor-Sen, C., Wood, D. F. (2014). Starch Plastic Packaging And Agriculture Applications. Starch Polymers. 15: 421-452
[2] Pusat Penelitian Dan Pengembangan Perkebunan. Seminar Triwulan Ke-4 : Arti Penting Budidaya Dan Pemanfaatan Sagu Untuk Ketahanan Pangan Dan Energi
Nasional [Online]. Diakses 13 April 2016 Dari
http://perkebunan.litbang.pertanian.go.id
[3] Bashir, N. H. (2013). Plastic Problem In Africa. Japanese Journal Of Veterinary Research. 61:1-11
[4] Talsness, C. E., Andrade, A. J. M., Kuriyama, S. N., Taylor, J. A., Voom-Saal, F. S.
(2009). Components of Plastic: Experimental Studies In Animals and Relevance for Human Health. Phil. Trans. R. Soc. B. 364: 2079-2096
[5] Muljana, H., Knoop, S. Vd., Keijzer, D., Picchioni, F., Janssen, L. P. B. M., Heeres, H.
J. (2010). Synthesis of Fatty Acid Starch Esters In Supercritical Carbon Dioxide.
Carbohydrate Polymers. 82: 346-354
[6] Yosuar, B. 2011. Pengaruh Temperatur dan Rasio Reaktan Pada Esterifikasi Pati Sagu Dengan Media Subkritik CO2. Penelitian. Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Bandung.
[7] Arief, V. V. 2012. Pengaruh Temperatur dan Rasio Katalis Pada Esterifikasi Pati Sagu Dalam Media CO2 Bertekanan. Penelitian. Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Bandung.
[8] Rosyanti, L. 2013. Pengaruh Temperatur dan Tekanan Terhadap Esterifikasi Pati Sagu Menggunakan Metil Asam Lemak Dalam Media CO2 Bertekanan. Penelitian. Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Bandung.
[9] Megasari, L. 2013. Pengaruh Tekanan dan Temperatur Terhadap Transesterifikasi Pati Sagu Menggunakan Metil Asam Lemak Dalam Media CO2 Bertekanan. Penelitian.
Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Bandung.
[10] Fangdinata, K. 2014. Pengaruh Temperatur dan Rasio Reagen Terhadap Transesterifikasi Pati Sagu Dan Minyak Goreng Bekas Dalam Media CO2
Bertekanan. Penelitian. Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Bandung.
[11] Christina, N. 2014. Pengaruh Tekanan dan Rasio Katalis Terhadap Transesterikasi Pati Sagu Dengan Minyak Goreng Bekas Dalam Media CO2 Bertekanan. Penelitian.
Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Bandung.
[12] Glenn, G. M., Orts, W., Imam, S., Bor-Sen, C., Wood, D. F. (2014). Starch Plastic Packaging And Agriculture Applications. Starch Polymers. 15: 421-452
52
[13] Laycock, B. G., & Halley, P. J. (2014). Starch Applications: State Of Market And New Trends. Starch Polymers. 14: 381-419
[14] Sherestha, A. K., & Halley, P. J. (2014). Starch Modification To Develop Novel Starch-Biopolymer Blends: State Of Art And Perspectives. Starch Polymers. 5:105- 143
[15] Janseen, L., & Moscicki, L. (2009). Thermoplastic Starch. Wheinhelm: Wiley-Vch [16] Tester, R.F., Karkalas, J., & Qi, X. (2004). Starch-Composition, Fine Structure And
Architecture. Journal Of Cereal Science. 399: 151-165
[17] Almeida, M., Alves, R., Nascimbem, L., Stephani, R., Poppi, R., & De Oliveira, L.
(2010). Determination Of Amylose Content In Starch Using Raman Spectroscopy And Multivarieate Calibration Analysis. Analytical And Bioanalytical Chemistry.
397: 2693-2701
[18] Buleon, A., Colona, P., Planchot, V., & Ball, S. (1998). Starch Granules: Structure And Biosynthesis. International Journal Of Biological Macromolecules. 23: 85-112 [19] Fannon, J.E., & BeMiller, J. N. (1993). Structure Of Corn Starch Paste And Granule
Remnants Revealed By Low-Temperature Scanning Electron Microscopy After Cryopreparation. Cereal Chemistry. 69: 456-460
[20] Hoover, R. (2001). Composition, Molecular Structure, And Physicochemical Properties Of Tuber And Root Starches: A Review. Carbohydrate Polimers. 45: 253- 267
[21] Morgan, K. R., Furneaux, R. H., & Larsen, N.G. (1995). Solid-State Nmr Studies On The Structure Of Starch Granules. Carbohydrate Research. 276: 387-399
[22] Abner, L. Dan Miftahorrahman. 2002. Keragaman Industri Sagu Indonesia. Warta Penelitian Dan Pengembangan Tanaman Industri. Vol 8 No 1 Juni 2002
[23] Fasihuddin, B.A., Peter, A.W., Doublier, J.L., Durandb, S., Buleonb, A. 1999.
Physico-Chemical Characterisation Of Sago Starch. Carbohydrate Polimers. 38:361- 370
[24] Suyandra, I.D. 2007. Pemanfaatan Hidrolisat Pati Sagu (Metroxylon Sp.) Sebagai Sumber Karbon Pada Fermentasi Etanol Oleh Saccharomyces Cerevisiae. Skripsi.
Fakultas Teknologi Pertanian, IPB, Bogor.
[25] Colonna, P., Doublier, J.L., Melcion, J.P., Demonredon, F., And Mercier, C. (1984).
Extrusion Cooking And Drum Drying Of Wheat-Starch. Cereal Chem. 61: 538–543.
[26] Leach, H. W. (1965). Gelatinization Of Starch. In A. C. Whistler (Ed.), Starch:
Chemistry And Technology (Pp. 289-306). New York, London: Academic Press.
[27] Sherestha, A. K., Halley, P. J. (2014). Starch Modification To Develop Novel Starch- Biopolymer Blends: State Of Art And Perspectives. Starch Polymers. 5:105-143.
[28] Tester, R. F., & Debon, S. J. J. 2000. Annealing Of Starch-A Review. International Journal Of Biological Macromolecules. 27: 1-12
[29] White, P. J., Tziotis, A. (2004). New Corn Straches. In A. C. Eliasson (Ed.), Starch In Foods: Structure, Function And Applications (Pp. 295-320). Cambridge, London:
Woodhead Publishing.
[30] Wurzburg, O. B. (1986). Converted Starches. In O. B. Wurzburg (Ed.), Modified Starches: Properties And Uses (Pp. 17-40). Boca Raton, Fl: Crc Press.
[31] Huber, K. C., & Bemiller, J. N. (2009). Modified Starch: Chemistry And Properties.
In A. C. Bertolini (Ed.), Straches: Characterization, Properties, And Application (Pp. 145-203): Boca Raton, Fl: Crc Press.
[32] Ma, W., & Robyt, J. F. (1987). Preparation And Characterization Of Soluble Starches Having Different Molecular Sizes And Composition, By Acid Hydrolisis In Different Alcohols. Carbohydrate Research. 166: 283-297
[33] Xie, S. X., Liu, Q., & Cui, S. W. (2005). Starch Modification And Application. In S.
W. Cui (Ed.), Food Carbohydrates: Chemistry, Physical Properties And Applications (Pp. 357-407). Boca Raton, Fl: Taylor And Francis Group.
[33] Fleche, G. (1985). Chemical Modification And Degredation Of Starch. In G. M. A.
Van Beyunm & J. A. Roels (Eds.), Starch Conversion Technoloy (Pp. 15-45). New York: Marcel Dekker, Inc.
[34] Schuchardta, U., Serchelia, R., Vargas, R. M. (1998). Transesterification Of Vegetable Oils: A Review. Soc. Bras. Qumica. 9(1): 199-210
[35] Freedman, B., Butterfield, R.O., Pryde, E.H. (1986). J. Am. Oil Chem. Soc. 63, 1375.
[36] Winkler, H., Vorwerg, W., Wetzel, H. (2013). Synthesis And Properties Of Fatty Acid Starch Esters. Carbohydrate Polymer. 98: 208-216
[37] Smith, J. G. Organic Chemistry 3rd Ed (Pp. 1122). New York: Mc Graw Hill Education
[38] Harrington, K. J. (1986). Chemical And Physical Properties Of Vegetable Oil Esters And Their Effect On Diesel Fuel Performance. Biomass. 9:1-17
[39] Tan, C. P., & Nehdi, I. A. 2012. Palm Oil Production, Processing, Characterization, And Uses. In O. M. Lai, et al (Ed). The Physicochemical Properties Of Palm Oil And Its Components (Pp.377-391). Urbana: AOCS Press.
[40] Godswil , N., Frank, N. G., Walter, A. N.,Edson, M.Y. J., Kingsley, T. M., Aronde, V., Martin, B. J., Emmanuel, Y. 2016. Palm Oil. Breeding Oilseed Crops For Sustainable Production. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Academic Press
54
[41] Tan, C.P., Che Man., Y.B. 2000. Differential Scanning Calorimetric Analysis Of Edible Oils And Fats: Comparison Of Thermal Properties And Chemical Composition. J. Am. Oil Chem. 77: 143–155
[42] Nelson, W. M. (2003). Green Solvents For Chemistry: Prespectives And Practice.
New York: Oxford University Press, Inc.
[43] Budisa, N., & Schulze-Makuch, D. (2014). Supercritical Carbon Dioxide And Its Potential As A Life-Sustaining Solvent In A Planetary Environment. Life. 4: 331-340 [44] Noyori, R. (2005). Pursuing Practical Elegance In Chemical Synthesis. Chem.
Commun. 1807-1811.
[45] Budisa, N., & Schulze-Makuch, D. (2014). Supercritical Carbon Dioxide And Its Potential As A Life-Sustaining Solvent In A Planetary Environment. Life. 4: 331-340 [46] Glenn, G. M., Orts, W., Imam, S., Bor-Sen, C., Wood, D. F. (2014). Starch Plastic
Packaging And Agriculture Applications. Starch Polymers. 15: 421-452
[47] Chaleat, C., Halley, P. J., Truss, R. W. (2014). Mechanical Properties Of Starch- Based Plastics. Starch Polymers. 7: 187-209
[48] Zhang, Y., Gan, T., Hu, H., Huang, Z., Huang, A., Zhu, Y., Feng, Z., Yang, M.
(2014). A Green Technology For The Preparation Of High Fatty Acid Starch Esters:
Solid-Phase Synthesis Of Starch Laurate Assisted By Mechanical Activation With Stirring Ball Mill As Reactor. Industrial And Engineering Chemistry Research. 53:
2114-2120.
[49] Aburto, J., Alric, I., Borredon, E. (2005). Organic Solvent-Free Transesterification Of Various Starches With Lauric Acid Methyl Ester And Triacyl Glycerides.
Starch/Starke. 57:145-152.
[50] Muljana, Henky., Knoop, S. Vd., Keijzer, D., Picchioni, F., Janssen, L. P. B. M., Heeres, H. J. (2010). Synthesis Of Fatty Acid Starch Esters In Supercritical Carbon Dioxide. Carbohydrate Polymers. 82:346-354
[51] Wojtowicz, A. (2009). Biodegradability And Compostability Of Biopolymers.
Thermoplaastic Starch: A Green Material For Various Industries. 3:55-74
[52] Badan Standardisasi Nasional. Kantong Plastik Mudah Terurai. Diakses 19 April 2016 dari http://sisni.bsn.go.id/index.php?/sni_main/sni/cetak_detail_sni/22074 [53] Saputra, D. I. (2015). Studi Transesterifikasi Pati Sagu Tergelatinisasi Menggunakan
Vinil Laurat Dalam Media CO2 Bertekanan. Proposal. Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Bandung.
[54] Setiawan, Yenni. (2015). Studi Transesterifikasi Pati Tergelatinisasi Menggunakan Minyak Goreng Bekas Dalam Media CO2 Bertekanan. Proposal. Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Bandung.
[55] Suseno, J. E., Firdausi, K. S. (2008). Rancang Bangun Spektroskopi Ftir (Fourier Transform Infrared) Untuk Penentuan Kualitas Susu Sapi. Berkala Fisika Vol 11. 1:
23-28
[56] Priscylio, G. (2013). Spektrometri Resonansi Magnetik Inti (Nuclear Magnetic Resonance). Makalah. Fakultas Matematika Dan Ilmu Pengetahuan Alam, Universitas Negeri Padang.
[57] Ruffell, A., Wiltshire, P. (2004). Conjuctive Use Of Quantitative And Qualitative X- Ray Diffraction Analysis Of Soils And Rocks For Forensic Analysis. Forensic Science International. 145:13-23
[58] Speakman, S. A. Introduction To X-Ray Powder Diffraction Data Analysis. Center For Materials Science And Engineering. Massachusetts Institute Of Technology.
[59] Oatley, C. W., Nixon, W. C., Pease, R. F. W. Scanning Electron Microscopy.
Engineering Department, Cambridge University, Cambridge.
[60] Muljana, H. (2010). Starch Modifications In Supercritical CO2 Gronigen: S.N.
[61] Ahmad, F. B., Williams, P. A., Doublier, J., Durand, S., Buleon, A. (1999). Physico- Chemical Characterisation Of Sago Starch. Carbohydrate Polymers. 38 : 361-370.
[62] Canakci, M., Van Gerpen, J. (2001). Biodiesel Production From Oils And Fats With High Free Fatty Acids. American Society Of Agricultural Engineers. 44 : 1429-1436.
[63] Sanli, H., Canakci, M., Alptekin, E. (2011). Characterization Of Waste Frying Oils Obtained From Different Facilities. World Renewable Energy Congress 2011, Sweden.
[64] Marchetti, J. M., Errazu, A. F. (2008). Esterification Of Free Fatty Acids Using Sulfuric Acid As Catalyst In The Presence Of Triglycerides. Biomass And Bioenergy. 32 : 892-895.
[65] Velazquez, G., Herrera-Gomez, A., Martin-Polo, M. O. (2003). Identification Of Bound Water Through Infrared Spectroscopy In Methylcellulose. Journal Of Food Engineering. 59 : 79-84.
[66] Silverstein, R.M., Bassler, G.C., And Morrill, T.C. (1981). Spectrometric Identification Of Organic Compounds. 4th Ed. New York: John Wiley And Sons.
[67] Cunico, L. P., Ceriani, R., Guirardello, R. (2013). Estimation Of Physical Properties Of Vegetable Oils And Biodiesel Using Group Contribution Methods. Chemical Engineering Transactions. 32 : 535-539.
[68] Daponte, M. N. (2009). Phase Equilibrium-Controlled Chemical Reaction Kinetics In High Pressure Carbon Dioxide. The Journal Of Supercritical Fluids. 47 : 344-350.
56
[69] Kemmere, M. (2005). Supercritical Carbon Dioxide: In Polymer Reaction Engineering. Weinheim: Wiley-Vch Verlag Gmbh & Co
[70] Thire, R. M. S. M. (2010). Starch-Based Plastics. Starches. 6 : 103-128
[71] Irene, C. (2012). Pengaruh Rasio Reagen Dan Jenis Katalis Terhadap Esterifikasi Pati Sagu Dalam CO2 Bertekanan. Skripsi. Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Bandung.
[72] Xu, Y. X., Miladinov, V., Hanna, M. A. 2004. Synthesis and Characterization of Starch Acetates with High Substitution. Cereal Chem. 81(6): 735-740
[73] Shogren, R. L. (1995). Preparation, Thermal Properties, and Extrusion of High- Amylose Acetates. Carbohydrate Polymer. 29(1): 57-62.
[74] Junistia, L., Sugih, A. K., Manurung, R., Picchioni, F., Janssen, L. P. B. M. (2008).
Synthesis of Higher Fatty Acid Starch Esters using Vinyl Laurate and Stearate as Reactans. Starch/Starke. 60: 667-675
[75] Bultosa, G., Taylor, J. R. N. (2003). Chemical And Physical Characterisation Of Grain Tef Starch Granule Composition. Starch/Starke. 55 : 304-312.
[76] Karim, A.A., Tie, A. P.-L., Manan, D.M.A. And Zaidul, I.S.M. (2008), Starch From The Sago (Metroxylon Sagu) Palm Tree—Properties, Prospects, And Challenges As A New Industrial Source For Food And Other Uses. Comprehensive Reviews In Food Science And Food Safety. 7: 215–228.
[77] Gray, J.A., Bemiller, J.N. (2005). Influence Of Reaction Conditions On The Location Of Reactions In Waxy Maize Starch Granules Reacted With A Propylene Oxide Analog At Low Substitution Levels. Carbohydrate Polym. 60:147–162.
[78] Carraher, Jr. C. E. 2003. Polymer Chemistry 6th Ed. New York : Marcel Dekker, Inc [79] Christianty, M. U. 2009. Produksi Biodegradable Plastic Melalui Pencampuran Pati
Sagu Termoplastis dan Compatibilized Linear Low Density Polyethylene. Tesis.
Program Studi Teknologi Industri Pertanian, Institut Pertanian Bogor, Bogor