• Tidak ada hasil yang ditemukan

The  Correlated  Random  Walk  and  the  Rise  of  Movement  Ecology

N/A
N/A
Protected

Academic year: 2024

Membagikan "The  Correlated  Random  Walk  and  the  Rise  of  Movement  Ecology"

Copied!
3
0
0

Teks penuh

(1)

Paper  Trail

The  Correlated  Random  Walk  and  the  Rise  of  Movement  Ecology

William  F.  Fagan

Department  of  Biology,  University  of  Maryland,  College  Park,  Maryland  20742 Justin  M.  Calabrese

Smithsonian  Conservation  Biology  Institute,  National  Zoological  Park,  1500  Remount  Rd.,  Front   Royal,  Virginia  22630

Understanding  why,  how,  and  when  animals  move  is  essential  to  many  areas  of  ecology  and  related  

¿HOGV,QGHHGNH\DVSHFWVRIDQLPDOEHKDYLRUSRSXODWLRQJHQHWLFVELRORJLFDOFRQWUROSUHGDWRU±SUH\

dynamics,  ecosystem  engineering,  and  conservation  biology  all  hinge  upon  knowing  what  critters  are   PRYLQJ IURP ZKHUH WR ZKHUH LQ D ODQGVFDSH LQFOXGLQJ LQIRUPDWLRQ RQ KRZ TXLFNO\ KRZ UHJXODUO\

DQGE\ZKDWURXWHWKH\WUDYHO7KHFRPSOH[LWLHVLQYROYHGLQVXFKSURFHVVHVKDYHVSDZQHGWUHPHQGRXV HIIRUWVLQERWK¿HOGUHVHDUFKZKHUHJRDOVLQFOXGHPHDVXULQJDQGFKDUDFWHUL]LQJVXFKPRYHPHQWVDQG WKHRUHWLFDOUHVHDUFKZKHUHJRDOVLQFOXGHH[SORULQJWKHQDWXUHDQGSRWHQWLDOFRQVHTXHQFHVRIPRYHPHQW Ecologists  today  routinely  receive  some  training  in  both  empirical  and  theoretical  research,  and  in  the   UROHRIVWDWLVWLFDODQDO\VHVDQGPRGHO¿WWLQJDVDZD\RIOLQNLQJWKHWZRSHUVSHFWLYHV+RZHYHUWKDW KDVQRWDOZD\VEHHQWKHFDVH6SDWLDOTXHVWLRQVLQHFRORJ\ZHUHORQJDQDUHDZKHUHWKHJXOIEHWZHHQ theory  and  reality  was  particularly  wide.  In  part,  this  was  due  to  the  additional  mathematical  challenges   of   spatial   models,   but   it   also   due   to   the   perhaps   greater   technological   challenges   of   measuring   and   FRQWH[WXDOL]LQJDQLPDOPRYHPHQWV

0RUH WKDQ \HDUV DJR DQ HDUO\ VWXUG\ EULGJH EHWZHHQ ¿HOG GDWD DQG VSDWLDO HFRORJLFDO WKHRU\

was  built  when  the  article  “Analyzing  insect  movement  as  a  correlated  random  walk”  was  published   in  Oecologia.   This   paper,   which   represented   a   collaboration   between   ecologist   Peter   Kareiva   and   mathematician  Nanako  Shigesada,  is  a  milestone  along  the  Paper  Trail  because  it  marks  a  critical  link   between  the  abstract  world  of  ecological  theory  and  the  hands-­on  way  in  which  ecologists  actually  collect   data  on  individual  animals.  Even  now,  this  paper,  which  has  been  cited  almost  500  times,  continues  to   DWWUDFWLQWHUHVWDVDNH\QH[XVOLQNLQJWKHUHDOPVRIWKHUXPSOHGVKLUWVDQGWKHPXGG\ERRWV.DUHLYDDQG 6KLJHVDGD¶VSDSHUKHOSHGWUDQVIRUPWKHTXDQWLWDWLYHVWXG\RIDQLPDOPRYHPHQWIURPDSXUHO\WKHRUHWLFDO venture  into  an  integrative  science,  where  theory  and  data  are  merged  to  generate  new  understanding.

&RPELQLQJ FOHDU SURVH DQG LQVWUXFWLYH HTXDWLRQV .DUHLYD DQG 6KLJHVDGD ZDV RQH RI WKH

¿UVWSDSHUVLQHFRORJ\WRSURYLGHDFRQFUHWHWUDFWDEOHOLQNDJHEHWZHHQVSDWLDOHFRORJLFDOPRGHOVDQG IHDWXUHV WKDW FRXOG EH UHDGLO\ REVHUYHG²DQG TXDQWL¿HG²E\ ¿HOG ELRORJLVWV .DUHLYD DQG 6KLJHVDGD (1983)  introduced  a  generalized  two-­dimensional  correlated  random  walk  (CRW)  model  to  ecology,  and   demonstrated  how  it  could  be  parameterized  by  decomposing  an  individual  animal’s  movement  path  into   a  series  of  movement  steps  and  turning  angles.  The  CRW  was  a  clear  advance  in  spatial  ecology  because   it  dealt  with  an  obvious  discrepancy  between  previously  used,  simple  (uncorrelated)  random  walks  and   HPSLULFDOUHDOLW\²QDPHO\WKDWPRYLQJDQLPDOVYHU\IUHTXHQWO\H[KLELWGLUHFWLRQDOSHUVLVWHQFH

204   Bulletin  of  the  Ecological  Society  of  America,  95(3)

(2)

Paper  Trail

The  key  to  their  approach  was  to  write  the  model  in  terms  of  the  moments  of  the  step  length  and  turn   DQJOHGLVWULEXWLRQVZKLFKLVLPSRUWDQWIRUWZRUHDVRQV)LUVWWKHVHPRPHQWVGRQRWUHTXLUHFRPSOH[

statistical  methods  to  estimate,  and  can  instead  be  calculated  from  directly  from  movement  path  data   via  simple  paper-­and-­pencil  formulas.  Second,  by  focusing  on  the  statistics  of  the  step  length  and  turn   angle   distributions   instead   of   making   particular   distributional   assumptions,   Kareiva   and   Shigesada   ensured  that  their  model  would  apply  to  a  wide  range  of  ecological  scenarios.  The  mean  step  length,   PHDQVTXDUHGVWHSOHQJWKDQGPHDQFRVLQHRIWXUQDQJOHVDUHQRZVWDQGDUGVWDWLFVXVHGWRVXPPDUL]H movement  paths  and  parameterize  movement  models.

.DUHLYDDQG6KLJHVDGDHVWDEOLVKHGWKHPHDQVTXDUHGGLVSODFHPHQW06'DOVRFDOOHGWKHQHW VTXDUHGGLVSODFHPHQWDVDVWDQGDUG\DUGVWLFNIRUMXGJLQJWKHDSSURSULDWHQHVVRIWKH&5:IRUSDUWLFXODU GDWDVHWV7KHFHQWHUSLHFHRIWKHLUSDSHUZDVDFORVHGIRUPH[SUHVVLRQIRUWKHH[SHFWHGYDOXHRIWKH MSD  under  the  CRW  model  in  terms  of  the  moments  of  the  step  length  and  turn  angle  distributions.  

&RPSDULQJWKHREVHUYHG06'WRWKDWSUHGLFWHGE\WKH¿WWHG&5:PRGHODOORZVXVHUVWRJDXJHKRZZHOO the  CRW  describes  their  data.  The  combination  of  biological  plausibility,  mathematical  tractability,  and   a  clear  connection  between  model  and  data  established  the  CRW  as  a  simple,  yet  nontrivial  null  model   against  which  real  animal  movements  could  be  compared.  The  authors  were  clear  that,  while  the  CRW   LVPRUHUHDOLVWLFWKDQDVLPSOHUDQGRPZDONLWLVVWLOODUDGLFDOVLPSOL¿FDWLRQRIUHDODQLPDOPRYHPHQW ,PSRUWDQWO\WKH\QRWHGWKHVSHFL¿FZD\VLQZKLFKUHDODQLPDOPRYHPHQWVGHYLDWHIURPWKH&5:PD\

UHYHDOLPSRUWDQWELRORJLFDOLQVLJKWVLQWRWKHXQGHUO\LQJPRYHPHQWSURFHVV)RUH[DPSOHDQREVHUYHG MSD  that  increases  consistently  faster  than  model  predictions  suggests  more  directed  movement  than   FDQEHFDSWXUHGZLWKD&5::KHQFRXSOHGZLWKERRWVWUDSFRQ¿GHQFHLQWHUYDOVUHÀHFWLQJSDUDPHWHU uncertainty  (Turchin  1998),  Kareiva  and  Shigesada’s  (1983)  approach  provides  an  unambiguous  gauge   RIWKHGHJUHHWRZKLFKDPRUHFRPSOLFDWHGDQGELRORJLFDOO\UHDOLVWLFPRYHPHQWPRGHOLVMXVWL¿HG,QRXU opinion,  this  is  one  of  the  most  important  and  lasting  contributions  of  their  work.

%HFDXVH GLIIXVLRQ PRGHOV FDQ EH GHULYHG IURP WKH &5: YLD WKH GLIIXVLRQ DSSUR[LPDWLRQ WKH DSSURDFKLQLWLDWHGE\.DUHLYDDQG6KLJHVDGDKHOSHGWRSURYLGHDSDWKZD\EHWZHHQWKHTXDQWLWLHV

¿HOGHFRORJLVWV¶FDQREVHUYHPRYHPHQWSDWKVRILQGLYLGXDOVDQGWKHSRSXODWLRQOHYHOGLIIXVLRQUDWHV HPSOR\HGE\WKHRUHWLFLDQV7XUFKLQ)RUH[DPSOH7XUFKLQVKRZHGKRZKDELWDWVSHFL¿F individual   movement   behaviors   could   be   estimated   via   CRW   methods   and   then   translated   into   the   VSDWLDOGLVWULEXWLRQRIWKHSRSXODWLRQYLDDGLIIXVLRQDSSUR[LPDWLRQ2WKHUDUHDVRIVSDWLDOHFRORJ\KDYH VXEVHTXHQWO\HPXODWHGWKLVLQGLYLGXDOOHYHOWRSRSXODWLRQOHYHOXSVFDOLQJDSSURDFKLQFOXGLQJPRPHQW HTXDWLRQV IRU VSDWLDO SRSXODWLRQ G\QDPLFV VSDWLDOO\ H[SOLFLW PHWDSRSXODWLRQ PRGHOV DQG LQGLYLGXDO based   spatial   population   models.   Collectively,   these   frameworks   have   fundamentally   changed   the   character   of   spatial   ecology   by   forging   links   between   observable,   individual-­level   phenomenon   and   WKHLUSRSXODWLRQRUFRPPXQLW\OHYHOFRQVHTXHQFHV

The  CRW  approach  has  steadily  grown  and  developed  over  the  years  to  become  the  workhorse  of   PRGHUQPRYHPHQWHFRORJ\0DQ\H[FLWLQJDGYDQFHVLQVSDWLDODQDO\VHVRIDQLPDOPRYHPHQWFDQWUDFH DQLQWHOOHFWXDODQFHVWU\WR.DUHLYDDQG6KLJHVDGD)RUH[DPSOHFRPSRVLWHUDQGRPZDONPRGHOV DOORZPRYHPHQWEHKDYLRUWRYDU\LQVSDFHDQGWLPHDQGFDQKHOSFRQWH[WXDOL]HPRYHPHQWE\OLQNLQJ behavioral  changes  to  environmental  covariates  (Benhamou  2014).  Behavioral  change  point  analyses   (Gurarie  et  al.  2009)  take  a  similar  approach,  but  are  based  on  a  continuous-­space  analog  of  the  discrete  

July  2014        205

(3)

Paper  Trail

CRW.  Mechanistic  home  range  models  (Moorcroft  and  Lewis  2013)  are  based  on  CRWs  and  allow  home   ranges  of  individuals  (or  groups)  to  arise  naturally  from  realistic  movement  behavior  and  interactions   EHWZHHQ WKH LQGLYLGXDO DQG LWV HQYLURQPHQW DQG FRQVSHFL¿FV7KHVH DSSURDFKHV H[WHQG .DUHLYD DQG 6KLJHVDGD¶VLGHDVLQLPSRUWDQWGLUHFWLRQVE\DOORZLQJPRYHPHQWEHKDYLRUWRGHSHQGRQFRQWH[W

While  great  strides  have  been  made  in  building  biological  realism  into  CRW-­based  models,  it  is  now   FOHDUWKDWWKLVIUDPHZRUNLVQHDULQJLWVOLPLWV)RULQVWDQFHPDQ\DQLPDOVH[KLELWPRYHPHQWEHKDYLRUV that  repeat  at  regular  intervals  (e.g.,  daily,  seasonally).  Animals  may  also  use  memory  to  navigate,  or   PD\ DYRLG UHFHQWO\ H[SORLWHG DUHDV ZKHQ IRUDJLQJ$OO RI WKHVH ELRORJLFDO UHDOLWLHV DQG PDQ\ RWKHUV violate   the   Markovian   assumption   under   which   Kareiva   and   Shigesada   (1983)   derived   their   results.  

0HPRU\DYRLGDQFHUHSHWLWLRQDQGRWKHUELRORJLFDOFRPSOH[LWLHVLQWURGXFHORQJWHUPDXWRFRUUHODWLRQV into  the  movement  paths  of  individuals,  which  the  CRW  and  other  Markovian  movement  models  cannot   DFFRPPRGDWH RU XWLOL]H$ QHZ IURQWLHU RI PRYHPHQW HFRORJ\ LV WR UHOD[ WKH ¿UVWRUGHU 0DUNRYLDQ assumption  such  that  movement  models  can  use  the  information  contained  in  long-­term  autocorrelations   to  identify  critical  behaviors  (Fleming  et  al.  2014a,  b).  Doing  so  will  allow  ecology  to  go  beyond  purely   random  movement,  and  to  begin  incorporating  real  biological  mechanisms  into  movement  models.  It  is   remarkable  to  note  that  Kareiva  and  Shigesada  saw  this  frontier  on  the  horizon  over  30  years  ago.  That   it  remains  an  open  challenge  for  movement  ecology  is  testament  both  to  the  enduring  contributions  of   WKHLUSDSHUDQGWRWKHLQKHUHQWGLI¿FXOW\LQWDNLQJWKHQH[WPDMRUVWHSEH\RQGWKHLUSLRQHHULQJZRUN Literature  cited

Benhamou,  S.  2014.  Of  scales  and  stationarity  in  animal  movements.  Ecology  Letters  17:261–272.  

Fleming,   C.   H.,   J.   M.   Calabrese,   T.   Mueller,  K.  A.   Olson,   P.   Leimgruber,   and   W.   F.   Fagan.   2014a.  

)URP¿QHVFDOHIRUDJLQJWRKRPHUDQJHV$VHPLYDULDQFHDSSURDFKWRLGHQWLI\LQJPRYHPHQWPRGHV across  spatiotemporal  scales.  American  Naturalist.  In  press.

Fleming,   C.   H.,   J.   M.   Calabrese,   T.   Mueller,  K.  A.   Olson,   P.   Leimgruber,   and   W.   F.   Fagan.   2014b.  

1RQ0DUNRYLDQPD[LPXPOLNHOLKRRGHVWLPDWLRQRIDXWRFRUUHODWHGPRYHPHQWSURFHVVHV0HWKRGVLQ Ecology  and  Evolution.  In  press.

Gurarie,  E.,  R.  D.  Andrews,  and  K.  L.  Laidre.  2009.  A  novel  method  for  identifying  behavioural  chang-­

es  in  animal  movement  data.  Ecology  Letters  12:395–408.

Kareiva,   P.   M.,   and   N.   Shigesada.   1983.  Analyzing   insect   movement   as   a   correlated   random   walk.  

Oecologia  56:234–238.

Moorcroft,  P.  R.,  and  M.  A.  Lewis.  2013.Mechanistic  home  range  analysis.(MPB-­43).  Princeton  Uni-­

versity  Press,  Princeton,  New  Jersey,  USA.

Turchin,  P.  1991.  Translating  foraging  movements  in  heterogeneous  environments  into  the  spatial  dis-­

tribution  of  foragers.  Ecology  72:1253–1266.

Turchin,  P.  1998.  Quantitative  analysis  of  movement:  measuring  and  modeling  population  redistribu-­

tion  in  animals  and  plants.  Sinauer  Associates,  Sunderland,  Massachusetts,  USA.

206   Bulletin  of  the  Ecological  Society  of  America,  95(3)

Referensi

Dokumen terkait

$EVWUDFW ²7KH HQWHUSULVHV WKDW GHYHORS RQOLQH JDPHV QHHG KDUGZDUH DQG EDQGZLGWK UHVRXUFHV LQ RUGHU WR JLYH D JRRG VHUYLFH WR WKH XVHUV 7KHVH JDPHV SURGXFH D KLJK UDWH RI VPDOO

DVK DQG VRIW VRLO FDQ IXUWKHU PLQLPL]H WKH VZHOOLQJ YDOXH RI WKH VRIW VRLO E\ WZR WLPHV FRPSDUHG WR RQO\ IO\ DVK DV WKH VWDELOL]LQJ DJHQW 7KH UHDVRQ LV WKDW FHPHQW FRQWDLQV

Natural gas hydrate develops DQG H[LVWV LQ SRUHV RI VRLO VHGLPHQWV XQGHU GHHS VHDEHG DQG SHUPDIURVW UHJLRQV ZKHUH WKH ORZ WHPSHUDWXUHDQGKLJKSUHVVXUHFRQGLWLRQJXDUDQWHHV

RU SR LF PDNHU WKH W G JJH W WKDW WKH JRYHUQPHQW WKH 0LQL WU R LQDQFH WKH 'HSDUWPHQW R FFR QWLQJ DQG GLWLQJ 5HJ DWLRQ KR G GHYH RS DQG L H D UDPHZRUN on accounting and auditing to signi

Wkh yduldeoh lqsxw lv surgxfhg xvlqj wkh vhuylfhv ri fdslwdo/ &/ dqg oderu/ = 6 ' &#3# Vlqfh k / uhwxuqv wr wkh yduldeoh lqsxwv glplqlvk dqg Fuxvrh suhihuv wr kdyh pdq| wuhhv1 D

Abstract 7KH DUWLFOH IRFXVHV RQ %KDUDWKL\DU¶V SRUWUD\DO RI D QRYHO ZRPDQ LQ RQH RI WKH VKRUW VWRULHV RI WKPeravai Kathaigal7KHPDLQSXUSRVHRIWKLVUHYLHZLVWRLGHQWLI\

[G\QHFPVRLWFDQLQFUHDVHRLOPRELOLW\ZKLFK KDV EHHQ ORRVHQ IURP WKH SURFHVV UROH E\ DONDOLQH EHIRUH$QG WKH UROH RI SRO\PHU ZDV WR LQFUHDVH VZHHSÀXLGVYLVFRVLW\FSZKLFKZLOOGHFUHDVH

LJ,QIOXHQFHRI2WKHU,QIRUPDWLRQRQ9DOXH5HOHYDQFHRI$FFRXQWLQJ,QIRUPDWLRQ $PLU DQG /HY H[DPLQHG WKH YDOXH UHOHYDQFH RI HDUQLQJV ERRN YDOXH DV DFFRXQWLQJ LQIRUPDWLRQ DQG