to accompany
T HOMAS ’ C ALCULUS
E LEVENTH E DITION
B ASED ON THE O RIGINAL W ORK BY
George B. Thomas, Jr.
Massachusetts Institute of Technology
AS R EVISED BY
Maurice D. Weir
Naval Postgraduate School
J oel Hass
University of California, Davis
Frank R. Giordano
Naval Postgraduate School
I NSTRUCTOR ’ S
S OLUTIONS M ANUAL
P ART O NE
A RDIS • B ORZELLINO • B UCHANAN • M OGILL • N ELSON
Reproduced by Pearson Addison-Wesley from electronic files supplied by the authors.
Copyright © 2005 Pearson Education, Inc.
Publishing as Pearson Addison-Wesley, 75 Arlington Street, Boston, MA 02116.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.
ISBN 0-321-22653-4 1 2 3 4 5 6 BB 07 06 05 04
This Instructor's Solutions Manual contains the solutions to every exercise in the 11th Edition of THOMAS' CALCULUS by Maurice Weir, Joel Hass and Frank Giordano, including the Computer Algebra System (CAS) exercises. The
corresponding Student's Solutions Manual omits the solutions to the even-numbered exercises as well as the solutions to the CAS exercises (because the CAS command templates would give them all away).
In addition to including the solutions to all of the new exercises in this edition of Thomas, we have carefully revised or rewritten every solution which appeared in previous solutions manuals to ensure that each solution
ì conforms exactly to the methods, procedures and steps presented in the text ì is mathematically correct
ì includes all of the steps necessary so a typical calculus student can follow the logical argument and algebra ì includes a graph or figure whenever called for by the exercise, or if needed to help with the explanation ì is formatted in an appropriate style to aid in its understanding
Every CAS exercise is solved in both the MAPLE and MATHEMATICA computer algebra systems. A template showing an example of the CAS commands needed to execute the solution is provided for each exercise type. Similar exercises within the text grouping require a change only in the input function or other numerical input parameters associated with the problem (such as the interval endpoints or the number of iterations).
Acknowledgments Solutions Writers
William Ardis, Collin County Community College-Preston Ridge Campus Joseph Borzellino, California Polytechnic State University
Linda Buchanana, Howard College Tim Mogill
Patricia Nelson, University of Wisconsin-La Crosse Accuracy Checkers
Karl Kattchee, University of Wisconsin-La Crosse Marie Vanisko, California State University, Stanislaus Tom Weigleitner, VISTA Information Technologies
Thanks to Rachel Reeve, Christine O'Brien, Sheila Spinney, Elka Block, and Joe Vetere for all their guidance and help at every step.
1.1 REAL NUMBERS AND THE REAL LINE
1. Executing long division, 0.1, 0.2, 0.3, 0.8, 0.9"9 œ 92 œ 93 œ 98 œ 99 œ
2. Executing long division, 0.09, 0.18, 0.27, 0.81, 0.9911" œ 112 œ 113 œ 119 œ 1111 œ 3. NT = necessarily true, NNT = Not necessarily true. Given: 2 < x < 6.
a) NNT. 5 is a counter example.
b) NT. 2 < x < 6 Ê 2 2 < x2 < 6 Ê2 0 < x2 < 2.
c) NT. 2 < x < 6 Ê2/2 < x/2 < 6/2 Ê1 < x < 3.
d) NT. 2 < x < 6 Ê 1/2 > 1/x > 1/6 Ê1/6 < 1/x < 1/2.
e) NT. 2 < x < 6 Ê1/2 > 1/x > 1/6 Ê1/6 < 1/x < 1/2Ê6(1/6) < 6(1/x) < 6(1/2)Ê1 < 6/x < 3.
f) NT. 2 < x < 6 Ê x < 6Ê(x4) < 2 and 2 < x < 6 Êx > 2 Ê x < 2 Ê x + 4 < 2 Ê (x 4) < 2.
The pair of inequalities (x4) < 2 and (x 4) < 2 Ê | x4 | < 2.
g) NT. 2 < x < 6 Ê 2 > x > 6 Ê 6 < x < 2. But 2 < 2. So 6 < x < 2 < 2 or 6 < x < 2.
h) NT. 2 < x < 6 Ê 1(2) > 1(x) < 1(6) Ê 6 < x < 2
4. NT = necessarily true, NNT = Not necessarily true. Given: 1 < y 5 < 1.
a) NT. 1 < y 5 < 1 Ê 1 + 5 < y5 + 5 < 1 + 5 Ê4 < y < 6.
b) NNT. y = 5 is a counter example. (Actually, never true given that 4 y 6) c) NT. From a), 1 < y 5 < 1, Ê4 < y < 6Êy > 4.
d) NT. From a), 1 < y 5 < 1, Ê4 < y < 6Êy < 6.
e) NT. 1 < y 5 < 1 Ê 1 + 1 < y5 + 1 < 1 + 1 Ê0 < y4 < 2.
f) NT. 1 < y 5 < 1 Ê(1/2)( 1 + 5) < (1/2)(y 5 + 5) < (1/2)(1 + 5) Ê2 < y/2 < 3.
g) NT. From a), 4 < y < 6 Ê1/4 > 1/y > 1/6 Ê1/6 < 1/y < 1/4.
h) NT. 1 < y 5 < 1 Ê y 5 > 1 Ê y > 4 Ê y < 4 Ê y + 5 < 1 Ê (y 5) < 1.
Also, 1 < y 5 < 1 Ê y 5 < 1. The pair of inequalities (y 5) < 1 and (y5) < 1 Ê | y5 | < 1.
5. 2x 4 Ê x 2
6. 8 3x 5 3x 3 x 1 x
Ê Ê Ÿ ïïïïïïïïïñqqqqqqqqp1 7. 5x $ Ÿ ( 3x Ê 8xŸ10 Ê xŸ54
8. 3(2x)2(3x) Ê 6 3x 6 2x
0 5x 0 x x
Ê Ê ïïïïïïïïïðqqqqqqqqp0 9. 2x "# 7x76 Ê "# 76 5x
x or x
Ê "5ˆ106‰ "3
10. 6 x4 3x 42 Ê 122x12x16
28 14x 2 x x
Ê Ê qqqqqqqqqðïïïïïïïïî2
11. (x45 2)3"(x6) Ê 12(x2)5(x6) 12x 24 5x 30 7x 6 or x
Ê Ê 67
12. x 52 Ÿ12 3x4 Ê (4x20)Ÿ246x
44 10x x x
Ê Ÿ Ê 225 Ÿ qqqqqqqqqñïïïïïïïïî22/5 13. yœ3 or yœ 3
14. y œ3 7 or y œ Ê3 7 yœ10 or yœ 4
15. 2t œ5 4 or 2t & œ Ê4 2tœ 1 or 2tœ Ê œ 9 t "# or tœ #9 16. 1 œt 1 or 1 œ Ê œ !t 1 t or t œ Ê œ2 t 0 or tœ2
17. 83sœ 92 or 83sœ Ê œ 9# 3s 7# or 3s œ 25# Ê œ s 76 or sœ256 18. s# œ1 1 or s# œ Ê1 1 #s œ2 or s# œ ! Ê œ s 4 or sœ0
19. 2 x 2; solution interval ( 2 2) ß
20. 2 x 2; solution interval [ 2 2] x
2 2
Ÿ Ÿ ß qqqqñïïïïïïïïñqqqqp
21. Ÿ Ÿ3 t 1 3 Ê Ÿ Ÿ 2 t 4; solution interval [ 2 4] ß 22. 1 t 2 1 3Ê t 1;
solution interval ( 3 1) t
3 1
ß qqqqðïïïïïïïïðqqqqp
23. % 3y 7 4 Ê 33y11 Ê 1 y 113 ; solution interval ˆ1ß113‰
24. 1 2y " Ê 5 6 2y Ê 4 3 y 2;
solution interval ( 3 2) y
3 2
ß qqqqðïïïïïïïïðqqqqp
25. Ÿ Ÿ1 z5 1 1 Ê 0Ÿ Ÿz5 2 Ê 0Ÿ Ÿz 10;
solution interval [0 10] ß
26. Ÿ2 3z# Ÿ1 2 Ê Ÿ1 3z# Ÿ3 Ê Ÿ Ÿ23 z 2;
solution interval 2 z
2/3 2
ß ‘ qqqqñïïïïïïïïñqqqqp
2 3
27. "# 3 "x "# Ê Ê#7 "x #5 #7 "x #5 x ; solution interval
Ê 27 25 ˆ27ß25‰
28. 3 2x 4 3 Ê 1 ( Ê2x 1 x# 7"
2 x x 2; solution interval 2 x
2/7 2
Ê Ê 27 27 ˆ27ß ‰ qqqqðïïïïïïïïðqqqqp
29. 2s 4 or 2s 4 Ê s 2 or sŸ 2;
solution intervals (_ß ß _2] [2 )
30. s 3 "# or (s 3) "# Ê s #5 or s #7
s or s ;
Ê 5# Ÿ 7#
solution intervals s
7/2 5/2
‘ ‰
ˆ_ß ß _7# 5# ïïïïïïñqqqqqqñïïïïïïî
31. 1 x 1 or ( " x)1 Ê x 0 or x2 x 0 or x 2; solution intervals ( ) (2 )
Ê _ß ! ß _
32. 23x5 or (2 3x)5 Ê 3x 3 or 3x7
x 1 or x ;
Ê 73
solution intervals ( 1) x
1 7/3
_ß ß _ ïïïïïïðqqqqqqðïïïïïïî ˆ73 ‰
33. r"# 1 or ˆr 1# ‰ 1 Ê r 1 2 or r Ÿ 1 2
r 1 or r 3; solution intervals ( 3] [1 ) Ê Ÿ _ß ß _ 34. 3r5 " 25 or ˆ3r5 " ‰ 25
or r or r 1
Ê 3r5 75 Ê 3r5 35 73
solution intervals ( ) r
1 7/3
_ß " ß _ ïïïïïïðqqqqqqðïïïïïïî ˆ73 ‰
35. x# # Ê k kx È2 2Ê È x È2 ;
solution interval Š È È2 2 ‹ x
È È
ß qqqqqqðïïïïïïðqqqqqqp # #
36. 4Ÿx # Ê 2Ÿk kx Ê x 2 or xŸ 2;
solution interval ( 2] [2 ) r
2 2
_ß ß _ ïïïïïïñqqqqqqñïïïïïïî 37. 4x#9 Ê 2k kx 3 Ê 2 x 3 or 2 x 3
2 x 3 or 3 x 2;
Ê
solution intervals ( 3 2) (2 3) x
3 2 2 3
ß ß qqqqðïïïïðqqqqðïïïïðqqqp
38. x"9 # "4 xÊ "3 k k"# xÊ "3 "# or "3 x "#
x or x ;
Ê "3 "# "# "3
solution intervals x
1/2 1/3 1/3 1/2
ˆ ß ‰ ˆ ß ‰ qqqqðïïïïðqqqqðïïïïðqqqp
" " " "
# 3 3 #
39. (x1)#4 Ê kx 1k 2 Ê 2 x 1 2
1 x 3; solution interval ( ) x
1 3
Ê "ß $ qqqqqqðïïïïïïïïðqqqqp
40. (x3)# # Ê xk 3k È2
2 x 3 2 or 3 2 x 3 2 ;
Ê È È È È
solution interval 3 2 3 2 x
3 3
Š È È ‹
È È
ß qqqqqqðïïïïïïïïðqqqqp # #
41. x# x 0 Ê x#x + < 14 14 Ê xˆ 12‰2 < 14 ʹ x 12 < ¹ 12 Ê 12 < x 12 < 12 Ê 0 < x < 1.
So the solution is the interval (0 1)ß
42. x# x 2 0 Ê x#x + 14 94 Ê x¹ 12 ¹ 32 Ê x 12 32 or ˆx 12‰ 32 Ê x 2 or x Ÿ 1.
The solution interval is (_ß ß _1] [2 ) 43. True if a 0; False if a0.
44. kx œ Í 1k 1 x k (x 1)kœ Í 1 x 1 x 0 Í xŸ1 45. (1) ak œ bk (a b) or ak œ bk (a b);
both squared equal (ab)# (2) abŸk kab œk k k ka b
(3) ak kœa or ak kœ a, so ak k#œa ; likewise, b# k k# œb#
(4) x# Ÿy implies # Èx#ŸÈy or x# Ÿy for all nonnegative real numbers x and y. Let xœ ka b andk yœk k k ka b so that ak bk#Ÿak k k ka bb# Ê ak Ÿbk k k k ka b .
46. If a 0 and b 0, then ab 0 and abk kœabœk k k ka b .
If a0 and b0, then ab0 and abk kœabœ œ( a)( b) k k k ka b . If a 0 and b0, then abŸ0 and abk kœ (ab)œ(a)( b) œk k k ka b . If a0 and b 0, then abŸ0 and abk kœ (ab)œ ( a)(b)œk k k ka b . 47. Ÿ Ÿ3 x 3 and x Ê Ÿ"# "# x 3.
48. Graph of xk k k k y Ÿ1 is the interior of “diamond-shaped" region.
49. Let be a real number > 0 and f(x) = 2x + 1. Suppose that | x 1 | < . Then | x 1 | < $ $ $ Ê 2| x 1 | < 2 $ Ê
| 2x | < 2 # $ Ê| (2x + 1) 3 | < 2 $ Ê| f(x) f(1) | < 2$
50. Let > 0 be any positive number and f(x) = 2x + 3. Suppose that | x 0 | < /2. Then 2| x 0 | < and% % %
| 2x + 3 3 | < . But f(x) = 2x + 3 and f(0) = 3. Thus | f(x) f(0) | < . % % 51. Consider: i) a > 0; ii) a < 0; iii) a = 0.
i) For a > 0, | a | œ a by definition. Now, a > 0 Ê a < 0. Let a = b. By definition, | b | œ b. Since b = a,
| a | œ ( a) œ a and | a | œ | a | œ a.
ii) For a < 0, | a | œ a. Now, a < 0Ê a > 0. Let a œ b. By definition, | b | œ b and thus | a| œ a. So again
| a | œ | a|.
iii) By definition | 0 | œ 0 and since 0 œ 0, | 0 | œ 0. Thus, by i), ii), and iii) | a | œ | a | for any real number.
52. i) Prove | x | > 0 Ê x > a or x < a for any positive number, a.
For x 0, | x | œ x. | x | > a Ê x > a.
For x < 0, | x | œ x. | x | > a Ê x > a Ê x < a.
ii) Prove x > a or x < a Ê | x | > 0 for any positive number, a.
a > 0 and x > a Ê | x | œ x. So x > a Ê | x | > a.
For a > 0, a < 0 and x < a Ê x < 0 Ê | x | œ x. So x < a Ê x > a Ê | x | > a.
53. a) 1 = 1 Ê | 1 | = 1 ʹ b
†
"b¹ œ l ll lb ʹ ¹ ¹ ¹ b†
"b œ l ll lb Ê œ ʹ ¹"b œb b b b
b b b b
¹ ¹ ¹ ¹ ¹ ¹
¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹
† †
"
b "
b) l ll lba œ ¹ a
†
"b¹ œ ¹ ¹ ¹ ¹ a†
"b œ ¹ ¹ a†
l l"b œ l ll lab54. Prove Sn œk kan œk ka for any real number a and any positive integer n.n
a a a, so S is true. Now, assume that S a a is true form some positive integer .
k k" œ k k" œ " kœ¸ ¸k œk kk 5
Since ak k" œ k ka " and a¸ ¸k œk ka , we have ak ¸ k"¸œ ¸ak†a"¸œ¸ ¸ak k ka" œk k k ka k a "œ k ka k+". Thus, Sk" œ¸ak"¸ œk ka k+" is also true. Thus by the Principle of Mathematical Induction, Sn œ l l œ l lan a n is true for all n positive integers.
1.2 LINES, CIRCLES, AND PARABOLAS
1. ?xœ œ1 ( 3) 2, y? œ œ 2 2 4; dœÈ( x)? #( y)? # œÈ416œ2È5 2. ?xœ $ œ ( 1) 2, y? œ œ2 ( 2) 4; dœÈ( 2) #4#œ2È5
3. ?xœ 8.1 ( 3.2)œ 4.9, y? œ œ2 ( 2) 0; dœÈ( 4.9) #0#œ4.9
4. ?xœ 0 È2œ È2, y? œ1.5 œ 4 2.5; dœÊŠÈ2‹# ( 2.5)#œÈ8.25
5. Circle with center (!ß !) and radius 1. 6. Circle with center (!ß !) and radius È2.
7. Disk (i.e., circle together with its interior points) with center (!ß !) and radius È3.
8. The origin (a single point).
9. mœ??yx œ 21( 1)2 œ3 10. mœ??yx œ 2# "( 2) œ 43 perpendicular slopeœ "3 perpendicular slopeœ34
11. mœ??yx œ 3132 œ0 12. mœ??yx œ # ## (0); no slope perpendicular slope does not exist perpendicular slopeœ0
13. (a) xœ 1 14. (a) xœÈ2 15. (a) xœ0 16. (a) xœ 1
(b) yœ43 (b) yœ 1.3 (b) yœ È2 (b) yœ0
17. P( 1 1), m ß œ Ê œ 1 y 1 1 xa ( 1) b Ê yœ x 18. P(2ß 3), mœ"# Ê œ y ( 3) "#(x2) Ê yœ "#x4
19. P(3 4), Q( 2 5) ß ß Ê mœ ??yx œ 5243 œ Ê œ 5" y 4 5"(x3) Ê yœ 5"x235 20. P( 8 0), Q( 1 3) ß ß Ê mœ??yx œ 13( 8)0 œ 73 Ê œ y 0 73ax ( 8) b Ê yœ 73x247 21. mœ 54, bœ6 Ê yœ 54x6 22. mœ"#, bœ Ê3 yœ"#x3 23. mœ0, P( 12 ß 9) Ê yœ 9 24. No slope, Pˆ"3ß % ʉ xœ "3 25. aœ 1, bœ4 Ê (0 4) and (ß "ß0) are on the line Ê mœ ??yx œ 0140 œ4 Ê yœ4x4 26. aœ2, bœ Ê6 (2 0) and (ß !ß 6) are on the line Ê mœ ??yx œ 0620 œ3 Ê yœ3x6
27. P(5ß 1), L: 2x5yœ15 Ê mLœ Ê2 parallel line is y œ ( 1) 2(x5) Ê yœ 2x1
5 5 5
28. PŠÈ2 2 , L: ß ‹ È2x5yœÈ3ÊmLœ Êparallel line is y œ 2 Šx Š È2‹‹ Ê yœ x
È2 È2 È2
5 5 5 5
8
29. P(4 10), L: 6xß 3yœ5 Ê mLœ2 Ê m¼œ Ê" perpendicular line is y10œ "(x4) Ê yœ "x12
# # #
30. P(!ß1), L: 8x13yœ13 Ê mLœ 8 Ê m œ 13 Ê perpendicular line is yœ 13x1
13 ¼ 8 8
31. x-interceptœ4, y-interceptœ3 32. x-interceptœ 4, y-interceptœ 2
33. x-interceptœÈ3, y-interceptœ È2 34. x-interceptœ 2, y-interceptœ3
35. AxByœC " Í yœ ABxCB" and BxAyœC # Í yœ BAxCA#. Since ˆAB‰ ˆ ‰AB œ 1 is the product of the slopes, the lines are perpendicular.
36. AxByœC " Í yœ Ax and AxByœC # Í yœ Ax . Since the lines have the same
B B B B
C" C#
slope AB, they are parallel.
37. New positionœaxold?x yß old?ybœ # &ß ( 3 ( 6))œ $ß ( 3).
38. New positionœaxold?x yß old?ybœ(6 ß ( 6) 0 0)œ ß(0 0).
39. ?xœ5, y? œ6, B(3ß 3). Let Aœ ß(x y). Then x? œx#x " Ê 5œ Ê3 x xœ 2 and
y y y 6 3 y y 9. Therefore, A ( 9).
? œ # " Ê œ Ê œ œ #ß
40. x? œ " " œ !, y? œ ! ! œ !
41. C(!ß2), aœ2 Ê x# (y 2)#œ4 42. C($ß0), aœ3 Ê (x3)#y#œ9
43. C( 1 5), a ß œÈ10 Ê(x1)# (y 5)# œ10
44. C("ß "), aœÈ2 Ê (x1)# (y 1)#œ2 xœ0 Ê (01)# (y 1)#œ2 Ê (y1)#œ1
y 1 1 y 0 or y 2.
Ê œ „ Ê œ œ Similarly, yœ0 Ê xœ0 or xœ2
45. CŠÈ3ß 2 , a‹ œ2 Ê xŠ È3‹# (y 2)# œ4, xœ0 Ê Š0È3‹# (y 2)#œ4 Ê (y2)# œ1
y 2 1 y 1 or y 3. Also, y 0 Ê œ „ Ê œ œ œ
x 3 (0 2) 4 x 3 0
Ê Š È ‹# #œ Ê Š È ‹#œ
x 3
Ê œ È
46. C 3ˆ ß"#‰, aœ5 Ê (x3)#ˆy"#‰# œ25, so
xœ0 Ê (03)#ˆy"#‰#œ25
y 16 y 4 y
Ê ˆ "#‰# œ Ê œ „ Ê"# œ #9
or yœ 7#. Also, yœ0 Ê (x3)#ˆ0#" #‰ œ25
(x 3) x 3
Ê #œ 994 Ê œ „ 3È#11
x 3
Ê œ „3È#11
47. x#y#4x4y % œ0 Ê x# %B y#4yœ 4
x 4x 4 y 4y 4 4
Ê # # œ
(x 2) (y 2) 4 C ( 2 2), a 2.
Ê # #œ Ê œ ß œ
48. x#y#8x4y16œ0 Ê x#8xy#4yœ 16
x 8x 16 y 4y 4 4
Ê # # œ Ê (x4)# (y 2)#œ4
C ( 2), a 2.
Ê œ %ß œ
49. x#y#3y œ4 0 Ê x#y#3yœ4
x y 3y
Ê # # œ94 254
x y C 0 ,
Ê #ˆ #3‰# œ254 Ê œ ߈ #3‰ aœ5#.
50. x#y#4x œ94 0
x 4x y
Ê # #œ94
x 4x 4 y
Ê # # œ254 Ê (x2)#y#œ 254
C (2 0), a . Ê œ ß œ5#
51. x#y#4x4yœ0 Ê x#4xy#4yœ0
x 4x 4 y 4y 4 8
Ê # # œ (xÊ 2)# (y 2)#œ8
C(2 2), a 8.
Ê ß œÈ
52. x#y#2xœ3
x 2x 1 y 4
Ê # # œ Ê (x1)#y#œ4
C ( 1 0), a 2.
Ê œ ß œ
53. xœ #baœ 2(1)2 œ1 Ê yœ(1)#2(1) œ 3 4
V ( 4). If x 0 then y 3.
Ê œ "ß œ œ Also, yœ0 Ê x#2x œ3 0
(x 3)(x 1) 0 x 3 or Ê œ Ê œ xœ 1. Axis of parabola is xœ1.
54. xœ #baœ 2(1)4 œ 2
Ê yœ ( 2)# œ 4( 2) 3 1 V ( 2 1). If x 0 then y 3.
Ê œ ß œ œ Also, yœ0 Ê x#4x œ3 0
(x 1)(x 3) 0 x 1 or Ê œ Ê œ xœ 3. Axis of parabola is xœ 2.
55. xœ #baœ 2( 1)4 œ2 Ê yœ (2)#4(2)œ4
V (2 4). If x 0 then y 0.
Ê œ ß œ œ Also, yœ0 Ê x# 4xœ0
x(x 4) 0 x 4 or x 0.
Ê œ Ê œ œ Axis of parabola is xœ2.
56. xœ #baœ 2( 1)4 œ2
Ê yœ (2)#4(2) œ 5 1 V (2 1). If x 0 then y 5.
Ê œ ß œ œ Also, yœ0 Ê x# 4x œ5 0
x 4x 5 0 x
Ê # œ Ê œ 4„ È# 4
no x intercepts. Axis of parabola is x 2.
Ê œ
57. xœ #baœ 2( 1)6 œ 3
Ê yœ ( 3)# œ6( 3) 5 4 V ( 3 ). If x 0 then y 5.
Ê œ ß % œ œ Also, yœ0 Ê x# 6x œ5 0
(x 5)(x 1) 0 x 5 or Ê œ Ê œ xœ 1. Axis of parabola is xœ 3.
58. xœ #baœ 2(2)1 œ 4"
y 2 3
Ê œ ˆ ‰"4 # œ"4 238
V . If x 0 then y 3.
Ê œˆ"ß ‰ œ œ
4 8 23
Also, yœ0 Ê 2x# œx 3 0 x no x intercepts.
Ê œ1„ È4 23 Ê Axis of parabola is xœ"4.
59. xœ #baœ 2(1/2)1 œ 1
Ê yœ"#( 1) # œ( 1) 4 72
V . If x 0 then y 4.
Ê œ "߈ 72‰ œ œ Also, yœ0 Ê x"# # œx 4 0
x no x intercepts.
Ê œ „ 1 1È 7 Ê Axis of parabola is xœ 1.
60. xœ #baœ 2( 1/4)2 œ4
Ê yœ "4(4)#2(4) œ4 8
V (4 8) . If x 0 then y 4.
Ê œ ß œ œ Also, yœ0 xÊ " #4 2x œ4 0 Ê xœ „21/2È8 œ „4 4È2.
Axis of parabola is xœ4.
61. The points that lie outside the circle with center (!ß0) and radius È7.
62. The points that lie inside the circle with center (!ß0) and radius È5.
63. The points that lie on or inside the circle with center ("ß0) and radius 2.
64. The points lying on or outside the circle with center (!ß2) and radius 2.
65. The points lying outside the circle with center (!ß0) and radius 1, but inside the circle with center (!ß0), and radius 2 (i.e., a washer).
66. The points on or inside the circle centered at (!ß !) with radius 2 and on or inside the circle centered at ( 2 0) with radius 2. ß
67. x#y#6y0 Ê x# (y 3)#9.
The interior points of the circle centered at (!ß 3) with radius 3, but above the line yœ 3.
68. x#y#4x2y4 Ê (x2)# (y 1)#9.
The points exterior to the circle centered at (2ß 1) with radius 3 and to the right of the line xœ2.
69. (x2)# (y 1)#6 70. (x4)# (y 2)#16
71. x#y#Ÿ2, x 1 72. x#y#4, (x1)# (y 3)#10
73. x#y#œ1 and yœ2x Ê 1œx#4x#œ5x#
x and y or x and y .
Ê Š œÈ" œ È ‹ Š œ È" œ È ‹
5 5 5 5
2 2
Thus, AŠÈ"5ßÈ25‹, BŠÈ"5ß È25‹ are the points of intersection.
74. x œy 1 and (x1)#y#œ1 Ê 1œ ( y)#y# œ2y#
y and x or
Ê Š œÈ"2 œ " È"2‹
y and x 1 . Thus,
Š œ È" œ È" ‹
2 2
AŠ" È" ßÈ" ‹ and B 1Š È" ß È" ‹
2 2 2 2
are intersection points.
75. y œx 1 and yœx # Ê x# œx 1
x x 1 0 x .
Ê # œ Ê œ 1„#È5 If xœ 1#È5, then yœ œx 1 3#È5. If xœ 1#È5, then yœ œx 1 3#È5. Thus, AŠ1#È5ß3#È5‹ and BŠ1#È5ß3#È5‹ are the intersection points.
76. yœ x and C œ (x 1) # Ê (x1)# œx
x 3x 0 x . If
Ê # " œ Ê œ 3„#È5 xœ3#È5, then yœ œx È5 3# . If xœ3#È5, then yœ œ x 3#È5.
Thus, AŠ3#È5ßÈ5 3# ‹ and BŠ3#È5ß 3#È5‹ are the intersection points.
77. yœ2x# œ 1 x # Ê 3x#œ1
x and y or x and y .
Ê œÈ"3 œ "3 œ È"3 œ "3
Thus, AŠÈ"3ß "3‹ and BŠÈ"3ß "3‹ are the intersection points.
78. yœx4# œ(x1) # Ê 0œ 3x4# 2x1 Ê 0œ3x#8x œ4 (3x2)(x2)
x 2 and y 1, or x and Ê œ œx4# œ œ 23 yœx4# œ9". Thus, A(2 1) and Bß ˆ23ß9"‰ are the intersection points.
79. x#y#œ œ1 (x1)#y# Ê x# œ(x1)#œx#2x1
0 2x 1 x . Hence Ê œ Ê œ "#
y# œ " x#œ 34 or yœ „È#3. Thus, AŠ"#ßÈ#3‹ and BŠ"#ß È#3‹ are the intersection points.
80. x#y#œ œ1 x# Êy y#œy y(y 1) 0 y 0 or y 1.
Ê œ Ê œ œ
If yœ1, then x#œ " y# œ0 or xœ0.
If yœ0, then x#œ 1 y# œ1 or xœ „1.
Thus, A(0 1), B(ß "ß0), and C( 1 0) are the ß intersection points.
81. (a) A¸(69° 0 in), Bß ¸(68° .4 in) ß Ê mœ 68° .4 69°0 ¸ 2.5°/in.
(b) A¸(68° .4 in), Bß ¸(10° 4 in) ß Ê mœ 10° 4 .468° ¸ 16.1°/in.
(c) A¸(10° 4 in), Bß ¸(5° 4.6 in) ß Ê mœ 5° 4.6 10°4 ¸ 8.3°/in.
82. The time rate of heat transfer across a material, ??U>, is directly proportional to the cross-sectional area, A, of the material, to the temperature gradient across the material, ??XB (the slopes from the previous problem), and to a constant characteristic of the material. ??U> œ-kA??XB Êk =???Î . Note that ??U> and ??BXare of opposite sign because heat flow is toward lower
? U>
XB
A
temperature. So a small value of k corresponds to low heat flow through the material and thus the material is a good insulator.Since all three materials have the same cross section and the heat flow across each is the same (temperatures are
not changing), we may define another constant, K, characteristics of the material: K œ Þ?" Using the values of XB from
?X B
??
the prevous problem, fiberglass has the smallest K at 0.06 and thus is the best insulator. Likewise, the wallboard is the poorest insulator, with Kœ0.4.
83. pœkd1 and pœ10.94 at dœ100 Ê kœ 10.94100" œ0.0994. Then pœ0.0994d1 is the diver's pressure equation so that dœ50 Ê pœ(0.0994)(50) œ1 5.97 atmospheres.
84. The line of incidence passes through (!ß1) and ("ß0) Ê The line of reflection passes through ("ß0) and (#ß ") m 1 y 0 1(x 1) y x 1 is the line of reflection.
Ê œ1 0#1 œ Ê œ Ê œ
85. Cœ 59(F32) and CœF Ê Fœ 59F1609 Ê F49 œ 1609 or Fœ 40° gives the same numerical reading.
86. mœ37.1100 œ?14x Ê x? œ .37114 . Therefore, distance between first and last rows is É(14)#ˆ.37114‰# ¸40.25 ft.
87. length ABœÈ(51)# (5 2)#œÈ16 œ9 5 length ACœÈ(41)# # # œ( )# È916œ5
length BCœÈ(45)# # ( 5)#œÈ149œÈ50œ5È2Á5
88. length ABœÊ(10)#ŠÈ30‹#œÈ1 œ3 2 length ACœÈ(20)# (0 0)#œÈ4 œ0 2 length BCœÊ(21)#Š0È3‹# œÈ1 œ3 2
89. Length ABœÈ( x)? #( y)? # œÈ1#4#œÈ17 and length BCœÈ( x)? #( y)? #œÈ4#1# œÈ17.
Also, slope ABœ41 and slope BCœ 4", so AB¼BC. Thus, the points are vertices of a square. The coordinate increments from the fourth vertex D(x y) to A must equal the increments from C to B ß Ê œ 2 x ?xœ4 and
1 y y x 2 and y 2. Thus D( 2) is the fourth vertex.
œ? œ " Ê œ œ #ß
90. Let Aœ ß(x 2) and Cœ ß(9 y) Ê Bœ ß(x y). Then 9 œx kAD and 2k œy kDC k Ê 2(9 x) 2(2y)œ56 and 9 œx 3(2y) Ê 2(3(2y))2(2y)œ56 Ê yœ Ê œ5 9 x 3(2 ( 5)) Ê xœ 12.
Therefore, Aœ ß( 12 2), Cœ ß (9 5), and Bœ ß ( 12 5).
91. Let A("ß "), B(#ß $), and C(2ß !) denote the points.
Since BC is vertical and has length BCk kœ3, let D (" "ß4) be located vertically upward from A and D (# "ß 2) be located vertically downward from A so that BCk kœkAD"kœkAD#kœ3. Denote the point D (x y). Since the slope of AB equals the slope of$ ß CD we have $ y 3x 2 œ Ê"3 3y œ 9 x 2 or x3yœ11. Likewise, the slope of AC equals the slope of BD so that $ y x 02 œ32 Ê 3yœ2x4 or 2x3yœ4.
Solving the system of equations x 3y we find x 5 and y 2 yielding the vertex D (5 ).
2x3yœ "" 4
œ œ œ $ ß #
92. Let x, y , xa b Á ! and/or yÁ ! be a point on the coordinate plane. The slope, m, of the segment a!ß !b a to x, y is . A 90b yx ‰ rotation gives a segment with slope mwœ œ m" yx. If this segment has length equal to the original segment, its endpoint will be ay, x or y, x , the first of these corresponds to a counter-clockwise rotation, the latter to a clockwiseb a b rotation.
(a) ("ß4); (b) (3ß 2); (c) (5 2); ß (d) (0 x);ß
(e) ( y 0); ß (f) ( y x); ß (g) (3ß 10)
93. 2xkyœ3 has slope 2k and 4x œy 1 has slope 4. The lines are perpendicular when œ 2k( 4) 1 or kœ 8 and parallel when œ 2k 4 or kœ"#.
94. At the point of intersection, 2x4yœ6 and 2x3yœ 1. Subtracting these equations we find 7yœ7 or yœ1. Substitution into either equation gives xœ1 Ê (1 1) is the intersection point. The line through (1 1)ß ß and ("ß #) is vertical with equation xœ1.
95. Let M(a b) be the midpoint. Since the two trianglesß shown in the figure are congruent, the value a must lie midway between x and x , so a" # œ x"#x#. Similarly, bœy"#y#.
96. (a) L has slope 1 so M is the line through P(2 1) with slope 1; or the line yß œ x 3. At the intersection point, Q, we have equal y-values, yœ œ x 2 x 3. Thus, 2xœ1 or xœ "#. Hence Q has coordinates
. The distance from P to L the distance from P to Q .
ˆ"# #ß5‰ œ œÉˆ ‰#3 # ˆ #3‰#œÉ184 œ 3È#2
(b) L has slope 43 so M has slope and M has the equation 4y34 3xœ12. We can rewrite the equations of the lines as L: x34yœ3 and M: B 43yœ4. Adding these we get 2512yœ7 so yœ 8425. Substitution into either equation gives xœ 43ˆ ‰8425 œ4 1225 so that Qˆ1225ß8425‰ is the point of intersection. The distance from P to LœÉˆ41225‰#ˆ68425‰#œ 225.
(c) M is a horizontal line with equation yœb. The intersection point of L and M is Q("ßb). Thus, the distance from P to L is È(a1)#0#œ ka 1 .k
(d) If Bœ0 and AÁ0, then the distance from P to L is ¸CAx as in (c). Similarly, if A!¸ œ0 and BÁ0, the distance is ¸CBy . If both A and B are!¸ Á0 then L has slope AB so M has slope . Thus,BA
L: AxByœC and M: Bx Ayœ Bx!Ay . Solving these equations simultaneously we find the!
point of intersection Q(x y) with xß œ AC B AyAa#B!#Bx!b and yœ BC A AyAa#B!#Bx!b. The distance from P to Q equals È( x)? #( y) , where ( x)? # ? #œŠx!aA#B#bAAC ABy#B# !B x# !‹#
, and ( y) .
œ A#aAxA!# ByB#!#Cb# œ y!aA# B#bABC A y# B# # ! ABx! œ B#aAxA!# ByB#!#Cb#
a b a b
#
? Š ‹#
Thus, È( x)? #( y)? #œÉaAx!A#ByB!#Cb# œ kAxÈ!ABy!BCk.
# #
1.3 FUNCTIONS AND THEIR GRAPHS
1. domainœ _ß _( ); rangeœ ß _[1 ) 2. domainœ ß _[0 ); rangeœ _ß( 1]
3. domainœ !ß _( ); y in range Ê yœ Èt" , t0 Ê y#œ "t and y ! Ê y can be any positive real number Ê rangeœ !ß _( ).
4. domainœ ß _[0 ); y in range Ê yœ 1"Èt, t0. If tœ0, then yœ1 and as t increases, y becomes a smaller and smaller positive real number Ê rangeœ ß(0 1].
5. 4z# œ(2z)(2 z) 0 Í − ß œ z [ 2 2] domain. Largest value is g(0)œÈ4œ2 and smallest value is g( 2) œg(2)œÈ0œ0 Ê rangeœ ß[0 2].
6. domainœ ß( 2 2) from Exercise 5; smallest value is g(0)œ"# and as 0z increases to 2, g(z) gets larger and larger (also true as z0 decreases to 2) Ê rangeœ ß _"# ‰.
7. (a) Not the graph of a function of x since it fails the vertical line test.
(b) Is the graph of a function of x since any vertical line intersects the graph at most once.
8. (a) Not the graph of a function of x since it fails the vertical line test.
(b) Not the graph of a function of x since it fails the vertical line test.
9. yœÉˆ ‰"x " Ê " ! Ê Ÿ"x x 1 and x !. So,
(a) No (x !Ñ; (b) No; division by undefined;! (c) No; if x ", "x " Ê " !"x ; (d) Ð!ß "Ó
10. yœÉ# ÈxÊ # Èx ! ÊÈx !and xÈ Ÿ #. xÈ ! Ê !x and xÈ Ÿ # Ê Ÿ %Þ x So, x! Ÿ Ÿ %. (a) No; (b) No; (c) Ò!ß %Ó
11. baseœx; (height)#ˆ ‰#x #œx # Ê heightœ È#3x; area is a(x)œ #"(base)(height)œ #"(x)ŠÈ#3x‹œÈ43x ;# perimeter is p(x)œ œx x x 3x.
12. sœside length Ê s# œs# d # Ê œ s d ; and area is aœs # Ê œ a "#d#
È2
13. Let Dœdiagonal of a face of the cube and j œthe length of an edge. Then j # D#œd and (by Exercise 10)# D#œ j Ê j œ2 # 3 # d # Ê j œ Èd3. The surface area is 6j œ# 6d3# œ2d and the volume is # j œ$ Š ‹d3# $Î#œ 3Èd$3.
14. The coordinates of P are xˆ ßÈx so the slope of the line joining P to the origin is m‰ œÈxx œ È"x (x0). Thus, x, ˆ Èx‰œˆm"#, m"‰.
15. The domain is a_ß _b. 16. The domain is a_ß _b.
17. The domain is a_ß _b. 18. The domain is Ð_ß !Ó.
19. The domain is a_ß ! !ß _b a b. 20. The domain is a_ß ! !ß _b a b.
21. Neither graph passes the vertical line test
(a) (b)
22. Neither graph passes the vertical line test
(a) (b)
x y 1
x y y 1 x
or or
x y y x
k k
Ú Þ Ú Þ
Û ß Û ß
Ü à Ü à
œ Í œ " Í œ œ " œ "
23. x 0 1 2 24. x 0 1 2
y 0 1 0 y 1 0 0
25. y 3 x, x 1 26. y
2x, 1 x
, x 0 x, 0 x
œ Ÿ œ
œ œ"x Ÿ
27. (a) Line through a!ß !b and a"ß "b: yœx Line through a"ß "b and a#ß !b: yœ x 2
f(x) x, 0 x 1
x 2, 1 x 2
œ Ÿ Ÿ
œ Ÿ (b) f(x)
2, x
x
2 x
x œ
! Ÿ "
!ß " Ÿ # ß # Ÿ $
!ß $ Ÿ Ÿ % ÚÝ
Ý ÛÝ ÝÜ
28. (a) Line through a!ß2 and b a#ß !b: yœ x 2
Line through 2a ß "b and a&ß !b: mœ ! "& # œ "$ œ "$, so yœ "$ax2b " œ "$x&$
f(x) x , 0 x
x , x
œ # Ÿ #
# Ÿ &
œ " &
$ $
(b) Line through a"ß !b and a!ß $b: mœ! Ð"Ñ$ ! œ $, so yœ $ $x Line through a!ß $b and a#ß "b: mœ " $# ! œ %# œ #, so yœ # $x
f(x) x , x
x , x
œ $ $ " Ÿ !
# $ ! Ÿ # œ
29. (a) Line through a"ß "b and a!ß !b: yœ x Line through a!ß "b and a"ß "b: yœ "
Line through a"ß "b and a$ß !b: mœ !"$" œ"# œ "#, so yœ "#ax " " œ b "#x$# f(x)
x x
x
x x
œ
" Ÿ !
" ! Ÿ "
" $
Ú
ÛÜ "# $#
(b) Line through a#ß "b and a!ß !b: yœ"#x Line through a!ß #b and a"ß !b: yœ # #x Line through a"ß "b and a$ß "b: yœ "
f(x)
x x
x x
x œ
# Ÿ Ÿ !
# # ! Ÿ "
" " Ÿ $ Ú
ÛÜ
"
#
30. (a) Line through ˆT#ß !‰ and Ta ß "b: mœT Î#"!aT b œ T#, so yœ T#ˆxT#‰ œ0 T#x "
f(x) , 0 x
x , x T
œ ! Ÿ Ÿ
" Ÿ J
T T
T #
# #
(b) f(x)
A, x
A x T
A T x
A x T
œ
! Ÿ
ß Ÿ
ß Ÿ
ß Ÿ Ÿ #
ÚÝ ÝÝ ÛÝ ÝÝ Ü
T T
T T
#
# $
$ #
#
31. (a) From the graph, x# 1 4x Ê x− ß( 2 0) %ß _( ) (b) 1x# 4x 1Ê x# 4x 0
x0: 1x# 4x 0 Ê x# 2x2x 8 0 Ê (x 4)(x 2)#x 0 x 4 since x is positive;
Ê
x0: 1x2 4x 0 Ê x# 2x2x 8 0 Ê (x 4)(x 2)#x 0 x 2 since x is negative;
Ê
sign of (x4)(x2) ïïïïïðïïïïïðïïïïî 2
%
Solution interval: (#ß0) %ß _( )
32. (a) From the graph, x 13 x 12 Ê x− _ß ß( 5) ( 1 1) (b) Casex 1: x 13 x 12 Ê 3(x 1)x 1 2
3x 3 2x 2 x 5.
Ê Ê
Thus, x− _ß ( 5) solves the inequality.
1 x 1: 2
Case x 13 x 12 Ê 3(x 1)x 1
3x 3 2x 2 x 5 which is true
Ê Ê
if x 1. Thus, x− ß( 1 1) solves the
inequality.
1 x: 3x 3 2x 2 x 5
Case x 13 x 12 Ê Ê
which is never true if 1x, so no solution
here.
In conclusion, x− _ß ß( 5) ( 1 1).
33. (a) xÚ Û œ0 for x−[0 1) ß (b) xÜ Ý œ0 for x− ß( 1 0]
34. xÚ Û œ Ü Ýx only when x is an integer.
35. For any real number x, nŸ Ÿ "x n , where n is an integer. Now: nŸ Ÿ " Ê Ð "Ñ Ÿ Ÿ x n n x n. By definition: Ü Ý œ x n and xÚ Û œ Ê Ú Û œ n x n. So Ü Ý œ Ú Ûx x for all x− d.