• Tidak ada hasil yang ditemukan

CHAPTER 1 ADDITIONAL AND ADVANCED EXERCISES

2.3 PRECISE DEFINITION OF A LIMIT

56. (a) 1œ lim œ œ Ê lim f(x)œ4.

xÄ c# xÄ c#

f(x)

x lim x

lim f(x) lim f(x)

# x # x

x

Ä# Ä#

Ä# %

(b) 1œ lim œ lim lim œ lim Ê lim œ 2.

xÄ c# xÄ c# xÄ c# xÄ c# xÄ c#

f(x) f(x) f(x) f(x)

x#x “ ’ x"“ ’ x “ ˆ ‰#" x

57. (a) 0œ3 0† œ’ lim “ ’ lim (x2)“œ lim ’Š ‹(x2)“œ lim [f(x)5]œ lim f(x)5

xÄ # xÄ # xÄ # xÄ # xÄ #

f(x) 5 f(x) 5

x x

# #

lim f(x) 5.

Ê œ

xÄ #

(b) 0œ4 0† œ’ lim “ ’ lim (x2) “ Ê lim f(x)œ5 as in part (a).

xÄ # xÄ # xÄ #

f(x) 5

x

#

58. (a) 0œ1 0† œ’ lim “ ’ lim x“ œ’ lim “ ’ lim x “œ lim ’ †x “œ lim f(x). That is, lim f(x

xÄ ! xÄ ! xÄ ! xÄ ! xÄ ! xÄ ! xÄ !

f(x) f(x) f(x)

x# x# x#

# # # )œ0.

(b) 0œ1 0† œ’ lim “ ’ lim x“œ lim ’ †x“œ lim . That is, lim œ0.

xÄ ! xÄ ! xÄ ! xÄ ! xÄ !

f(x) f(x) f(x) f(x)

x# x# x x

59. (a) lim x sin 0

xÄ ! "x œ

(b) Ÿ1 sin "x Ÿ1 for xÁ0:

x0 Ê Ÿ x x sin "x Ÿx Ê lim x sin "x œ0 by the sandwich theorem;

xÄ !

x0 Ê   x x sin "x  x Ê lim x sin "x œ0 by the sandwich theorem.

xÄ !

60. (a) lim x cos 0

xÄ ! # ˆ ‰x"$ œ

(b) Ÿ1 cos ˆ ‰x"$ Ÿ1 for xÁ0 Ê Ÿ x# x cos # ˆ ‰x"$ Ÿx # Ê lim x cos # ˆ ‰x"$ œ0 by the sandwich

xÄ !

theorem since lim x 0.

xÄ ! #œ

2.

Step 1: kx Ê Ê # 2k $ $ x 2 $ $ x $ 2 Step 2: œ$ 2 1 Ê œ$ 1, or $ œ2 7 Ê œ$ 5.

The value of which assures x$ k Ê2k $ 1 x 7 is the smaller value, $œ1.

3.

Step 1: xk ( 3)k Ê $ Ê $ $ x $ $ 3 x $ 3 Step 2: œ Ê œ$ 3 7# $ #", or $ $ œ Ê œ#" $ 5#.

The value of which assures x$ k ( 3)k Ê $ 7# x #" is the smaller value, $œ#". 4.

Step 1: x¸ ˆ 3#‰¸ Ê Ê $ $ x 3# $ $ 3# x $ 3# Step 2: œ Ê œ #$ 3# 7# $ , or $ œ Ê œ3# #" $ 1.

The value of which assures x$ ¸ ˆ 3#‰¸ Ê $ 7# x #" is the smaller value, $œ ". 5.

Step 1: x¸ "#¸ Ê Ê $ $ x "# $ $ "# x $ "# Step 2: œ$ "# 49 Ê œ$ 18", or $ œ"# 47 Ê œ$ 14".

The value of which assures x$ ¸ "#¸ Ê$ 49 x 47 is the smaller value, $œ18". 6.

Step 1: kx Ê Ê 3k $ $ x 3 $ $ 3 x $ 3

Step 2: $ œ$ 2.7591 Ê œ$ 0.2409, or $ $ œ3.2391 Ê œ$ 0.2391.

The value of which assures x$ k Ê3k $ 2.7591 x 3.2391 is the smaller value, $œ0.2391.

7. Step 1: kx Ê Ê 5k $ $ x 5 $ $ 5 x $ 5

Step 2: From the graph, œ$ 5 4.9 Ê œ$ 0.1, or $ œ5 5.1 Ê œ$ 0.1; thus $œ0.1 in either case.

8. Step 1: kx ( 3)k Ê Ê $ $ x 3 $ $ 3 x $ 3

Step 2: From the graph, œ $ 3 3.1 Ê œ$ 0.1, or $ œ 3 2.9 Ê œ$ 0.1; thus $œ0.1.

9. Step 1: kx Ê Ê 1k $ $ x 1 $ $ 1 x $ 1

Step 2: From the graph, œ$ 1 169 Ê œ$ 167, or $ œ1 2516 Ê œ$ 169; thus $œ167. 10. Step 1: xk Ê Ê 3k $ $ x 3 $ $ 3 x $ 3

Step 2: From the graph, œ$ 3 2.61 Ê œ$ 0.39, or $ œ3 3.41 Ê œ$ 0.41; thus $œ0.39.

11. Step 1: xk Ê Ê 2k $ $ x 2 $ $ 2 x $ 2

Step 2: From the graph, œ$ 2 È3 Ê œ $ 2 È3¸0.2679, or $ œ2 È5 Ê œ$ È5 ¸2 0.2361;

thus $œÈ52.

12. Step 1: xk ( 1)k Ê Ê $ $ x 1 $ $ 1 x $ 1

Step 2: From the graph, œ $ 1 È#5 Ê œ$ È5 2# ¸0.1180, or $ œ 1 È#3 Ê œ$ 2#È3 ¸0.1340;

thus $œ È5 2# .

13. Step 1: xk ( 1)k Ê Ê $ $ x 1 $ $ 1 x $ 1

Step 2: From the graph, œ $ 1 169 Ê œ ¸$ 79 0.77, or $ œ 1 1625 Ê 259 œ0.36; thus $œ259 œ0.36.

14. Step 1: x¸ "#¸ Ê Ê $ $ x "# $ $ "# x $ "#

Step 2: From the graph, œ$ "# 2.011 Ê œ $ 12 #.01" ¸0.00248, or $ œ"# 1.991 Ê œ$ 1.991 ¸"# 0.00251;

thus $œ0.00248.

15. Step 1: (xk 1) 5k 0.01 Ê kx 4k 0.01 Ê 0.01 x 4 0.01 Ê 3.99 x 4.01 Step 2: xk Ê Ê Ê œ4k $ $ x 4 $ $ 4 x $ 4 0.01.$

16. Step 1: (2xk 2) ( 6)k0.02 Ê k2x 4k 0.02 Ê 0.022x 4 0.02 Ê 4.022x 3.98

Ê 2.01 x 1.99

Step 2: xk ( 2)k Ê Ê Ê œ$ $ x 2 $ $ 2 x $ 2 0.01.$

17. Step 1: ¹Èx " 1 ¹ 0.1 Ê 0.1Èx " 1 0.1 Ê 0.9Èx 1 1.1 Ê 0.81 x 1 1.21

Ê 0.19 x 0.21

Step 2: kx Ê 0k $ $ x $. Then, œ !Þ"* Ê œ !Þ"*$ $ or $œ !Þ#"; thus, $œ0.19.

18. Step 1: ¸Èx"#¸0.1 Ê 0.1Èx "# 0.1 Ê 0.4Èx0.6 Ê 0.16 x 0.36 Step 2: x¸ "4¸ Ê Ê B $ $ x "4 $ $ "4 $ "4.

Then, œ$ "4 0.16 0.09 Ê œ$ or $ œ"4 0.36 0.11; Ê œ$ thus 0.09.$œ

19. Step 1: ¹È19 $ " Ê " x ¹ È19 $ x 1 Ê 2È19 % Êx 419 x 16

x 19 16 15 x 3 or 3 x 15

Ê % Ê

Step 2: xk 10k Ê $ $ x 10 Ê $ $ 10 x $ 10.

Then 10$ œ3 7, Ê œ$ or 10$ œ15 5; Ê œ$ thus 5.$œ

20. Step 1: ¹Èx 7 4¹1 Ê " Èx % 7 1 Ê 3Èx 7 5 Ê 9 x 7 25 Ê 16 x 32 Step 2: xk 23k Ê $ $ x 23 Ê $ $ 23 x $ 23.

Then 23$ œ16 7, Ê œ$ or 23$ œ32 9; Ê œ$ thus 7.$œ

21. Step 1: ¸"x"4¸0.05 Ê 0.05 "x "4 0.05 Ê 0.2 "x 0.3 xÊ 10# 103 or x103 5.

Step 2: xk Ê Ê 4k $ $ x 4 $ $ 4 x $ 4.

Then % œ$ 103 or $œ23, or $ œ4 5 or $œ1; thus $œ23.

22. Step 1: xk # ! Ê 3k .1 0.1x# 3 0.1 Ê 2.9x# 3.1 Ê È2.9 x È3.1 Step 2: x¹ È3¹ Ê $ $ x È3 Ê $ $ È3 x $ È3.

Then $ È3œÈ2.9 Ê œ$ È3È2.9¸0.0291, or $È3œÈ3.1 Ê œ$ È3.1È3¸0.0286;

thus $œ0.0286.

23. Step 1: kx# 4k 0.5Ê 0.5x# 4 0.5Ê3.5x# 4.5ÊÈ3.5k kx È4.5 Ê È4.5 x È3.5, for x near 2.

Step 2: xk ( 2)k Ê Ê # $ $ x 2 $ $ x $ 2.

Then # œ $ È4.5 Ê œ$ È4.5 # ¸0.1213, or $ # œ È3.5 Ê œ # $ È3.5¸0.1292;

thus $œÈ4.5 ¸2 0.12.

24. Step 1: ¸" ( 1)¸ 0.1 0.1 " 1 0.1 " x or x .

x x 10 x 10 11 9 9 11

11 9 10 10 10 10

Ê Ê Ê

Step 2: xk ( 1)k Ê Ê " "$ $ x 1 $ $ x $ .

Then " œ $ 109 , Ê œ$ 9" or $ " œ 1011 Ê œ$ 11"; thus $œ11".

25. Step 1: xka #5b11k " Ê kx#16k1 Ê " x#161 Ê 15x#17 Ê È15 x È17.

Step 2: kx Ê Ê % %4k $ $ x 4 $ $ x $ .

Then 15 % œ$ È Ê œ % 15$ È ¸0.1270, or 17 $ % œÈ Ê œ$ È17 % ¸0.1231;

thus $œÈ17 ¸4 0.12.

26. Step 1: ¸120120 1 4 120 6 x 30 x 20 or 20 x 30.

x " Ê " x & Ê x Ê 4" 120 6" Ê Step 2: xk 24k Ê $ $ x 24 Ê $ $ 24 x $ 24.

Then $ 24œ20 4, Ê œ$ or 24$ œ30 6; Ê œ$ thus 4.Ê œ$

27. Step 1: mxk 2mk0.03 Ê 0.03mx2m0.03 Ê 0.032mmx0.032m Ê 20.03m x 2 0.03m .

Step 2: kx Ê Ê # #2k $ $ x 2 $ $ x $ .

Then # œ # $ 0.03m Ê œ$ 0.03m , or $ # œ # 0.03m Ê œ$ 0.03m . In either case, $œ0.03m . 28. Step 1: mxk 3mk Ê c c mx3m Ê c c 3mmx c 3m Ê 3 mc x 3 mc

Step 2: kx Ê Ê $ B $3k $ $ x 3 $ $ $ .

Then $ œ $ $ mc Ê œ$ mc, or $ $ œ $ mc Ê œ$ mc. In either case, $œ mc.

29. Step 1: (mx¸ b) ˆm# b‰¸ - Ê c mx Ê m# c c m# mx c m# Ê #" mc x #" mc. Step 2: ¸x"#¸ Ê Ê $ $ x "# $ $ "# x $ "#.

Then œ $ "# "# mc Ê œ$ mc, or $ œ "# "# mc Ê œ$ mc. In either case, $œmc. 30. Step 1: (mxk b) (mb)k0.05 Ê 0.05mx m 0.05 Ê 0.05 m mx0.05m

1 x .

Ê 0.05m " 0.05m

Step 2: kx Ê Ê " "1k $ $ x 1 $ $ x $ .

Then " œ " $ 0.05m Ê œ$ 0.05m , or $ " œ " 0.05m Ê œ$ 0.05m . In either case, $œ0.05m . 31. lim (3 2x) 3 2(3) 3

xÄ3 œ œ

Step 1: 3ka 2xb ( 3)k0.02 Ê 0.02 6 2x0.02 Ê 6.02 2x 5.98 Ê 3.01 x 2.99 or

2.99 x 3.01.

Step 2: 0 Ê Ê $ $kx 3k $ $ x 3 $ $ x $ .

Then $ œ$ 2.99 0.01, Ê œ$ or $ $ œ3.01 0.01; Ê œ$ thus 0.01.$œ 32. lim ( 3x ) ( 3)( 1) 2 1

xÄ c1 # œ œ

Step 1: ( 3xk 2) 1k 0.03 Ê 0.03 3x 3 0.03 Ê 0.01 x 1 0.01 Ê 1.01 x 0.99.

Step 2: xk ( 1)k Ê Ê " $ $ x 1 $ $ x $ 1.

Then " œ $ 1.01 0.01, Ê œ$ or $ " œ 0.99 0.01; Ê œ$ thus 0.01.$œ

33. lim lim lim (x 2) 4, x 2

xÄ # xÄ # xÄ #

x 4

x (x 2)

(x 2)(x 2)

#

# œ œ œ # # œ Á

Step 1: ¹Šxx#24‹4¹0.05 Ê 0.05(x(x2)(x2)2) % 0.05 Ê 3.95 x 2 4.05, xÁ2 1.95 x 2.05, x 2.

Ê Á

Step 2: kx Ê Ê # 2k $ $ x 2 $ $ x $ 2.

Then # œ$ 1.95 0.05, Ê œ$ or $ # œ2.05 0.05; Ê œ$ thus 0.05.$œ

34. lim lim lim (x 1) 4, x 5.

xÄ c& xÄ c& xÄ c&

x 6x 5

x 5 (x 5)

(x 5)(x 1)

#

œ œ œ Á

Step 1: ¹Šx#x6x55‹ ( 4)¹0.05 Ê 0.05(x(x5)(x5) ") 4 0.05 Ê 4.05 x 1 3.95, xÁ 5

Ê 5.05 x 4.95, xÁ 5.

Step 2: xk ( 5)k Ê Ê & &$ $ x 5 $ $ x $ .

Then & œ $ 5.05 0.05, Ê œ$ or $ & œ 4.95 0.05; Ê œ$ thus 0.05.$œ

35. lim 1 5x 1 5( 3) 16 4

xÄ c$È œÈ œÈ œ

Step 1: ¹È15x4¹0.5 Ê 0.5È15x 4 0.5 Ê 3.5È15x4.5 Ê 12.25 1 5x20.25 Ê 11.25 5x 19.25 Ê 3.85 x 2.25.

Step 2: xk ( 3)k Ê Ê $ $$ $ x 3 $ $ x $ .

Then $ œ $ 3.85 Ê œ$ 0.85, or $ $ œ 2.25 Ê 0.75; thus $œ0.75.

36. lim 2

xÄ #

4 4

x œ œ#

Step 1: ¸4x2¸0.4 Ê 0.4 4x 2 0.4 Ê 1.6 4x 2.4 Ê 1016 x4 1024104 106 or x53 52. Step 2: kx Ê Ê # #2k $ $ x 2 $ $ x $ .

Then # œ$ 53 Ê œ , $ 3" or $ # œ 5# Ê œ ; $ "# thus .$œ3"

37. Step 1: k(9 Ê Ê Ê % Ê % x) 5k % % 4 x % % 4 x % 4 % x 4 % % x 4 %. Step 2: kx Ê Ê % %4k $ $ x 4 $ $ x $ .

Then œ Ê œ$ 4 % 4 $ %, or $ % œ % Ê œ% $ %. Thus choose $œ%. 38. Step 1: (3xk Ê 7) 2k % % 3x Ê 9 % 9 % 3x * Ê % 3 3% x 3 %3. Step 2: xk Ê Ê 3k $ $ x 3 $ $ 3 x $ 3.

Then œ $ $ 3 %3 Ê œ$ %3, or $ œ 3 3 3% Ê œ$ %3. Thus choose $œ3%.

39. Step 1: ¹Èx 5 2¹ Ê % % Èx # Ê # 5 % % Èx # Ê # 5 % ( %)# # x 5 ( %)#

( ) x ( ) 5.

Ê # %# & # % #

Step 2: xk Ê Ê 9k $ $ x 9 $ $ 9 x $ 9.

Then * œ$ %# % * Ê œ % % $ % %#, or $ * œ%# % * Ê œ % % $ % %#. Thus choose the smaller distance, $œ % % %#.

40. Step 1: ¹È4 x 2¹ Ê % % È4 # Ê # x % % È4 # Ê # x % ( %)# % # x ( %)#

( ) x 4 ( ) ( ) x ( ) .

Ê # % # # %# Ê # % # % # % # % Step 2: xk Ê 0k $ $ x $.

Then œ # $ ( %)# œ % Ê œ % 4 %# % $ % %#, or $œ # ( %)# œ4 4% % #. Thus choose the smaller distance, $œ4% % #.

41. Step 1: For xÁ1, kx# Ê 1k % % x# " Ê " % % x# " Ê% È1 % k kx È1% Ê È" % x È1%near B œ ".

Step 2: kx Ê Ê " "1k $ $ x 1 $ $ x $ .

Then " œ$ È1 Ê œ " % $ È1%, or $ œ " Ê œ " 1 È % $ È % 1. Choose min 1 1 , that is, the smaller of the two distances.

$œ š" È ß% È "% ›

42. Step 1: For xÁ 2, xk # Ê 4k % % x# Ê 4 % 4 % x# Ê4 % È4 % k kx È4%

Ê È4 % x È4%near B œ 2.

Step 2: xk ( 2)k Ê Ê $ $ x 2 $ $ 2 x $ 2.

Then œ % Ê œ % #$ 2 È % $ È % , or $ # œ % Ê œ # % È % $ È %. Choose min$œ šÈ% #ß # % % È %›.

43. Step 1: ¸"x1¸ Ê " Ê " " Ê% % "x % % "x % 1"% x 1"%. Step 2: kx Ê Ê " " 1k $ $ x 1 $ $ x $.

Then " œ$ " "% Ê œ " $ " "% œ" %%, or " œ$ " "% Ê œ$ " "% " œ " %%. Choose $œ " %%, the smaller of the two distances.

44. Step 1: ¸x"#"3¸ Ê % % x"# Ê"3 % "3 % x"# Ê"3 % 133% x"# 1 $3 % Ê " $3 % x# " $3 %

x , or x for x near .

Ê É 3 k kÉ 3 É 3 É 3 È$

1 $% " $% " $% "$%

Step 2: ¹xÈ3¹ Ê $ $ x È3 Ê$ È3 $ x È3$.

Then 3È œ$ É" $3 % Ê œ$ È3É" $3 %, or 3È œ$ É" $3 % Ê œ$ É" $3 % È3.

Choose $œminšÈ3É" $3 %ßÉ" $3 %È3 .›

45. Step 1: ¹Šxx 3#*‹ ( 6)¹ Ê % % (x 3) 6 %, xÁ Ê Ê $ $3 % x 3 % % x % . Step 2: xk ( 3)k Ê Ê $ $ $ x 3 $ $ x $ 3.

Then $ œ $ Ê œ$ % $ %, or $ $ œ $ Ê œ% $ %. Choose $œ%. 46. Step 1: ¹Šxx 1#1‹2¹ Ê % % (x 1) 2 %, xÁ1 Ê " " % x %.

Step 2: kx Ê Ê " " 1k $ $ x 1 $ $ x $.

Then " œ " Ê œ$ % $ %, or " œ " Ê œ$ % $ %. Choose $œ%. 47. Step 1: x1: (4l 2x) l Ê ! 2 % 2 2x% since x Þ1 Thus, 1 !%# x ;

x 1: (6xl l Ê ! Ÿ4) 2 % 6x 6 % since x 1. Thus, " Ÿ x 1 6%. Step 2: kx Ê Ê " 1k $ $ x 1 $ $ x 1 $.

Then 1 œ " $ #% Ê œ$ %#, or " œ $ 1 6% Ê œ$ 6%. Choose $œ6%. 48. Step 1: x !: 2xk Ê 0k % % 2x ! Ê %# x 0;

x 0: ¸x# ! Ê ! Ÿ #¸ % x %. Step 2: xk Ê 0k $ $ x $.

Then œ Ê œ$ #% $ #%, or $œ # Ê œ #% $ %. Choose $œ %#.

49. By the figure, x Ÿx sin "x Ÿx for all x0 and x  x sin "x  x for x0. Since lim ( x) œ lim xœ0,

xÄ ! xÄ !

then by the sandwich theorem, in either case, lim x sin 0.

xÄ ! "x œ

50. By the figure, x Ÿ# x sin # "x Ÿx for all x except possibly at x# œ0. Since lim x# œ lim x#œ0, then

xÄ !a b xÄ !

by the sandwich theorem, lim x sin 0.

xÄ ! # "x œ

51. As x approaches the value 0, the values of g(x) approach k. Thus for every number %0, there exists a $ ! such that x! Êk 0k $ kg(x) kk %.

52. Write xœ h c. Then ! l l Í x c $ $ x c $, xÁ Í c $ ah cb c $, h Ác c

h , h h .

Í $ $ Á ! Í ! l !l $

Thus, limf x L for any , there exists such that f x L whenever x c

xÄca bœ Í % ! $ ! la b l % ! l l $ f hÍ la l cb L %whenever ! l !l Íh $ limf ha cbœL.

hÄ!

53. Let f(x)œx . The function values do get closer to 1 as x approaches 0, but lim f(x)# œ0, not 1. The

xÄ !

function f(x)œx never gets # arbitrarily close to 1 for x near 0.

54. Let f(x)œsin x, Lœ"#, and x!œ0. There exists a value of x (namely, xœ16) for which sin x¸ "#¸% for any given %0. However, lim sin xœ0, not . The wrong statement does not require x to be arbitrarily close to

xÄ ! "#

x . As another example, let g(x)! œsin , L"x œ "#, and x!œ0. We can choose infinitely many values of x near 0 such that sin "x œ "# as you can see from the accompanying figure. However, lim sin fails to exist. The"x

xÄ !

wrong statement does not require all values of x arbitrarily close to x!œ0 to lie within %0 of Lœ"#. Again you can see from the figure that there are also infinitely many values of x near 0 such that sin "x œ0. If we choose %"4 we cannot satisfy the inequality sin ¸ "x "#¸ % for all values of x sufficiently near x!œ0.

55. kA * Ÿk 0.01 Ê 0.01Ÿ1ˆ ‰x# # Ÿ9 0.01 Ê 8.99Ÿ14x# Ÿ9.01 Ê 14(8.99)Ÿx# Ÿ14(9.01) 2 x 2 or 3.384 x 3.387. To be safe, the left endpoint was rounded up and the right Ê É8.991 Ÿ Ÿ É9.011 Ÿ Ÿ

endpoint was rounded down.

56. VœRI I 5Ê VR œ Ê ¸VR ¸Ÿ0.1 Ê 0.1Ÿ 120R Ÿ5 0.1 Ê 4.9Ÿ120R Ÿ5.1 Ê 1049  1 0R#   1051 Ê R(120)(10)51 Ÿ Ÿ (120)(10)49 Ê 23.53Ÿ ŸR 24.48.

To be safe, the left endpoint was rounded up and the right endpoint was rounded down.

57. (a) $ x 1 0 Ê " $ x 1 Ê f(x)œx. Then f(x)k œ œ œ2k kx 2k 2 x 2 1 1. That is, f(x) 2 1 no matter how small is taken when x 1 lim f(x) 2.

k    k "# $ " $ Ê Á

xÄ1

(b) 0 Ê " " Êx 1 $ x $ f(x)œ x 1. Then f(x)k œ1k k(x œ1) 1k k kx œ x 1. That is, f(x) 1 1 no matter how small is taken when x lim f(x) 1.

k  k $ " " Ê$ Á

xÄ1

(c) ! Ê " $ x 1 $ x 1 Ê f(x)œx. Then f(x)k 1.5kœ kx 1.5kœ1.5 x 1.5 œ1 0.5.

Also, ! Êx 1 $ 1 " Êx $ f(x)œ x 1. Then f(x)k 1.5kœk(x 1) 1.5kœ kx 0.5k x 0.5 0.5 0.5. Thus, no matter how small is taken, there exists a value of x such that œ " œ $

x 1 but f(x) 1.5 lim f(x) 1.5.

$ $ k k  "# Ê Á

xÄ1

58. (a) For 2 Êx 2 $ f(x)œ2 Ê f(x)k œ4k 2. Thus for %2, f(x)k  4k % whenever 2 x 2 $ no matter how small we choose $0 Ê lim f(x)Á4.

xÄ #

(b) For 2 Êx 2 $ f(x)œ2 Ê f(x)k œ3k 1. Thus for %1, f(x)k  3k % whenever 2 x 2 $ no matter how small we choose $0 Ê lim f(x)Á3.

xÄ #

(c) For 2 $ x 2 Ê f(x)œx so f(x)# k œ2k kx#2 . No matter how small k $0 is chosen, x is close to 4# when x is near 2 and to the left on the real line Ê xk #2 will be close to 2. Thus if k %1, f(x)k  2k % whenever 2 $ x 2 no mater how small we choose $0 Ê lim f(x)Á2.

xÄ #

59. (a) For 3 Ê$ x 3 f(x)4.8 Ê f(x)k  4k 0.8. Thus for %0.8, f(x)k  4k % whenever 3 $ x 3 no matter how small we choose $0 Ê lim f(x)Á4.

xÄ $

(b) For 3 Êx 3 $ f(x)3 Ê f(x)k 4.8k 1.8. Thus for %1.8, f(x)k 4.8k % whenever 3 x 3 $ no matter how small we choose $0 Ê lim f(x)Á4.8.

xÄ $

(c) For 3 $ x 3 Ê f(x)4.8 Ê f(x)k  3k 1.8. Again, for %1.8, f(x)k  3k % whenever $ $ x 3 no matter how small we choose $0 Ê lim f(x)Á3.

xÄ $

60. (a) No matter how small we choose $0, for x near 1 satisfying " " $ x $, the values of g(x) are near 1 Ê g(x)k 2 is near 1. Then, for k %œ"# we have g(x)k  2k "# for some x satisfying

x , or x 1 lim g(x) 2.

" " $ $ ! Êk k $ Á

xÄ c1

(b) Yes, lim g(x) 1 because from the graph we can find a such that g(x) 1 if x ( 1) .

xÄ c1 œ $ ! k k % ! k k$

61-66. Example CAS commands (values of del may vary for a specified eps):

: Maple

f := x -> (x^4-81)/(x-3);x0 := 3;

plot( f(x), x=x0-1..x0+1, color=black, # (a) title="Section 2.3, #61(a)" );

L := limit( f(x), x=x0 ); # (b) epsilon := 0.2; # (c) plot( [f(x),L-epsilon,L+epsilon], x=x0-0.01..x0+0.01,

color=black, linestyle=[1,3,3], title="Section 2.3, #61(c)" );

q := fsolve( abs( f(x)-L ) = epsilon, x=x0-1..x0+1 ); # (d) delta := abs(x0-q);

plot( [f(x),L-epsilon,L+epsilon], x=x0-delta..x0+delta, color=black, title="Section 2.3, #61(d)" );

s in [0.1, 0.005, 0.001 ] do # (e) for ep

q := fsolve( abs( f(x)-L ) = eps, x=x0-1..x0+1 );

delta := abs(x0-q);

head := sprintf("Section 2.3, #61(e)\n epsilon = %5f, delta = %5f\n", eps, delta );

print(plot( [f(x),L-eps,L+eps], x=x0-delta..x0+delta, color=black, linestyle=[1,3,3], title=head ));

end do:

(assigned function and values for x0, eps and del may vary):

Mathematica Clear[f, x]

y1:œ L eps; y2:œ L eps; x0œ1;

f[x_]:œ(3x2(7x1)Sqrt[x]5)/(x1) Plot[f[x], {x, x00.2, x00.2}]

L:œ Limit[f[x], xÄx0]

epsœ0.1; delœ0.2;

Plot[{f[x], y1, y2},{x, x0del, x0del}, PlotRangeÄ{L2eps, L2eps}]