CHAPTER 2 ADDITIONAL AND ADVANCED EXERCISES
3.7 RELATED RATES
eval( q1, pt );
q2 := implicitdiff( q1, y, x );
m := eval( q2, pt );
tan_line := y = 1 + m*(x-2);
p2 := implicitplot( tan_line, x=-5..5, y=-5..5, color=green ):
p3 := pointplot( eval([x,y],pt), color=blue ):
display( [p1,p2,p3], ="Section 3.6 #77(c)" );
: (functions and x0 may vary):
Mathematica
Note use of double equal sign (logic statement) in definition of eqn and tanline.
<<Graphics`ImplicitPlot`
Clear[x, y]
{x0, y0}={1, 1/4};
eqn=x + Tan[y/x]==2;
ImplicitPlot[eqn,{ x, x03, x03},{y, y03, y03}]
eqn/.{xÄx0, yÄy0}
eqn/.{ yÄy[x]}
D[%, x]
Solve[%, y'[x]]
slope=y'[x]/.First[%]
m=slope/.{xÄx0, y[x]Äy0}
tanline=y==y0m (xx0)
ImplicitPlot[{eqn, tanline}, {x, x03, x03},{y, y03, y0 + 3}]
Ê dsdt œ Èx# xy# z# dxdt Èx# yy# z# dydt Èx# zy# z# dzdt
(b) From part (a) with dxdt 0 dsdt y dydt z dzdt
x y z x y z
œ Ê œ È # # # È # # #
(c) From part (a) with dsdt œ0 Ê 0œ2x dxdt 2y dydt 2z dzdt Ê dxdt x dty dyz dzx dt œ0
9. (a) Aœ "#ab sin ) Ê dAdt œ"#ab cos ) ddt) (b) Aœ "#ab sin ) Ê dAdt œ"#ab cos ) ddt) "#b sin ) dadt (c) Aœ "#ab sin ) Ê dAdt œ"#ab cos ) ddt)"#b sin ) dadt "#a sin ) dbdt
10. Given Aœ1r , # drdt œ0.01 cm/sec, and rœ50 cm. Since dAdt œ2 r 1 drdt, then dAdt¸ œ2 (50)1 ˆ100" ‰
r=50
œ1cm /min.#
11. Given ddtj œ 2 cm/sec, dwdt œ2 cm/sec, j œ12 cm and wœ5 cm.
(a) Aœ j Êw dAdt œ j w dwdt ddtj 12(2)Ê dAdt œ œ5( 2) 14 cm /sec, # increasing (b) Pœ j 2 2w Ê dPdt œ2 ddtj 2 dwdt œ 2( 2) 2(2)œ0 cm/sec, constant
(c) DœÈw# j œ# aw# j#b"Î# Ê œ "#aw# j#b"Î#ˆ2w 2 j j‰ Ê œ j
j
dD dw d dD
dt dt dt dt
w w
dw d
dt dtj
# #
È
cm/sec, decreasing œ (5)(2)È25(12)( 2)144 œ 1413
12. (a) Vœxyz Ê yz xz xy dVdt œ dxdt dydt dzdt Ê dVdt¸ œ(3)(2)(1)(4)(2)( 2) (4)(3)(1)œ2 m /sec
(4 3 2)ß ß $
(b) Sœ2xy2xz2yz Ê (2ydSdt œ 2z) (2xdxdt 2z) (2xdydt 2y) dzdt Ê dS¸ œ(10)(1)(12)( 2) (14)(1)œ0 m /sec
dt (4 3 2)ß ß #
(c) j œÈx#y#z#œax#y#z# "Î#b Ê ddtj œ Èx# xy# z# dxdt Èx# yy# z# dydt Èx# zy# z# dzdt Ê ddtj¸(4 3 2)ß ß œŠÈ429‹(1)ŠÈ329‹( 2) ŠÈ229‹(1)œ0 m/sec
13. Given: dxdt œ5 ft/sec, the ladder is 13 ft long, and xœ12, yœ5 at the instant of time
(a) Since x#y#œ169 Ê dydt œ y dtx dx œ ˆ ‰125 (5)œ 12 ft/sec, the ladder is sliding down the wall (b) The area of the triangle formed by the ladder and walls is Aœ "#xy Ê dAdt œˆ ‰ Š"# x dydt y dxdt‹. The area
is changing at [12( 12)"# 5(5)]œ 119# œ 59.5 ft /sec.#
(c) cos )œ 13x Ê sin ) ddt) œ13" †dxdt Ê ddt) œ 13 sin " )†dxdt œ ˆ ‰5" (5)œ 1 rad/sec
14. s#œy#x # Ê 2s 2x 2y dsdt œ dxdt dydt Ê dsdt œ"sŠx y dxdt dydt‹ Ê dsdt œÈ"169[5( 442) 12( 481)]
614 œ knots
15. Let s represent the distance between the girl and the kite and x represents the horizontal distance between the girl and kite Ê s#œ(300)#x # Ê dsdt œ x dxs dt œ400(25)500 œ20 ft/sec.
16. When the diameter is 3.8 in., the radius is 1.9 in. and drdt œ3000" in/min. Also Vœ6 r 1# Ê dVdt œ12 r 1 drdt 12 (1.9) 0.0076 . The volume is changing at about 0.0239 in /min.
Ê dVdt œ 1 ˆ3000" ‰œ 1 $
17. Vœ "31r h, h# œ 83(2r)œ 3r4 Ê œ r 4h3 Ê Vœ "31ˆ ‰4h3 #hœ 16 h271 $ Ê dVdt œ 16 h91 # dhdt (a) dh¸ ˆ 9 ‰(10) 90 0.1119 m/sec 11.19 cm/sec
dt h=4œ 16 41 # œ 2561 ¸ œ
(b) rœ 4h3 Ê drdt œ 4 dh3 dt œ 43ˆ256901‰œ32151 ¸0.1492 m/secœ14.92 cm/sec
18. (a) Vœ "31r h and r# œ15h# Ê Vœ"31ˆ15h# ‰#hœ75 h41$ Ê dVdt œ225 h41 # dhdt Ê dhdt¸ œ 225 (5)4( 50)1 # œ 22581
h=5
0.0113 m/min 1.13 cm/min
¸ œ
(b) rœ 15h# Ê drdt œ15 dh# dt Ê drdt¸ œˆ ‰ ˆ15# 2258 ‰œ 154 ¸ 0.0849 m/secœ 8.49 cm/sec
h=5 1 1
19. (a) Vœ 13y (3R# y) Ê dVdt œ 13c2y(3R y) y ( 1) # d dydt Ê dydt œ13a6Ry3y# "b‘ dVdt Ê at Rœ13 and yœ8 we have dydt œ 144"1( 6) œ 24"1 m/min
(b) The hemisphere is on the circle r#(13y)#œ169 Ê œ r È26yy m#
(c) rœa26yy#b"Î# Ê œ "#a26yy#b"Î#(262y) Ê œ Ê ¸ œ ˆ#"‰
dr dr dr 13 8
dt dt dt dt dt 4
dy 13 y dy
26y y 26 8 64
È # y=8 È † 1
œ 28851m/min
20. If Vœ431r , S$ œ4 r , and 1# dVdt œkSœ4k r , then 1# dVdt œ4 r 1# drdt Ê 4k r1#œ4 r 1# drdt Ê drdt œk, a constant.
Therefore, the radius is increasing at a constant rate.
21. If Vœ431r , r$ œ5, and dVdt œ100 ft /min, then 1 $ dVdt œ4 r 1# drdt Ê drdt œ1 ft/min. Then Sœ4 r 1# Ê dSdt 8 r 8 (5)(1) 40 ft /min, the rate at which the surface area is increasing.
œ 1 drdt œ 1 œ 1 #
22. Let s represent the length of the rope and x the horizontal distance of the boat from the dock.
(a) We have s# x# 36 . Therefore, the boat is approaching the dock at œ Ê dxdt œ s dsx dt œ s dsdt
s 36 È#
( 2)dxdt¸ 10 2.5 ft/sec.
10 36
s=10œ È # œ
(b) cos )œ 6r Ê sin ) ddt) œ r6 dr# dt Ê ddt) œr sin #6 ) drdt. Thus, rœ10, xœ8, and sin )œ 108 ( 2)Ê ddt) œ 10#6ˆ ‰8 œ 203 rad/sec
10 †
23. Let s represent the distance between the bicycle and balloon, h the height of the balloon and x the horizontal distance between the balloon and the bicycle. The relationship between the variables is s#œh#x# h Ê dsdt œ s"ˆ dhdt x dxdt‰ Ê [68(1)dsdt œ85" 51(17)]œ11 ft/sec.
24. (a) Let h be the height of the coffee in the pot. Since the radius of the pot is 3, the volume of the coffee is Vœ9 h 1 Ê dVdt œ9 1dhdt Ê the rate the coffee is rising is dhdt œ 9"1 dVdt œ 1091 in/min.
(b) Let h be the height of the coffee in the pot. From the figure, the radius of the filter rœh# Ê Vœ 3"1r h# , the volume of the filter. The rate the coffee is falling is ( 10) in/min.
œ 11h#$ dhdt œ14h# dVdt œ #541 œ 581
25. yœQD" Ê dydt œD" dQdt QD# dDdt œ41" (0)(41)233#( 2) œ 1681466 L/min Ê increasing about 0.2772 L/min 26. (a) 3xdcdt œa #12x15 3(2)b dxdt œa #12(2)15 (0.1)b œ0.3, 9 9(0.1)drdt œ dxdt œ œ0.9, 0.9dpdt œ 0.3œ0.6 (b) dcdt œa3x#12x45x#bdxdt œa3(1.5)#12(1.5)45(1.5)#b(0.05) =1.5625, 70 70(0.05)drdt œ dxdt œ œ3.5, 3.5dpdt œ ( 1.5625)œ5.0625
27. Let P(x y) represent a point on the curve yß œx and the angle of inclination of a line containing P and the# ) origin. Consequently, tan ) œ yx Ê tan )œ xx# œx Ê sec#)ddt) œdxdt Ê ddt) œcos#) dxdt . Since dxdt œ10 m/sec and cos#)kx=3œ y#x#x# œ 9#3#3# œ 10" , we have ddt)¸x=3œ1 rad/sec.
28. yœ ( x)"Î# and tan )œyx Ê tan )œ( x)x"Î# Ê sec#)ddt) œˆ ‰"# ( x) "Î#( 1)xx# ( x)"Î#(1) dxdt
cos . Now, tan cos cos . Then Ê ddt) œŒ x x a b ˆ ‰dxdt œ 24 œ Ê œ 25 Ê œ 45
ccx
2È x # #
#"
È
# ) ) ) È )
( 8)ddt) œŠ44162‹ ˆ ‰45 œ 25 rad/sec.
29. The distance from the origin is sœÈx#y and we wish to find # dsdt¸
(5 12)ß
xœ "#a #y# "Î#b Š2x dxdt 2y dydt‹¹ œ(5)( 1)25(12)( 5)144 œ 5 m/sec
(5 12)ß È
30. When s represents the length of the shadow and x the distance of the man from the streetlight, then sœ 35x.
(a) If I represents the distance of the tip of the shadow from the streetlight, then Iœ Ês x dIdt œ dsdt dxdt (which is velocity not speed) Ê ¸ ¸dIdt œ¸3 dx5 dt dxdt¸œ¸ ¸ ¸ ¸85 dxdt œ85k œ5k 8 ft/sec, the speed the tip of the shadow is moving along the ground.
(b) dsdt œ 3 dx5 dt œ35( 5) œ 3 ft/sec, so the length of the shadow is decreasing at a rate of 3 ft/sec.
31. Let sœ16t represent the distance the ball has fallen,# h the distance between the ball and the ground, and I the distance between the shadow and the point directly beneath the ball. Accordingly, s œh 50 and since the triangle LOQ and triangle PRQ are similar we have Iœ 5030hh Ê hœ5016t and I# œ 5030 50aa5016t16t#b#b
30 1500 ft/sec.
œ 150016t# Ê dIdt œ 15008t$ Ê dIdt¸ œ
t=12
32. Let sœdistance of car from foot of perpendicular in the textbook diagram Ê tan )œ13s# Ê sec#) ddt) œ 13"# dsdt
; 264 and 0 2 rad/sec. A half second later the car has traveled 132 ft Ê ddt) œ cos132#) dsdt dsdt œ )œ Ê ddt) œ
right of the perpendicular Ê k k) œ 14, cos#)œ "#, and dsdt œ264 (since s increases) Ê ddt) œ 132ˆ ‰"# (264)œ1 rad/sec.
33. The volume of the ice is Vœ431r$4314 $ Ê dVdt œ4 r 1# drdt Ê drdt¸ œ725 in./min when dVdt œ 10 in /min, the$
r=6 1
thickness of the ice is decreasing at 7251 in/min. The surface area is Sœ4 r 1# Ê dSdt œ8 r 1 drdt Ê dSdt¸ œ481ˆ7251‰
r=6
in /min, the outer surface area of the ice is decreasing at in /min.
œ 103 # 103 #
34. Let s represent the horizontal distance between the car and plane while r is the line-of-sight distance between the car and plane Ê œ 9 s# r # Ê dsdt œ r drdt Ê dsdt œ 5 ( 160) œ 200 mph
r 9 16
È# ¸ È
r=5
speed of plane speed of car 200 mph the speed of the car is 80 mph.
Ê œ Ê
35. When x represents the length of the shadow, then tan )œ80x Ê sec#) ddt) œ 80 dxx# dt Ê dxdt œ x sec80 ) )ddt.
# #
We are given that ddt) œ0.27°œ #30001 rad/min. At xœ60, cos )œ35 Ê ft/min 0.589 ft/min 7.1 in./min.
¸ ¸dxdt œ¹x sec#80 #) )ddt¹¹ œ 3161 ¸ ¸
Šddt)=200031 and sec =) 53‹
36. Let A represent the side opposite and B represent the side adjacent . tan ) ) )œ AB Ê sec#) ddt) œ B" dAdt BA dB# dt
t Ê at Aœ10 m and Bœ20 m we have cos )œ 20 œ 2 and d œ ( 2) 10 (1) 4
10È5 È5 dt) ˆ ‰#"0 ˆ400 ‰‘ ˆ ‰5
œˆ"10 40"‰ ˆ ‰54 œ 10" rad/secœ 18°1 /sec¸ 6°/sec
37. Let x represent distance of the player from second base and s the distance to third base. Then dxdt œ 16 ft/sec (a) s#œx#8100 Ê 2s dsdt œ2x dxdt Ê dsdt œ x dxs dt . When the player is 30 ft from first base, xœ60
s 30 13 and ( 16) 8.875 ft/sec Ê œ È ds œ 60 œ 32 ¸
dt 30È13 È13
(b) cos )"œ 90s Ê sin )" ddt)" œ 90s# †dsdt Ê ddt)" œs sin #90)" †dsdt œ90sx †dsdt. Therefore, xœ60 and sœ30È13 rad/sec; sin cos
Ê ddt œ 90 32 œ 658 œ90s Ê ddt œ 90s dsdt Ê ddt œs cos 90 dsdt
30 13 (60) 13
) ) )
" # # )
# # #
Š È ‹ †ŠÈ ‹ )# )# † †
. Therefore, x 60 and s 30 13 rad/sec.
œ sx90†dsdt œ œ È Ê ddt)# œ 658
(c) ddt)" s sin #90) dtds s90 xs dxdt 90s# dxdt x# 908100 dxdt lim ddt)"
" #
œ † œ ˆ †x‰† † œ œ Ê
s
ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰
xÄ !
lim ( 15) rad/sec;
œ œ œ œ œ
xÄ !ˆx# 908100‰ 6 ddt# s cos# 90 dsdt Šs#90‹ˆ ‰ ˆ ‰xs dxdt ˆ s90# ‰ ˆ ‰dxdt
" ) #
) † †x
s
lim rad/sec œˆx#908100‰dxdt Ê ddt# œ"6
xÄ ! )
38. Let a represent the distance between point O and ship A, b the distance between point O and ship B, and D the distance between the ships. By the Law of Cosines, D#œa#b#2ab cos 120°
2a 2b a b . When a 5, 14, b 3, and 21, then
Ê dDdt œ#"D dadt dbdt dbdt dadt‘ œ dadt œ œ dbdt œ dDdt œ 4132D
where Dœ7. The ships are moving dDdt œ29.5 knots apart.