• Tidak ada hasil yang ditemukan

CHAPTER 2 ADDITIONAL AND ADVANCED EXERCISES

3.6 IMPLICIT DIFFERENTIATION

Step 2: 2x 2y dydx dydxdydxœ 1 2y Step 3: dydx(2x2y1)œ " 2y Step 4: dydxœ 2x12y2y1

22. x$xyy$œ1 Ê 3x# y x 3y 0 dydx # dydxœ Ê a3y#x ybdydx œ 3x # Ê dydx œy3y#3xx#

23. x (x# y)#œx#y :#

Step 1: x#’2(xy) 1Š dydx‹“ (x y) (2x)# œ2x2y dydx Step 2: 2x (x # y) 2y 2xdydx dydxœ 2x (x# y) 2x(xy)# Step 3: dydxc2x (x# y) 2ydœ2x 1c x(x y) (x y)#d

Step 4: dydx œ 2x 1c2x (xx(x# y)y) (x2yy)#d œx 1c yx(x x (x#y)y)(x y)#d œx 1a x x y#xy xx$ y2xyyb

# # #

œ x2xx y#$3x yx$# yxy#

24. (3xy7)#œ6y Ê 2(3xy7)†Š3x 3ydydx ‹œ6 dydx Ê 2(3xy7)(3x) 6 dydx dydx œ 6y(3xy7) Ê dydx[6x(3xy 7) 6]œ 6y(3xy7) Ê dydx œ x(3xyy(3xy7)7)1 œ 13xy3x y##7y7x

25. y# œxx "1 Ê 2y dxdy œ (x (x1)1)(x# 1) œ (x21)# Ê dxdy œy(x"1)#

26. x# œxxyy Ê x$x y# œ Êx y 3x#2xyx y# w œ 1 y w Ê ax#1 yb wœ 1 3x#2xy Ê ywœ 1x3x##12xy

27. xœtan y Ê 1œasec y # bdydx Ê dydx œsec y"# œcos y#

28. xyœcot a bxy xÊ dydx œ y csc (xy) x# Š dydxy x‹ Ê dydxx csc (xy)# dydxœ y csc (xy)# y xÊ dydx x csc (xy)# ‘œ y csc (xy) # " Ê‘ dydxœ xy csc (xy)" csc (xy)# # " œ yx

29. xtan (xy)œ ! Ê 1 csec (xy)# d Šyx dydx‹œ0 Ê x sec (xy) # dydx œ 1 y sec (xy) # Ê dydx œ " x sec (xy)y sec (xy)# #

œ x sec (xy)#1 œyx cos (xy)x œxy cos (xy)x y

# #

30. xsin yœxy Ê 1 (cos y) dydx œ y x dydx Ê (cos yx) dydx œ Êy 1 dydx œcos yy1x

31. y sinŠ ‹"y œ 1 xy Ê y cos’ Š ‹"y †( 1) y"#dxdy“sin Š ‹"ydxdy œ x dxdy Êy

dydx ycos y sin y x y dydx y y

cos sin x y sin cos xy

" Š ‹" Š ‹" “œ Ê œ œ

" " " " "

#

y Š ‹y Š ‹y Š ‹y Š ‹y

32. y cos# Š ‹"y œ2x2y Ê y#’sinŠ ‹"y †( 1) y"#dxdy“cosŠ ‹"y †2y dxdy œ 2 2 dxdy Ê

dydx sin y 2y cos y 2 2 dydx 2

sin 2y cos

’ Š ‹" Š ‹"

#

œ Ê œ

Š ‹"y Š ‹"y

33. )"Î#r"Î#œ1 Ê "#)"Î#"#r"Î#ddr œ0 Ê ddr #"r œ #" Ê ddr œ 2 r œ r

) )ÈÈ) ) 2ÈÈ) ÈÈ)

34. r2È)œ 3#)#Î$43)$Î% Ê drd))"Î#œ)"Î$)"Î% Ê ddr) œ)"Î#)"Î$)"Î%

35. sin (r )) œ "# Ê [cos (r )] r) ˆ ) ddr)‰œ0 Ê ddr)[ cos (r )]) ) œ r cos (r ) ) Ê ddr) œ)r cos (r )cos (r ))) œ r), cos (r )) Á0

36. cos rcot )œr ) Ê ( sin r) ddr)csc #)œ r )ddr) Ê ddr)[ sin r )]œ r csc #) Ê ddr) œ rsin rcsc #))

37. x#y#œ1 Ê 2x2yywœ0 Ê 2yywœ 2x Ê dydx œywœ yx; now to find d ydx##, dxd a byw œ dxd Šyx

y since y y

Ê wwœ y( 1) xyy# w œ y xy# wœ Êyx d ydx## œ wwœ yy#$x# œ "y y$ y œ"y$

# #

Š xy a b

38. x#Î$y#Î$œ1 Ê 23x"Î$23y"Î$ 0 ydxdyœ Ê dxdy23 "Î$‘œ 23x"Î$ Ê ywœ dxdyœ xy"Î$"Î$ œ ˆ ‰xy "Î$; Differentiating again, ywwœx"Î$ "y#Î$xy#Î$wy"Î$ "x#Î$ œx y x#Î$ y x

"Î$ " #Î$ "Î$ "Î$ " #Î$

"Î$

ˆ ˆ ˆ Œ ˆ

3 3 3 3

y x

x y y x

Ê d ydx## œ3" #Î$ "Î$3" "Î$ %Î$œ 3xy"Î$%Î$ 3y"Î$ #Î$"x

39. y# œx#2x Ê 2yywœ2x Ê2 ywœ 2x2y2 œ xy1; then ywwœy (xy# 1)yw œ y (x y1)#

Šx 1y

Ê d ydx## œywwœy# (xy$ 1)#

40. y#2xœ 1 2y Ê 2y y† w œ 2 2y w Ê y (2yw 2)œ2 Ê ywœ y"1 œ(y1)"; then ywwœ (y 1)#†yw (yœ 1)#(y1)" Ê d ydx## œywwœ (y"1)$

41. 2Èyœ Êx y y"Î# wy œ 1 y w Ê y ywˆ "Î#1‰œ1 Ê dydxœywœ y"Î#"1 œ yy1; we can

È È

differentiate the equation y ywˆ "Î#1‰œ1 again to find y : yww wˆ"#y$Î# wy‰ˆy"Î#1 y‰ wwœ0

y 1 y y y y

Ê ˆ "Î#wwœ "#c dw# $Î# Ê d ydx œ wwœ œ " œ# "

y

y 1 2y y 1 1 y

#

#

"

#

# $Î#

"Î# $Î# "Î# $ $

Œ

a b a b ˆ È

"

"Î#

y 1

42. xyy#œ1 Ê xyw y 2yywœ0 Ê xyw2yywœ Êy y (xw 2y)œ Êy ywœ (x 2y)y ; d ydx## œyww œ (x 2y)y(xw2y)y(1# 2y )w œ (x 2y) (x2y)y 1# 2 œ y(x(x2y)2y)y(x#2y)2y

(xy2y) Š(xy2y) (x"2y)c #d

œ 2y(x(x2y)2y)$2y# œ 2y(x#2y)2xy$ œ 2y(x(x2y)y)$

43. x$y$œ16 Ê 3x#3y y# w œ0 Ê 3y y# wœ 3x # Ê ywœ xy##; we differentiate y y# w œ x to find y :# ww y y# wwy 2y ywc † wdœ 2x Ê y y# wwœ 2x 2y yc dw # Ê ywwœ 2x 2yyŠxy œ 2xy 2xy

# %

# $

#

# #

œ 2xyy$&2x% Ê d ydx##¹ œ 323232œ 2

(2 2)ß

44. xyy#œ1 Ê xyw y 2yywœ0 Ê y (xw 2y)œ Êy ywœ (x 2y)y Ê ywwœ (x2y)a(xywb2y)( y) 1# a 2ywb; since ywk(0ß1)œ "# we obtain ywwk(0ß1)œ( 2) ˆ ‰"#4(1)(0) œ "4

45. y#x#œy%2x at (#ß ") and (#ß 1) Ê 2y dydx2xœ4y $ dydx Ê2 2y dydx4y $ dydxœ 2 2x

2y 4y 2 2x 1 and 1

Ê dydxa $bœ Ê dydx œ# xy"$ y Ê dydx¹ œ dydx¹ œ

( 2 1) ß ( 2 ß1)

46. xa #y#b#œ(xy) at(# "ß !) and ("ß 1) Ê 2 xa #y#b Š2x2y dydx‹œ2(xy) 1Š dydx

2y x y (x y) 2x x y (x y) 1

Ê dydxc a # #b dœ a # #b Ê dydx œ 2y x2x xaa##yy#b#b (x(x y)y) Ê dydx¹ œ

(1 0)ß

and dydx¹ 1

(1ß1)œ

47. x#xyy#œ1 Ê 2x y xyw2yywœ0 Ê (x2y)ywœ Ê2x y ywœ 2x2yyx;

(a) the slope of the tangent line mœywk(2 3)ß œ 74 Ê the tangent line is y œ3 74(x2) Ê yœ74x"# (b) the normal line is y œ 3 47(x2) Ê yœ 47x297

48. x#y#œ25 Ê 2x2yywœ0 Ê ywœ xy;

(a) the slope of the tangent line mœywk(3 4)œ ¹ œ Ê the tangent line is y œ4 (x3)

(3 4)

ß ß

x 3 3

y 4 4

y x

Ê œ34 254

(b) the normal line is y œ 4 43(x3) Ê yœ 43x

49. x y# #œ9 Ê 2xy#2x yy# wœ0 Ê x yy# wœ xy # Ê ywœ yx;

(a) the slope of the tangent line mœywk( 1 3)œ ¸ œ3 Ê the tangent line is y œ3 3(x1)

( 1 3)

ß ß

y x

y 3x 6

Ê œ

(b) the normal line is y œ 3 "3(x1) Ê yœ "3x38

50. y#2x4y " œ ! Ê 2yyw 2 4ywœ0 Ê 2(y2)ywœ2 Ê ywœ y#" ;

(a) the slope of the tangent line mœywk( 2 1) ß œ Ê1 the tangent line is y œ 1 1(x2) Ê yœ x 1 (b) the normal line is y œ1 1(x2) Ê yœ x 3

51. 6x#3xy2y#17y œ6 0 12xÊ 3y3xyw4yyw17ywœ0 Ê y (3xw 4y17)œ 12x3y

y ;

Ê wœ 3x12x4y3y17

(a) the slope of the tangent line mœywk( 1 0)œ " ¹ œ Ê the tangent line is y œ0 (x1)

( 1 0)

ß ß

2x 3y

3x 4y 17 7 7

6 6

y x

Ê œ67 67

(b) the normal line is y œ 0 76(x1) Ê yœ 76x76

52. x# 3xy 2y# 5 2x 3xyw 3y 4yyw 0 yw 4y 3x 3y 2x yw ;

È œ Ê È È œ Ê Š È ‹œÈ Ê œ È4y3yÈ2x3x

(a) the slope of the tangent line mœywkŠÈ œ ¹ œ0 Ê the tangent line is yœ2

ŠÈ

3 2ß 3 2ß

È È 3y 2x

4y 3x

(b) the normal line is xœÈ3

53. 2xy1 sin yœ2 1 Ê 2xyw2y1(cos y)ywœ0 Ê y (2xw 1 cos y)œ 2y Ê ywœ2x12y cos y; (a) the slope of the tangent line mœywkˆ1 œ ¹ˆ œ # Ê the tangent line is

ß12 1ß12 2y

2x 1 cos y 1

y œ 1# 1#(x1) Ê yœ 1#x1

(b) the normal line is y œ1# 12(x1) Ê yœ 12x 12 1#

54. x sin 2yœy cos 2x Ê x(cos 2y)2ywsin 2yœ 2y sin 2xy cos 2x w Ê y (2x cos 2yw cos 2x)

sin 2y 2y sin 2x y ;

œ Ê wœ cos 2xsin 2y2y sin 2x2x cos 2y

(a) the slope of the tangent line mœywkˆ1 14 2ß œ ¹ˆ1 14 2ß œ œ2 Ê the tangent line is

sin 2y 2y sin 2x

cos 2x 2x cos 2y 11

#

y œ1# 2 xˆ 14‰ Ê yœ2x

(b) the normal line is y œ 1# #"ˆx14‰ Ê yœ #"x581

55. yœ2 sin ( x1 y) Ê ywœ2 [cos ( x1 y)]†a1y wb Ê y [1w 2 cos ( x1 y)]œ2 cos ( x1 1 y)

y ;

Ê wœ 2 cos ( x # y) 1 cos ( x y)

1 1

1

(a) the slope of the tangent line mœywk(1 0)œ ¹ œ2 Ê the tangent line is

(1 0)

ß ß

2 cos ( x y) 1 2 cos ( x y)

1 1

1 1

y œ0 2 (x1 1) Ê yœ2 x1 21

(b) the normal line is y œ 0 #"1(x1) Ê yœ 2x1 #"1

56. x cos y# # sin yœ0 Ê x (2 cos y)( sin y)y# w2x cos y# y cos yw œ0 Ê ywc2x cos y sin y# cos yd

2x cos y y ;

œ # Ê wœ 2x cos y sin y2x cos ycos y

#

#

(a) the slope of the tangent line mœywk(0 )œ ¹ œ0 Ê the tangent line is yœ

ß1 (0 )ß1

2x cos y 2x cos y sin y cos y

#

# 1

(b) the normal line is xœ0

57. Solving x#xyy#œ7 and yœ0 Ê x#œ7 Ê xœ „È7 Ê Š È7ß !‹ and ŠÈ7ß !‹ are the points where the curve crosses the x-axis. Now x#xyy#œ7 Ê 2x y xyw2yywœ0 Ê (x2y)ywœ 2x y

y m the slope at 7 is m 2 and the slope at 7 is

Ê wœ 2xx2yy Ê œ 2xx2yy Ê ŠÈ ß !‹ œ 2È77 œ ŠÈ ß !‹

È

2ÈÈ77 œ 2. Since the slope is 2 in each case, the corresponding tangents must be parallel.

58. x#xyy#œ7 Ê 2x y x 2y 0 dydx dydxœ Ê (x2y) dydxœ Ê2x y dydx œ x2x2yyand dydxœ x2x2yy; (a) Solving dydx œ0 Ê œ2x y 0 Ê yœ 2x and substitution into the original equation gives

x# x( 2x) ( 2x)#œ7 Ê 3x#œ7 Ê xœ „É73 and yœ …2É73 when the tangents are parallel to the x-axis.

(b) Solving dxdy œ0 Ê x 2yœ0 Ê yœ x# and substitution gives x#x#‰ ˆ x##œ7 Ê 3x4# œ7 x 2 and y when the tangents are parallel to the y-axis.

Ê œ „ É73 œ …É73

59. y% œy#x # Ê 4y y$ wœ2yyw2x Ê 2 2ya $y yb wœ 2x Ê ywœ yx2y$; the slope of the tangent line at

is 1; the slope of the tangent line at

ŠÈ43ßÈ#3yx2y¹ œ œ œ# 3 œ ŠÈ43ß#

" "

$ "

#

"

ŒÈ È43ß23 # È

È È

3

4 4

3 6 3

8

3 4

is x ¹ È3

y 2y 4 2

2 3

$ ŒÈ3 "#

4 2

ß1 œ È342 œ œ

8

È

60. y (2# x)œx $ Ê 2yy (2w x) y ( 1)# œ3x # Ê ywœ 2y(2y#3xx)# ; the slope of the tangent line is mœ2y(2y#3xx)#¹ œ œ4# 2 Ê the tangent line is y œ1 2(x1) Ê yœ2x1; the normal line is

(1 1)ß

y œ 1 "#(x1) Ê yœ "#x#3

61. y%4y#œx%9x # Ê 4y y$ w8yywœ4x$18x Ê y 4ywa $8ybœ4x$18x Ê ywœ4x4y$$18x8y œ2x2y$$9x4y

m; ( 3 2): m ; ( ): m ; (3 ): m ; (3 ): m œ x 2xy 2yaa ##94bb œ ß œ ( 3)(182(8 4)9) œ 278 $ß # œ278 ß # œ 278 ß # œ 278

62. x$y$9xyœ0 Ê 3x#3y y# w9xyw9yœ0 Ê y 3ywa #9xbœ9y3x # Ê ywœ 9y3y#3x9x# œ 3yy#3xx#

(a) ywk(4 2)ß œ54 and ywk(2 4)ß œ45;

(b) ywœ0 Ê 3yy#3xx# œ0 Ê 3yx#œ0 Ê yœx3 Ê x$ x3 $9x x3 œ0 Ê x'54x$œ0

# # #

Š ‹ Š ‹

x x 54 0 x 0 or x 54 3 2 there is a horizontal tangent at x 3 2 . To find the Ê $a $ bœ Ê œ œ $È œ $È Ê œ $È

corresponding y-value, we will use part (c).

(c) dxdyœ0 Ê 3yy#3xx# œ0 Ê y 3xœ0 Ê yœ „ 3x ; yœ 3x Ê x 3x 9x 3xœ0

# $ $

È È ŠÈ ‹ È

x 6 3 x 0 x x 6 3 0 x 0 or x 6 3 x 0 or x 108 3 4 .

Ê $ È $Î#œ Ê $Î#Š $Î# È ‹œ Ê $Î#œ $Î#œ È Ê œ œ$È œ $È Since the equation x$y$9xyœ0 is symmetric in x and y, the graph is symmetric about the line yœx.

That is, if (a b) is a point on the folium, then so is (b a). Moreover, if yß ß wk(a b)ß œm, then ywk(b a)ß œ m" . Thus, if the folium has a horizontal tangent at (a b), it has a vertical tangent at (b a) so one might expectß ß that with a horizontal tangent at xœ $È54 and a vertical tangent at xœ3$È4, the points of tangency are

54 3 4 and 3 4 54 , respectively. One can check that these points do satisfy the equation Š$È ß $È ‹ Š $È ß$È ‹

x$y$9xyœ0.

63. x#2tx2t#œ4 Ê 2x 2xdxdt 2t 4tdxdt œ0 Ê (2x2t) 2xdxdt œ 4t Ê dxdt œ 2x 4t2x 2t œ x 2tx t ; 2y$3t#œ4 Ê 6y # dydt œ6t 0 Ê dydt œ6y6t# œyt#; thus dydxœ dy/dtdx/dtœ # œ y (x 2t)#t(x t) ; tœ2

Š ‹ ˆ

t y x 2t

x t

x 2(2)x 2(2) 4 x 4x 4 0 (x 2) 0 x 2; t 2 2y 3(2) 4

Ê # #œ Ê # œ Ê #œ Ê œ œ Ê $ #œ

2y 16 y 8 y 2; therefore 0

Ê $œ Ê $œ Ê œ dydx¹ œ (2) (22(22)2(2)) œ

t 2œ #

64. xœÉ5Èt Ê dxdt œ ˆ5Èt‰ ˆ t ‰œ ; y(t1)œÈt yÊ (t 1)dt œ t

4 t 5 t

" " " dy "

# # #

"Î# "Î# "Î#

ÈÉ È

Ê at1 bdydt œ#È"t Êy dydt œ at1by œ #t" #Èty2ÈÈtt; thus dydxœ œ œ †

"

# #

" #

"

È È ÈÈ

ÈÉ È

t t t 2 t

y t

4 t 5 t

dy dt dx dt

" #

# "

"

y t t t

4 t 5 t

È È a b

ÈÉ È

; t 4 x 5 4 3; t 4 y(3) 4 2

œ # " #ˆ yÈ" ttÉ& Èt œ Ê œÉ È œÈ œ Ê œ È œ

therefore, dydx¹ 143

t 4œ œ 2Š" 2 2a bÈ" 44É& È4 œ

65. x2x$Î#œ Êt# t 3xdxdt "Î# 2tdxdt œ Ê1 ˆ13x"Î#‰ 2tdxdt œ Ê1 dxdt œ 1 3x2t 1"Î#; yÈt 1 2tÈyœ4

t 1 y (t 1) 2 y 2t y 0 t 1 2 y 0

Ê dydt È ˆ ‰"# "Î# È ˆ"# "Î#dydt œ Ê dydt È 2Èyt1 È ŠÈtydydt œ

Ê ŠÈt 1 tydydt œ y 2Èy Ê dydt œ œ ; thus

2 t 1

È È

Š È

ŠÈ

È È

È È

c b y 2 t 1

t y È

È

2 y

t 1

y y 4y t 1 2 y (t 1) 2t t 1

; t 0 x 2x 0 x 1 2x 0 x 0; t 0

dy dy/dt

dxœ dx/dtœ Œ œ Ê œ Ê œ Ê œ œ

Š

c c b

b b b

b b "Î#

y y 4y t 1 2 y (t 1) 2t t 1

2t 1 1 3x

È È

È È

$Î# ˆ "Î#

y 0 1 2(0) y 4 y 4; therefore 6

Ê È È œ Ê œ dydx¹ œ œ

t 0œ

Œ

Œ

"Î#

4 4 4(4) 0 1 2 4(0 1) 2(0) 0 1

2(0) 1 1 3(0)

È È

È È

66. x sin t2xœ Êt dxdt sin tx cos t2 dxdt œ1 Ê (sin t2) dxdt œ 1 x cos t Ê dxdt œ 1sin t 2x cos t ; t sin t œ2t y Ê sin tt cos t œ2 dydt ; thus dydx œ sin tˆ1 t cos tx cos t2; tœ Ê x sin 2xœ

sin tc 2

b 1 1 1

x ; therefore 4

Ê œ1# dydx¹ œ sin 1 1 cos 12 œ 24118 œ

tœ1 1 #sin 2cos

Š ‹1 1 1

67. (a) if f(x)œ 3#x#Î$3, then f (x)w œx"Î$ and f (x)ww œ 3"x%Î$ so the claim f (x)ww œx"Î$ is false (b) if f(x)œ 109 x&Î$7, then f (x)w œ3#x#Î$ and f (x)ww œx"Î$ is true

(c) f (x)ww œx"Î$ Ê f (x)www œ "3x%Î$ is true (d) if f (x)w œ#3x#Î$6, then f (x)ww œx"Î$ is true

68. 2x#3y#œ5 Ê 4x6yywœ0 Ê ywœ 2x3y Ê ywk(1 1) œ 2x3y¹ œ 23 and ywk(1 1)œ 2x3y¹ œ23;

(1 1) (1 1)

ß ß ß ß

also, y#œx $ Ê 2yywœ3x # Ê ywœ3x2y# Ê ywk(1 1)œ 3x2y#¹ œ #3 and ywk(1 1)œ 3x2y#¹ œ #3. Therefore

(1 1) (1 1)

ß ß ß ß

the tangents to the curves are perpendicular at (1 1) and (1ß ß 1) (i.e., the curves are orthogonal at these two points of intersection).

69. x#2xy3y# œ0 Ê 2x2xyw2y6yywœ0 Ê y (2xw 6y)œ 2x 2y Ê ywœ 3yxyx Ê the slope of the tangent line mœywk(1 1)œ ¹ œ1 Ê the equation of the normal line at (1 1) is yß œ 1 1(x1)

(1 1)

ß ß

x y 3y x

y x 2. To find where the normal line intersects the curve we substitute into its equation:

Ê œ

x#2x(2 x) 3(2x)#œ0 Ê x#4x2x#3 4a 4xx#bœ0 Ê 4x#16x12œ0

x 4x 3 0 (x 3)(x 1) 0 x 3 and y x 2 1. Therefore, the normal to the curve Ê # œ Ê œ Ê œ œ œ

at (1 1) intersects the curve at the point (3ß ß 1). Note that it also intersects the curve at (1 1).ß

70. xy2x œy 0 Ê x dydx y 2 dydx œ0 Ê dydxœ y12x; the slope of the line 2x œy 0 is 2. In order to be parallel, the normal lines must also have slope of 2. Since a normal is perpendicular to a tangent, the slope of the tangent is . Therefore, "# y12x œ"# Ê 2y œ Ê4 1 x xœ 3 2y. Substituting in the original equation, y( 3 2y) 2( 3 2y) œy 0 Ê y#4y œ3 0 Ê yœ 3 or yœ 1. If yœ 3, then xœ3 and y œ 3 2(x3) Ê yœ 2x 3. If yœ 1, then xœ 1 and y œ 1 2(x1) Ê yœ 2x 3.

71. y# œx Ê dydxœ #"y. If a normal is drawn from (a 0) to (x y ) on the curve its slope satisfies ß "ß " yx""0a œ 2y"

y 2y (x a) or a x . Since x 0 on the curve, we must have that a . By symmetry, the

Ê " œ " " œ "" "   "

# #

two points on the parabola are xˆ "ßÈx and x"‰ ˆ "ß Èx"‰. For the normal to be perpendicular,

1 1 x (a x ) x x x x and y .

ŠxÈx"a‹ ŠaÈxx"(a xx ) ˆ ‰ 4

" " "

"

œ Ê # œ Ê "œ " # Ê "œ " #" " # Ê "œ " "œ „#"

Therefore, ˆ"4ß „"#‰ and aœ43.

72. Ex. 6b.) yœx"Î# has no derivative at xœ0 because the slope of the graph becomes vertical at xœ0.

Ex. 7a.) yœa1x# "Î%b has a derivative only on ("ß ") because the function is defined only on ["ß "] and the slope of the tangent becomes vertical at both xœ 1 and xœ1.

73. xy$x y# œ6 Ê x 3y Š # dydx‹y$x 2xy# dydx œ0 3xyÊ dydxa #x#bœ y$ 2xy Ê dydxœ 3xyy$#2xyx#

; also, xy x y 6 x 3y y x y 2x 0 y 2xy 3xy x

œ 3xyy$#2xyx# œ Ê dydx dydx œ Ê dydx œ

$ # a #b $ # Š ‹ a $ b # #

; thus appears to equal . The two different treatments view the graphs as functions Ê dxdyœ 3xyy$#2xyx# dxdy

"

dy dx

symmetric across the line yœx, so their slopes are reciprocals of one another at the corresponding points (a b) and (b a).ß ß

74. x$y#œsin y# Ê 3x#2y dydx œ(2 sin y)(cos y) dydx Ê dydx(2y2 sin y cos y)œ 3x# Ê dydx œ 2y2 sin y cos y 3x#

; also, x y sin y 3x 2y 2 sin y cos y ; thus

œ 2 sin y cos y3x 2y œ Ê dxdy œ Ê dxdy œ 3x dxdy

2 sin y cos y 2y

#

$ # # # #

appears to equal dy" . The two different treatments view the graphs as functions symmetric across the line

dx

yœx so their slopes are reciprocals of one another at the corresponding points (a b) and (b a).ß ß 75. x%4y#œ1:

(a) y# œ1 x4% Ê yœ „"#È1x%

dydxœ „4 x 4x œ x ;

1 x

" % "Î# $

a b a b a % "Î#$b

differentiating implicitly, we find, 4x$8y dydx œ0 Ê dydxœ 8y4x œ 4x œ x .

8 1 x 1 x

$ $ $

"

# % % "Î#

Š È a b

(b)

76. (x2)#y#œ4:

(a) yœ „È4 (x 2)#

4 (x 2) ( 2(x 2))

Ê dydxœ „"#a # "Î#b

; differentiating implicitly, œ (x 2)

4 (x 2)

c # "Î#d

2(x 2) 2y dydxœ0 Ê dydxœ 2(x2y2) œ (xy 2) œ c4 (x(x 2)2)#d"Î# œ c4 #(x(x 2))#d"Î#.

(b)

77-84. Example CAS commands:

: Maple

q1 := x^3-x*y+y^3 = 7;

pt := [x=2,y=1];

p1 := implicitplot( q1, x=-3..3, y=-3..3 ):

p1;

eval( q1, pt );

q2 := implicitdiff( q1, y, x );

m := eval( q2, pt );

tan_line := y = 1 + m*(x-2);

p2 := implicitplot( tan_line, x=-5..5, y=-5..5, color=green ):

p3 := pointplot( eval([x,y],pt), color=blue ):

display( [p1,p2,p3], ="Section 3.6 #77(c)" );

: (functions and x0 may vary):

Mathematica

Note use of double equal sign (logic statement) in definition of eqn and tanline.

<<Graphics`ImplicitPlot`

Clear[x, y]

{x0, y0}={1, 1/4};

eqn=x + Tan[y/x]==2;

ImplicitPlot[eqn,{ x, x03, x03},{y, y03, y03}]

eqn/.{xÄx0, yÄy0}

eqn/.{ yÄy[x]}

D[%, x]

Solve[%, y'[x]]

slope=y'[x]/.First[%]

m=slope/.{xÄx0, y[x]Äy0}

tanline=y==y0m (xx0)

ImplicitPlot[{eqn, tanline}, {x, x03, x03},{y, y03, y0 + 3}]