CHAPTER 2 ADDITIONAL AND ADVANCED EXERCISES
3.5 THE CHAIN RULE AND PARAMETRIC EQUATIONS
19. pœÈ3 œt (3t)"Î# Ê œ "(3t)"Î# (3 œ t) "(3t)"Î#œ "
# #
dp
dt dt
d
2 3 t
† È
20. qœÈ2r œr# a2rr#b"Î# Ê dqdr œ"#a2rr#b"Î# drd a2rr#bœ"#a2rr#b"Î#(22r)œ " r
2r r
† È #
21. sœ 341 sin 3t541 cos 5t Ê dsdt œ 341 cos 3t†dtd (3t)541( sin 5t) †dtd (5t)œ 41 cos 3t41 sin 5t (cos 3t sin 5t)
œ 41
22. sœsinˆ3 t#1‰cosˆ3 t#1‰ Ê dsdt œcosˆ3 t#1‰†dtd ˆ3 t#1‰sinˆ3 t#1‰†dtd ˆ3 t#1‰œ321 cosˆ3 t#1‰321 sinˆ3 t#1‰ cos œ 321ˆ 3 t#1 sin 3 t1# ‰
23. rœ(csc cot ) ))" Ê drd) œ (csc cot ) ))# dd)(csc cot ) ))œ csc (csc cot )cot ))csc))##) œcsc (cot (csc cot ) ))csc )))#)
œ csc cot csc )) )
24. rœ (sec tan ) ))" (sec tan Ê ddr) œ ) ))# dd)(sec tan ) ))œ sec (sec tan )tan ))sec))##) œsec (tan (sec tan ) ))sec )))#)
œ sec tan sec )) )
25. yœx sin x# % x cos#x Ê dydx œx # dxd asin x% bsin x% †dxd a bx# x dxd acos#xbcos#x†dxd (x) x 4 sin x (sin x) 2x sin x x 2 cos x (cos x) cos x
œ #ˆ $ dxd ‰ % ˆ $ †dxd ‰ # x 4 sin x cos x 2x sin x x 2 cos x ( sin x) cos x œ #a $ b % aa $ b b #
4x sin x cos x 2x sin x 2x sin x cos x cos x
œ # $ % $ #
26. yœ"x sin&x3x cos x $ Ê ywœ "x dxd asin&xbsin&x†dxd ˆ ‰"x 3 dxx d acos x$ bcos x$ †dxd ˆ ‰3x
5 sin x cos x sin x 3 cos x ( sin x) cos x
œ "xa ' ba & bˆx"#‰3xaa # b ba $ bˆ ‰"3
sin x cos x sin x x cos x sin x cos x
œ 5x ' x"# & # 3" $
27. yœ21" (3x2)(ˆ4#"x#‰" Ê dxdyœ 217 (3x2)'†dxd (3x 2) ( 1) 4ˆ #"x#‰#†dxd ˆ4#"x#‰ (3xœ 217 2) 3 ( 1) 4 x x œ(3x2)
x 4
' " " ' "
# #
† ˆ #‰ ˆ ‰$
$ #
Š # #" ‹ x
28. yœ(52x)$"8ˆx21 ‰% Ê dxdyœ 3(52x)%( 2) 84ˆx21‰ ˆ$ x2#‰œ6(52x)%ˆ ‰ ˆx"# x21‰$ œ (562x)% x1
$
#
Š2x ‹
29. yœ(4x3) (x% 1)$ Ê dydx œ(4x3) ( 3)(x% 1)%†dxd (x 1) (x 1)$(4)(4x3)$†dxd (4x3) (4xœ 3) ( 3)(x% 1)%(1) (x 1)$(4)(4x3) (4)$ œ 3(4x3) (x% 1)%16(4x3) (x$ 1)$ 3(4xœ (4x(x1)3)%$c 3) 16(x1)dœ(4x(x3) (4x$1)%7)
30. yœ(2x5)"ax#5x b' Ê dydxœ(2x5)"(6) xa #5x (2xb& 5) ax#5x ( 1)(2xb' 5)#(2) 6 xœ a #5xb&2 x(2xa #5)5x#b'
31. h(x)œx tan 2ˆ Èx‰ Ê7 h (x)w œx dxd ˆtan 2xˆ "Î#‰‰tan 2xˆ "Î#‰†dxd (x)0
x sec 2x 2x tan 2x x sec 2 x tan 2 x x sec 2 x tan 2 x
œ #ˆ "Î#‰†dxd ˆ "Î#‰ ˆ "Î#‰œ #ˆ È ‰†È"x ˆ È ‰œÈ #ˆ È ‰ ˆ È ‰
32. k(x)œx sec# ˆ ‰"x Ê k (x)w œx # dxd ˆsec "x‰secˆ ‰"x †dxd a bx # œx sec# ˆ ‰"x tanˆ ‰"x †dxd ˆ ‰"x 2x secˆ ‰"x
x sec tan 2x sec 2x sec sec tan
œ # ˆ ‰"x ˆ ‰ ˆ"x † x"#‰ ˆ ‰"x œ ˆ ‰"x ˆ ‰"x ˆ ‰"x
33. f( )) œˆ1sin sin cos ) ‰ Ê f ( )) œ2ˆ1 cos ) ‰ dd ˆ1sin cos ) ‰œ12 sin cos ) (1 cos )(cos )(1 cos (sin )( sin ))
) ) ) ) ) ) ) ) ) )
# w † † #
œ (2 sin ) cos cos sin œ œ
(1 cos ) (1 cos ) (1 cos )
(2 sin ) (cos 1) 2 sin
) ) ) )
) ) )) ))
a b
# #
$ $ #
34. g(t)œˆ1sin tcos t‰" Ê g (t)w œ ˆ1sin tcos t‰# dtd ˆ1sin tcos t‰œ (1sin tcos t) (sin t)( sin t)(sin t)( cos t)(cos t)
"
† # #† #
œ a sin t(1#cos t)cos t# cos t#b œ 1"cos t
35. rœsina b)# cos (2 ) ) Ê ddr) œsina b)# ( sin 2 ) ) dd)(2 )) cos (2 ) cos) a a b)# b†dd)a b)# sin ( sin 2 )(2) (cos 2 ) cos (2 ) 2 sin sin ( ) 2 cos (2 ) cos œ a b)# ) ) a a b)# b ) œ a b)# # ) ) ) a b)#
36. rœŠsec È)‹tanˆ ‰") Ê drd) œŠsec È)‹ˆ sec # ")‰ ˆ)"#‰tanˆ ‰") sec Š È) tan È)‹ Š#È")‹
sec sec tan sec tan sec
œ )"# È) #ˆ ‰") #È") ˆ ‰") È) È)œŠ È)‹ ”tan ÈÈ)tan) ˆ ‰") sec)##ˆ ‰") •
#
37. qœsinŠ tt 1‹ Ê dqdt œcosŠ tt 1‹ dtd Š tt 1‹œcosŠ tt 1‹ t 1 (1) t t 1
t 1
È È È È
È ˆÈ ‰
ˆÈ ‰
† † †dtd #
cosœ ŠÈtt1‹†Èt 1t12È tt 1 œcosŠÈtt1‹ Š2(t2(t1)1)$Î#t‹œ Š2(tt1)2$Î#‹cosŠÈtt1‹
38. qœcotˆsin tt ‰ Ê dqdt œ csc#ˆsin tt ‰†dtd ˆsin tt ‰œ ˆ csc#ˆsin tt ‰‰ ˆt cos tt# sin t‰
39. yœsin ( t# 1 2) Ê dydt œ2 sin ( t1 2)†dtd sin ( t1 2)œ2 sin ( t1 2) cos ( t† 1 2)†dtd ( t1 2) 2 sin ( t 2) cos ( t 2)
œ 1 1 1
40. yœsec#1t Ê dydt œ(2 sec t)1 †dtd (sec t)1 œ(2 sec t)(sec t 1 1 tan t)1 †dtd ( t)1 œ2 1sec#1t tan t1
41. yœ(1cos 2t)% Ê dydt œ 4(1cos 2t)&†dtd (1cos 2t)œ 4(1cos 2t)&( sin 2t) †dtd (2t)œ (18 sin 2tcos 2t)&
42. yœˆ1cotˆ ‰#t ‰# Ê dydt œ 2 1ˆ cotˆ ‰#t ‰$†dtdˆ1cotˆ ‰#t ‰œ 2 1ˆ cotˆ ‰#t ‰$†ˆcsc#ˆ ‰#t ‰†dtdˆ ‰#t œ csc
cot
# #
#
ˆ ‰ ˆ ‰
t ˆ1 t ‰$
43. yœsin cos (2ta 5) b Ê dydt œcos (cos (2t5))†dtd cos (2t5)œcos (cos (2t5)) ( sin (2t† 5))†dtd (2t5) 2 œ cos (cos (2t5))(sin (2t5))
44. yœcos 5 sinˆ ˆ ‰3t ‰ Ê dydt œ sin 5 sinˆ ˆ ‰3t ‰†dtd ˆ5 sinˆ ‰3t ‰œ sin 5 sinˆ ˆ ‰3t ‰ ˆ5 cosˆ ‰3t ‰†dtdˆ ‰3t sin 5 sin cos
œ 53 ˆ ˆ ‰3t ‰ ˆ ˆ ‰3t ‰
45. yœ<1tan%ˆ ‰1t# ‘$ Ê dydt œ3 1< tan%ˆ ‰1t# ‘#†dtd <1tan%ˆ ‰1t# ‘œ3 1< tan%ˆ ‰1t# ‘ <# 4 tan$ˆ ‰1t# †dtd tanˆ ‰1t# ‘
12 1 tan tan sec 1 tan tan sec
œ < %ˆ ‰1t# ‘ <# $ˆ ‰1t# #ˆ ‰1t# †1"#‘œ< %ˆ ‰1t# ‘ <# $ˆ ‰1t# #ˆ ‰1t# ‘
46. yœ"6c1cos (7t) # d$ Ê dydt œ 63c1cos (7t)# d#†2 cos (7t)( sin (7t))(7) œ 7 1c cos (7t) (cos (7t) sin (7t))# d#
47. yœa1cos ta b# b"Î# Ê dydt œ"#a1cos ta b# b"Î#†dtda1cos ta b# bœ "#a1cos ta b# b"Î#ˆsin ta b# †dtd a bt# ‰ 1œ "#a cos ta b# b"Î#asin ta b# b†2tœ È1t sin tcos ta b#a b#
48. yœ4 sinŒÉ1Èt 9 Ê dyœ4 cosŒÉ1Èt9 ŒÉ1Èt9œ4 cosŒÉ1Èt9 ˆ1Èt‰
dt dt dt
d d
1 t
† † " †
#É È
œ 2 cos 1 t œ cos 1 t
1 t 2 t t t
ŒÉ È ŒÉ È
É È È É È
†
49. yœˆ1"x‰$ Ê ywœ3 1ˆ "x‰ ˆ# x"#‰œ x3#ˆ1"x‰# Ê ywwœ ˆ x3#‰†dxd ˆ1"x‰#ˆ1"x‰#†dxd ˆ ‰x3#
2 1 1 1 1 1 1
œ ˆ x3#‰ ˆ ˆ x"‰ ˆx"#‰‰ˆ ‰ ˆx6$ x"‰#œ x6%ˆ x"‰x6$ˆ x"‰#œ x6$ˆ x"‰ ˆx" x"‰
1 1
œ x6$ˆ x"‰ ˆ 2x‰
50. yœˆ1Èx‰" Ê ywœ ˆ1Èx‰#ˆ"#x"Î#‰œ "#ˆ1Èx‰#x"Î#
Ê ywwœ "#’ˆ1Èx‰#ˆ"#x$Î#‰x"Î#( 2) 1 ˆ Èx‰$ˆ"#x"Î#‰“
x 1 x x 1 x x 1 x x 1 x 1
œ " " œ " "
# # $Î# # " $ # " $ # "Î#
’ ˆ È ‰ ˆ È ‰ “ ˆ È ‰ < ˆ È ‰ ‘
1 x 1 1 x
œ #"xˆ È ‰$Š#È"x "# ‹œ #"xˆ È ‰$Š#3#È"x‹
51. yœ"9 cot (3x1) Ê ywœ "9 csc (3x# 1)(3)œ "3 csc (3x# 1) Ê ywwœ ˆ 32‰(csc (3x1)†dxd csc (3x1)) csc (3x 1)( csc (3x 1) cot (3x 1) (3x 1)) 2 csc (3x 1) cot (3x 1)
œ 23 †dxd œ #
52. yœ9 tanˆ ‰x3 Ê ywœ9 secˆ #ˆ ‰x3 ‰ ˆ ‰3" œ3 sec#ˆ ‰x3 Ê ywwœ3 2 sec† ˆ ‰ ˆx3 secˆ ‰x3 tanˆ ‰x3 ‰ ˆ ‰3" œ2 sec#ˆ ‰x3 tanˆ ‰x3 53. g(x)œÈx Ê g (x)w œ #Èx" Ê g(1)œ1 and g (1)w œ "#; f(u)œu& Ê1 f (u)w œ5u % Ê f (g(1))w œf (1)w œ5;
therefore, (f‰g) (1)w œf (g(1)) g (1)w † w œ5†"# œ #5
54. g(x)œ(1x)" Ê g (x)w œ (1 x)#( 1) œ (1 x)" # Ê g( 1) œ "# and g ( 1)w œ "4; f(u)œ 1 "u f (u) f (g( 1)) f 4; therefore, (f g) ( 1) f (g( 1))g ( 1) 4 1
Ê w œ u"# Ê w œ wˆ ‰"# œ ‰ w œ w w œ †"4 œ
55. g(x)œ5Èx Ê g (x)w œ Ê g(1)œ5 and g (1)w œ ; f(u)œcotˆ ‰ Ê f (u)w œ csc#ˆ ‰ ˆ ‰
#5 #5 u u
x 10 10 10
È 1 1 1
csc f (g(1)) f (5) csc ; therefore, (f g) (1) f (g(1))g (1)
œ 101 #ˆ ‰110u Ê w œ w œ 101 #ˆ ‰#1 œ 101 ‰ w œ w w œ 101 †#5 = 14
56. g(x)œ1x Ê g (x)w œ1 Ê gˆ ‰"4 œ 41 and gwˆ ‰"4 œ1; f(u)œ u sec u # Ê f (u)w œ 1 2 sec u sec u tan u†
1 2 sec u tan u f g f 1 2 sec tan 5; therefore, (f g) f g g 5
œ # Ê wˆ ˆ ‰"4 ‰œ wˆ ‰41 œ # 14 41 œ ‰ wˆ ‰"4 œ wˆ ˆ ‰"4 ‰ ˆ ‰w "4 œ 1
57. g(x)œ10x# Êx 1 g (x)w œ20x Ê1 g(0)œ1 and g (0)w œ1; f(u)œu#2u1 Ê f (u)w œ u 1 (2)u 1(2u)(2u)
#
# #
a b a b
f (g(0)) f (1) 0; therefore, (f g) (0) f (g(0))g (0) 0 1 0 œ au2u##1b2# Ê w œ w œ ‰ w œ w w œ † œ
58. g(x)œ x"# Ê1 g (x)w œ x2$ Ê g( 1) œ0 and g ( 1)w œ2; f(u)œˆuu11‰# Ê f (u)w œ2ˆuu11‰ dud ˆuu11‰
2 f (g( 1)) f (0) 4; therefore,
œ ˆuu11‰†(u1)(1)(u1)(u# 1)(1) œ 2(u(u1)(2)1)$ œ (u4(u1)1)$ Ê w œ w œ (f‰g) ( 1)w œf (g( 1))g ( 1)w w œ ( 4)(2)œ 8
59. (a) yœ2f(x) 2f (x) Ê dydxœ w Ê dydx¹ œ2f (2)w œ2ˆ ‰3" œ 32
x=2
(b) yœf(x)g(x) f (x)Ê dydxœ w g (x) w Ê dydx¹ œf (3)w g (3)w œ2 5
x=3 1
(c) yœf(x) g(x) f(x)g (x)† Ê dydxœ w g(x)f (x) w Ê dydx¹ œf(3)g (3)w g(3)f (3)w œ3 5† ( 4)(2 )œ158
x=3 1 1
(d) yœg(x)f(x) Ê dydx œg(x)f (x)w[g(x)]f(x)g (x)# w Ê dydx œ g(2)f (2)w[g(2)]f(2)g (2)# w œ (2) #(8)( 3) œ 376
"
¹ # x=2
ˆ ‰3
(e) yœf(g(x)) f (g(x))g (x) Ê dydx œ w w Ê dydx¹ œf (g(2))g (2)w w œf (2)( 3)w œ3"( 3) œ 1
x=2
(f) yœ(f(x))"Î# Ê dydx œ"#(f(x))"Î#†f (x)w œ #Èf (x)wf(x) Ê dydx¹ œ #Èf (2)wf(2)œ #ˆ ‰È"8 œ 6È"8 œ1#"È2 œÈ242
x=2
3
(g) yœ(g(x))# Ê dydx œ 2(g(x))$†g (x) w Ê dydx¹ œ 2(g(3))$ wg (3)œ 2( 4)$†5œ 35#
x=3
(h) yœa(f(x))#(g(x))#b"Î# Ê dydx œ"#a(f(x))#(g(x))#b"Î#a2f(x) f (x)† w 2g(x) g (x)† w b
Ê dydx¹ œ a(f(2)) (g(2)) b a2f(2)f (2)2g(2)g (2)bœ a8 2 b ˆ2 8 32 2 ( 3) ‰
x=2
" " "
# # # "Î# w w # # # "Î# † † † †
œ 3È517
60. (a) yœ5f(x)g(x) 5f (x)Ê dydx œ w g (x) w Ê dydx¹ œ5f (1)w g (1)w œ5ˆ3"‰ˆ38‰œ1
x=1
(b) yœf(x)(g(x)) f(x) 3(g(x)) g (x)$ Ê dydxœ a # w b(g(x)) f (x) $ w Ê dydx¹ œ $f(0)(g(0)) g (0)# w (g(0)) f (0)$ w
x=0
3(1)(1)œ #ˆ ‰"3 (1) (5)$ œ6
(c) yœg(x)f(x)1 Ê dydx œ(g(x)(g(x)1)f (x)w 1)f(x) g (x)# w Ê dydx¹ œ (g(1)(g(1)1)f (1)w 1)f(1)g (1)# w x=1
œ ( 4 " )ˆ( 4 1)"3‰ #(3)ˆ38‰œ1
(d) yœf(g(x)) f (g(x))g (x) Ê dydx œ w w Ê dydx¹ œf (g(0))g (0)w w œf (1)w ˆ ‰3" œ ˆ 3"‰ ˆ ‰3" œ 9"
x=0
(e) yœg(f(x)) g (f(x))f (x) Ê dydx œ w w Ê dydx¹ œg (f(0))f (0)w w œg (1)(5)w œ ˆ 38‰(5)œ 403
x=0
(f) yœax""f(x)b# Ê dydx œ 2 xa ""f(x)b$a11x"!f (x) w b Ê dydx¹ œ 2(1f(1))$a11f (1)w b
x=1
2(1œ 3)$ˆ11"3‰œ ˆ 42$‰ ˆ ‰323 œ "3
(g) yœf(xg(x)) f (xÊ dydxœ w g(x)) 1a g (x) w b Ê dydx¹ œf (0w g(0)) 1a g (0)w bœf (1) 1w ˆ 3"‰
x=0
œ ˆ "3‰ ˆ ‰34 œ 94
61. dsdt œ dsd)†ddt): sœcos ) Ê dds) œ sin ) Ê dsd)¸)=3 œ sinˆ ‰31 œ1 so that dsdt œ dsd)†ddt) œ1 5† œ5
21 #
62. dydt œ dydx†dxdt: yœx#7x Ê5 dydxœ2x Ê7 dydx¹ œ9 so that dydt œ dydx†dxdt œ9†3" œ3
x=1
63. With yœx, we should get dydxœ1 for both (a) and (b):
(a) yœ Êu5 7 dudyœ 5"; uœ5x35 Ê dudx œ5; therefore, dxdy œ dudy†dudx œ5" †5œ1, as expected (b) yœ 1 "u Ê dudyœ u"#; uœ(x1)" Ê dxdu œ (x 1)#(1)œ (x"1)#; therefore dxdyœ dudy†dxdu
(x 1) 1, again as expected œ "u# †(x"1)# œa(x"1)" #b †(x"1)# œ #†(x"1)# œ
64. With yœx$Î#, we should get dydx œ#3x"Î# for both (a) and (b):
(a) yœu 3u ; $ Ê dyduœ # uœÈx Ê dxduœ #È"x; therefore, dydx œ dydu†dxdu œ3u#†#È"x œ3ˆÈx‰#†#È"x œ #3Èx, as expected.
(b) yœÈu Ê dyduœ ; uœx 3x ; Ê dxœ therefore, dydx œdydu dxœ 3x œ 3x œ x ,
u u
du du 3
x
" " "
# $ # # # # "Î#
# #
È † È † È $ †
again as expected.
65. yœ2 tanˆ ‰14x Ê dxdyœˆ2 sec # 14x‰ ˆ ‰14 œ 1# sec# 14x
(a) dydx¹ sec ˆ ‰4 slope of tangent is 2; thus, y(1) 2 tanˆ ‰4 2 and y (1) tangent line is
x=1œ 1# # 1 œ1 Ê œ 1 œ w œ1 Ê
given by y œ2 1(x1) Ê yœ1x 2 1
(b) ywœ #1 sec#ˆ ‰14x and the smallest value the secant function can have in # x 2 is 1 Ê the minimum value of y is and that occurs when w #1 #1 œ1# sec#ˆ ‰14x Ê 1œsec#ˆ ‰14x Ê „ œ1 secˆ ‰14x Ê xœ0.
66. (a) yœsin 2x Ê ywœ2 cos 2x Ê y (0)w œ2 cos (0)œ2 Ê tangent to yœsin 2x at the origin is yœ2x;
yœ sinˆ ‰x# Ê ywœ #" cosˆ ‰x# Ê y (0)w œ #" cos 0œ Ê#" tangent to yœ sinˆ ‰x# at the origin is yœ "#x. The tangents are perpendicular to each other at the origin since the product of their slopes is
1.
(b) yœsin (mx) Ê ywœm cos (mx) Ê y (0)w œm cos 0œm; yœ sinˆ ‰mx Ê ywœ m" cosˆ ‰mx y (0) cos (0) . Since m 1, the tangent lines are perpendicular at the origin.
Ê w œ m" œ m" †ˆm"‰œ
(c) yœsin (mx) Ê ywœm cos (mx). The largest value cos (mx) can attain is 1 at xœ0 Ê the largest value y can attain is m because yw k k k kw œkm cos (mx)kœk k km cos mxkŸk km †1œk km . Also, yœ sinˆ ‰mx
y cos y cos cos the largest value y can attain is .
Ê wœ m" ˆ ‰mx Ê k kw œ¸"m ˆ ‰mx ¸Ÿ¸ ¸ ¸m" ˆ ‰mx ¸Ÿ k km" Ê w ¸ ¸m"
(d) yœsin (mx) Ê ywœm cos (mx) Ê y (0)w œm Ê slope of curve at the origin is m. Also, sin (mx) completes m periods on [0 2 ]. Therefore the slope of the curve yß 1 œsin (mx) at the origin is the same as the number of periods it completes on [0 2 ]. In particular, for large m, we can think of “compressing" the graph ofß 1 yœsin x horizontally which gives more periods completed on [0 2 ], but also increases the slope of theß 1 graph at the origin.
67. xœcos 2t, yœsin 2t, 0Ÿ Ÿt 1 68. xœcos (1t), yœsin (1t), 0Ÿ Ÿt 1
cos 2t sin 2t 1 x y 1 cos ( t) sin ( t) 1
Ê # # œ Ê # # œ Ê # 1 # 1 œ
x y 1, y
Ê # #œ !
69. xœ4 cos t, yœ2 sin t, 0Ÿ Ÿt 2 1 70. xœ4 sin t, yœ5 cos t, 0Ÿ Ÿt 21
1 1 1 1
Ê 16 cos t16# 4 sin t4# œ Ê x16# y4# œ Ê 16 sin t16# 25 cos t25# œ Ê x16# #y5# œ
71. xœ3t, yœ9t , # _ _ Êt yœx # 72. xœ Èt , yœt, t 0 Ê xœ Èy or yœx , x# Ÿ0
73. xœ 2t 5, yœ _ _4t 7, t 74. xœ 3 3t, yœ2t, 0Ÿ Ÿt 1 Ê y# œt
x 5 2t 2(x 5) 4t x 3 3 2x 6 3y
Ê œ Ê œ Ê œ ˆ ‰y# Ê œ
y 2(x 5) 7 y 2x 3 y 2 x, x
Ê œ Ê œ Ê œ 23 ! Ÿ Ÿ $
75. xœt, yœÈ1t , 1# Ÿ Ÿt 0 76. xœÈt1, yœÈt, t 0
y 1 x y t x y 1, y 0
Ê œÈ # Ê # œ Ê œÈ #
77. xœsec t# 1, yœtan t, 1# t 1# 78. xœ sec t, yœtan t, #1 t #1
sec t 1 tan t x y sec t tan t 1 x y 1
Ê # œ # Ê œ # Ê # # œ Ê # # œ
79. (a) xœa cos t, yœ a sin t, 0Ÿ Ÿt 2 1 80. (a) xœa sin t, yœb cos t, 1# Ÿ Ÿt 5#1 (b) xœa cos t, yœa sin t, 0Ÿ Ÿt 2 1 (b) xœa cos t, yœb sin t, 0Ÿ Ÿt 21 (c) xœa cos t, yœ a sin t, 0Ÿ Ÿt 4 1 (c) xœa sin t, yœb cos t, 1# Ÿ Ÿt 9#1 (d) xœa cos t, yœa sin t, 0Ÿ Ÿt 4 1 (d) xœa cos t, yœb sin t, 0Ÿ Ÿt 41
81. Using a"ß $b we create the parametric equations xœ " at and y œ $ bt, representing a line which goes through a"ß $b at tœ !. We determine a and b so that the line goes through a%ß "b when tœ ".
Since % œ " Ê œ &a a . Since " œ $ Ê œ %b b . Therefore, one possible parameterization is xœ " &t, y œ $ %t, 0Ÿ Ÿ "t .
82. Using a"ß $b we create the parametric equations xœ " at and y œ $ bt, representing a line which goes through at t . We determine a and b so that the line goes through when t . Since a a . a"ß $b œ ! a$ß #b œ " $ œ " Ê œ % Since # œ $ Ê œ &b b . Therefore, one possible parameterization is xœ " %t, y œ $ &t, 0Ÿ Ÿ "t . 83. The lower half of the parabola is given by xœy# " for yŸ !. Substituting t for y, we obtain one possible
parameterization xœ " œt# , y t, tŸ Þ0
84. The vertex of the parabola is at a"ß "b, so the left half of the parabola is given by yœx# #x for xŸ ". Substituting t for x, we obtain one possible parametrization: xœt, yœ #t# t, tŸ ".
85. For simplicity, we assume that x and y are linear functions of t and that the point x, y starts at a b a#ß $b for tœ ! and passes through a"ß "b at tœ ". Then xœf t , where fa b a b! œ # and fa b" œ ".
Since slopeœ??xt œ "#"! œ $ œ, x f ta bœ $ # œ # $t t. Also, yœg t , where ga b a b! œ $ and ga b" œ ". Since slopeœ??yt œ ""!3 œ 4. yœg ta bœ % $ œ $ %t t.
One possible parameterization is: xœ # $t, yœ $ %t, t !.
86. For simplicity, we assume that x and y are linear functions of t and that the point x, y starts at a b a"ß #b for tœ ! and passes through a!ß !b at tœ ". Then xœf t , where fa b a b! œ " and fa b" œ !.
Since slopeœ??xt œ ! ""!a b œ " œ, x f ta bœ " " œ " t a b t. Also, yœg t , where ga b a b! œ # and ga b" œ !. Since slopeœ??yt œ ! #"! œ # œ. y g ta bœ # # œ # #t t.
One possible parameterization is: xœ " t, yœ # #t, t !.
87. tœ 14 Ê xœ2 cos 14 œÈ2, yœ2 sin 14 œÈ2; dxdt œ 2 sin t, dydt œ2 cos t Ê dxdy œ dx/dtdy/dtœ 2 cos t2 sin tœ cot t
cot 1; tangent line is y 2 1 x 2 or y x 2 2 ; csc t Ê dy¹ œ œ È œ Š È ‹ œ È dy œ
dx tœ1 4 dt
4
1 w #
Ê d ydx## œdy /dtdx/dtw œ csc t2 sin t œ 2 sin t$ Ê d ydx## œ 2
#
" ¹ È
tœ14
88. tœ 231 Ê xœcos 231 œ "#, yœÈ3 cos 231 œ È#3; dxdt œ sin t, dydt œ È3 sin t Ê dxdyœ Èsin t3 sin tœÈ3
3 ; tangent line is y 3 x or y 3 x; 0 0
Ê dydx¹ œÈ Š 3‹œÈ < ˆ ‰‘ œÈ dydt œ Ê d ydx œ sin t0 œ
tœ231
È
# #" w #
#
Ê d ydx##¹ œ0
tœ231
89. tœ 14 Ê xœ 14, yœ"#; dxdt œ1, dydt œ #"t Ê dxdyœ dx/dtdy/dtœ 21t Ê dxdy œ " œ1; tangent line is
È È ¹ #É
tœ14 "4
y œ"# 1†ˆx"4‰or yœ x "4; dydtw œ "4t$Î# Ê dxd y## œdy /dtdx/dtw œ "4t$Î# Ê dxd y##¹ œ 2
tœ14
90. tœ3 Ê xœ È3 œ 1 2, yœÈ3(3)œ3; dxdt œ (t1) , dydt œ3(3t) Ê dxdyœ (3t)
(t 1)
"
# "Î# # "Î#
ˆ ‰ ˆ ‰
3# "Î#
"
# "Î#
2; tangent line is y 3 2[x ( 2)] or y 2x 1;
œ 3 t 1 œ œ 3 3 1 œ œ œ
3t dy
dx 3(3)
È È
È È
¹t 3œ
dy d y
dt 3t dx
3t (t 1) 3 t 1 (3t) 3 3
2t 3t t 1 t 3t
w #
# "Î# # "Î#
œÈ 3 ‘ È 3 ‘ œ È È Ê # œŠ ‹ œ È
Š ‹
3 2t 3t t 1
1 2 t 1 È È
È b cb
Ê d ydx##¹ œ 3
t 3œ
"
91. tœ Ê1 xœ5, yœ1; dxdt œ4t, dydt œ4t $ Ê dxdyœ dx/dtdy/dt œ4t4t$ œt # Ê dxdy¹ œ ( 1)#œ1; tangent line is
tœ1
y œ1 1 (x† 5) or yœ x 4; dydtw œ2t Ê d ydx## œdy /dtdx/dtw œ 4t2t œ " Ê d ydx## œ "
# ¹ #
tœ1
92. tœ 13 Ê xœ 13 sin 13 œ 13 È#3, yœ 1 cos 13 œ œ1 #" #"; dxdt œ 1 cos t, dydt œsin t Ê dxdyœ dx/dtdy/dt 3 ; tangent line is y 3 x
œ 1 cos tsin t Ê dxdy¹ œ1 cossin œ œÈ œ#" È Š 3 #3‹
tœ13
ˆ ‰ ˆ ‰
Š ‹ ˆ ‰
1 È
31 3
È3
#
"
#
1
y 3x 2;
Ê œÈ 1È3 œ œ Ê œ œ ˆ ‰
3 dt (1 cos t) 1 cos t dx dx/dt 1 cos t
dyw (1 cos t)(cos t) (sin t)(sin t) 1 d y# dy /dtw
# #
1cos t1
œ (1cos t)1 # Ê dxd y# œ 4
# ¹
tœ13
93. tœ 12 Ê xœcos 12 œ0, yœ 1 sin 12 œ2; dxdt œ sin t, dydt œcos t Ê dxdy œcos tsin t œ cot t
cot 0; tangent line is y 2; csc t csc t 1
Ê dydx¹ œ œ œ dydt œ Ê d ydx œ csc tsin t œ Ê d ydx ¹ œ
tœ12 tœ12
1# w # # $ #
# #
#
94. tœ 14 Ê xœsec#ˆ14‰ œ1 1, yœtanˆ14‰œ 1; dxdt œ2 sec t tan t, # dydt œsec t#
cot t cot ; tangent line is
Ê dydx œ 2 sec t tan t œ 2 tan t œ Ê dydx œ 4 œ
sec t#
# " " " "
# ¹ # ˆ ‰ #
tœ14
1
y œ ( 1) "#(x1) or yœ "#x"#; dydt œ "# csc t # Ê d ydx œ2 sec t tan t œ "4 cot t$
csc t
w #
# #
"
# #
Ê d ydx##¹ œ4
tœ14
"
95. sœA cos (2 bt) 1 Ê vœ dsdt œ A sin (2 bt)(2 b)1 1 œ 2 bA sin (2 bt). If we replace b with 2b to double the1 1 frequency, the velocity formula gives vœ 4 bA sin (4 bt) 1 1 Ê doubling the frequency causes the velocity to double. Also vœ #1bA sin (2 bt) 1 Ê œ a dvdt œ 41# #b A cos (2 bt). If we replace b with 2b in the1 acceleration formula, we get aœ 161# #b A cos (4 bt) 1 Ê doubling the frequency causes the acceleration to quadruple. Finally, aœ 41# #b A cos (2 bt) 1 Ê œ j dadt œ81$ $b A sin (2 bt). If we replace b with 2b in the jerk1 formula, we get jœ641$ $b A sin (4 bt) 1 Ê doubling the frequency multiplies the jerk by a factor of 8.
96. (a) yœ37 sin<36521 (x101)‘25 Ê ywœ37 cos<36521 (x101)‘ ˆ36521‰œ 743651 cos<36521 (x101) .‘ The temperature is increasing the fastest when y is as large as possible. The largest value ofw cos<36521 (x101) is 1 and occurs when ‘ 36521 (x101)œ0 Ê xœ101 Ê on day 101 of the year (µApril 11), the temperature is increasing the fastest.
(b) y (101)w œ743651 cos<36521 (101101)‘œ743651 cos (0)œ 743651 ¸0.64 °F/day
97. sœ " ( 4t)"Î# Ê vœ dsdt œ "#(14t)"Î#(4)œ2(14t)"Î# Ê v(6)œ " %2( †6)"Î#œ 25 m/sec;
vœ " 2( 4t)"Î# Ê aœdvdt œ "# †2(14t)$Î#(4)œ 4(14t)$Î# Ê a(6)œ 4(14 6)† $Î#œ 1 5#4 m/sec#
98. We need to show aœ dvdt is constant: aœdvdt œdvds †dsdt and dvds œ dsd ˆkÈs‰œ 2Èks Ê œ a dvds †dsdt œ dvds †v k s which is a constant.
œ 2Èks† È œk##
99. v proportional to È" v È for some constant k . Thus, a v
s s
k dv k dv dv ds dv
ds 2s dt ds dt ds
Ê œ Ê œ $Î# œ œ † œ † acceleration is a constant times so a is inversely proportional to s . œ 2sk$Î# ks œ k s Ê s
#
# #
†È # ˆ ‰" " #
100. Let dxdt œf(x). Then, aœdvdt œdvdx†dxdt œ dvdx†f(x)œ dxd ˆ ‰dxdt †f(x)œ dxd (f(x)) f(x)† œf (x)f(x), as required.w 101. Tœ21ÉLg Ê dTdL œ21 g œ œ . Therefore, dTdu œ dTdL dLdu œ kLœ œ 2 k1 ÉLg
g gL gL
k L
† " †" † † g " †
#É É È È È #
È
L L
g g
1 1 1 1
, as required.
œ kT2
102. No. The chain rule says that when g is differentiable at 0 and f is differentiable at g(0), then f‰g is differentiable at 0. But the chain rule says nothing about what happens when g is not differentiable at 0 so there is no contradiction.
103. The graph of yœ ‰(f g)(x) has a horizontal tangent at xœ1 provided that (f‰g) (1)w œ0 Ê f (g(1))g (1)w w œ0 either f (g(1)) 0 or g (1) 0 (or both) either the graph of f has a horizontal tangent at u g(1), or the
Ê w œ w œ Ê œ
graph of g has a horizontal tangent at xœ1 (or both).
104. (f‰g) ( 5)w 0 Ê f (g( 5)) g ( 5)w † w 0 Ê f (g( 5)) and g ( 5) are both nonzero and have opposite signs.w w That is, either f (g( 5))c w 0 and g ( 5)w 0 or f (g( 5))d c w 0 and g ( 5)w 0 .d
105. As h Ä 0, the graph of yœ sin 2(x h) sin 2x h
approaches the graph of yœ2 cos 2x because
lim (sin 2x) 2 cos 2x.
hÄ !
sin 2(x h) sin 2x
h dx
œ d œ
106. As h Ä 0, the graph of yœ cos (xc h)h#dcos xa b# approaches the graph of yœ 2x sin x becausea b#
lim cos x 2x sin x .
hÄ !
cos (x h) cos x
h dx
c #d a b# œ d c a b# dœ a b#
107. dxdt œcos t and dydt œ2 cos 2t Ê dxdy œdx/dtdy/dt œ2 cos 2tcos t œ 2 2 cos ta cos t# 1b; then dxdy œ0 Ê 2 2 cos ta cos t# 1b œ0
2 cos t 1 0 cos t t , , , . In the 1st quadrant: t x sin and
Ê # œ Ê œ „È"2 Ê œ 14 341 541 741 œ 41 Ê œ 41 œ È#2
yœsin 2ˆ ‰14 œ1 Ê ŠÈ#2ß1 is the point where the tangent line is horizontal. At the origin: x‹ œ0 and yœ0 sin t 0 t 0 or t and sin 2t 0 t 0, , , ; thus t 0 and t give the tangent lines at Ê œ Ê œ œ1 œ Ê œ 1# 1 3#1 œ œ1
the origin. Tangents at origin: dydx¹ 2 y 2x and dydx¹ 2 y 2x
t 0œ œ Ê œ tœ œ Ê œ
1
108. dxdt 2 cos 2t and dt 3 cos 3t dx dx/dt 3 cos 3t2 cos 2t 2 2 cos t 1
dy dy dy/dt 3(cos 2t cos t sin 2t sin t)
œ œ Ê œ œ œ a #b
œ 3 2 cos t 1 (cos t) 2 sin t cos t sin t œ œ
2 2 cos t 1 2 2 cos t 1 2 2 cos t
(3 cos t) 2 cos t 1 2 sin t (3 cos t) 4 cos t 3
ca b d
a b a b a b
a b a b
#
# # #
# # #
1 ; then
0 0 3 cos t 0 or 4 cos t 3 0: 3 cos t 0 t , and
dy
dx 2 2 cos t 1
(3 cos t) 4 cos t 3 3
œ Ê a a # # b b œ Ê œ œ œ Ê œ
# #1 #1
4 cos t# œ3 0 Ê cos tœ „È#3 Ê œ t 61, 561, 761, 1161. In the 1st quadrant: tœ 16 Ê xœsin 2ˆ ‰61 œ È#3 and yœsin 3ˆ ‰16 œ1 Ê ŠÈ#3ß1 is the point where the graph has a horizontal tangent. At the origin: x‹ œ0 and yœ0 Ê sin 2tœ0 and sin 3tœ0 Ê œ t 0, , , 1# 1 3#1 and tœ0, , 13 231, , 1 431, 531 Ê œ t 0 and tœ1 give the tangent lines at the origin. Tangents at the origin: dydx¹ 2 cos 03 cos 0 3 y 3x, and dydx¹
t 0œ œ œ # Ê œ # tœ
1
y x
œ 3 cos (3 )2 cos (2 )11 œ Ê3# œ 3#
109. From the power rule, with yœx"Î%, we get dydx œ"4x$Î%. From the chain rule, yœÉÈx
x x , in agreement.
Ê dydxœ dx œ œ4
x x
d
x
" " " "
# # # $Î%
ÉÈ † ˆÈ ‰ ÉÈ † È
110. From the power rule, with yœx$Î%, we get dydx œ43x"Î%. From the chain rule, yœÉ Èx x
x x x x x
Ê dydxœ dx Ê dydx œ œ œ
x x x x x x 4 x x
d 3
x
3 x
" " " "
#É È #É È #È #É È # É È
† ˆ È ‰ †Š † È ‹ †ˆ È ‰ È
x , in agreement.
œ 3 x œ
4 x x
3 4 È È ÉÈ
"Î%
111. (a)
(b) dfdt œ1.27324 sin 2t0.42444 sin 6t0.2546 sin 10t0.18186 sin 14t (c) The curve of yœdfdt approximates yœdgdt
the best when t is not 1, 1#, 0, , nor .1# 1
112. (a)
(b) dhdt œ2.5464 cos (2t)2.5464 cos (6t)2.5465 cos (10t)2.54646 cos (14t)2.54646 cos (18t) (c)
111-116. Example CAS commands:
: Maple
f := t -> 0.78540 - 0.63662*cos(2*t) - 0.07074*cos(6*t) - 0.02546*cos(10*t) - 0.01299*cos(14*t);
g := t -> piecewise( t<-Pi/2, t+Pi, t<0, -t, t<Pi/2, t, Pi-t );
plot( [f(t),g(t)], t=-Pi..Pi );
Df := D(f);
Dg := D(g);
plot( [Df(t),Dg(t)], t=-Pi..Pi );
: (functions, domains, and value for t0 may change):
Mathematica
To see the relationship between f[t] and f'[t] in 111 and h[t] in 112
Clear[t, f]
f[t_] = 0.785400.63662 Cos[2t]0.07074 Cos[6t]0.02546 Cos[10t]0.01299 Cos[14t]
f'[t]
Plot[{f[t], f'[t]},{t, 1 1, }]
For the parametric equations in 113 - 116, do the following. Do NOT use the colon when defining tanline.
Clear[x, y, t]
t0 = p/4;
x[t_]:=1 Cos[t]
y[t_]:=1Sin[t]
p1=ParametricPlot[{x[t], y[t]},{t, 1 1, }]
yp[t_]:=y'[t]/x'[t]
ypp[t_]:=yp'[t]/x'[t]
yp[t0]//N ypp[t0]//N
tanline[x_]=y[t0]yp[t0] (xx[t0]) p2=Plot[tanline[x], {x, 0, 1}]
Show[p1, p2]