• Tidak ada hasil yang ditemukan

THE CHAIN RULE AND PARAMETRIC EQUATIONS

CHAPTER 2 ADDITIONAL AND ADVANCED EXERCISES

3.5 THE CHAIN RULE AND PARAMETRIC EQUATIONS

19. pœÈ3 œt (3t)"Î# Ê œ "(3t)"Î# (3 œ t) "(3t)"Î#œ "

# #

dp

dt dt

d

2 3 t

È

20. qœÈ2r œr# a2rr#b"Î# Ê dqdr œ"#a2rr#b"Î# drd a2rr#"#a2rr#b"Î#(22r)œ " r

2r r

È #

21. sœ 341 sin 3t541 cos 5t Ê dsdt œ 341 cos 3t†dtd (3t)541( sin 5t) †dtd (5t)œ 41 cos 3t41 sin 5t (cos 3t sin 5t)

œ 41

22. sœsinˆ3 t#1‰cosˆ3 t#1‰ Ê dsdt œcosˆ3 t#1‰†dtd ˆ3 t#1‰sinˆ3 t#1‰†dtd ˆ3 t#1‰œ321 cosˆ3 t#1321 sinˆ3 t#1‰ cos œ 321ˆ 3 t#1 sin 3 t1#

23. rœ(csc cot ) ))" Ê drd) œ (csc cot ) ))# dd)(csc cot ) ))œ csc (csc cot )cot ))csc))##) œcsc (cot (csc cot ) ))csc )))#)

œ csc cot csc )) )

24. rœ (sec tan ) ))" (sec tan Ê ddr) œ ) ))# dd)(sec tan ) ))œ sec (sec tan )tan ))sec))##) œsec (tan (sec tan ) ))sec )))#)

œ sec tan sec )) )

25. yœx sin x# % x cos#x Ê dydx œx # dxd asin x% bsin x%dxd a bx# x dxd acos#xbcos#x†dxd (x) x 4 sin x (sin x) 2x sin x x 2 cos x (cos x) cos x

œ #ˆ $ dxd% ˆ $dxd# x 4 sin x cos x 2x sin x x 2 cos x ( sin x) cos x œ #a $ b % aa $ b b #

4x sin x cos x 2x sin x 2x sin x cos x cos x

œ # $ % $ #

26. yœ"x sin&x3x cos x $ Ê ywœ "x dxd asin&xbsin&x†dxd ˆ ‰"x 3 dxx d acos x$ bcos x$dxd ˆ ‰3x

5 sin x cos x sin x 3 cos x ( sin x) cos x

œ "xa ' ba &x"#3xaa # b ba $ bˆ ‰"3

sin x cos x sin x x cos x sin x cos x

œ 5x ' x"# & # 3" $

27. yœ21" (3x2)(ˆ4#"x#" Ê dxdyœ 217 (3x2)'dxd (3x 2) ( 1) 4ˆ #"x##dxd ˆ4#"x#‰ (3xœ 217 2) 3 ( 1) 4 x x œ(3x2)

x 4

' " " ' "

# #

† ˆ #‰ ˆ ‰$

$ #

Š # #" x

28. yœ(52x)$"8ˆx21 ‰% Ê dxdyœ 3(52x)%( 2) 84ˆx21‰ ˆ$ x2#‰œ6(52x)%ˆ ‰ ˆx"# x21‰$ œ (562x)% x1

$

#

Š2x

29. yœ(4x3) (x% 1)$ Ê dydx œ(4x3) ( 3)(x% 1)%dxd (x 1) (x 1)$(4)(4x3)$dxd (4x3) (4xœ 3) ( 3)(x% 1)%(1) (x 1)$(4)(4x3) (4)$ œ 3(4x3) (x% 1)%16(4x3) (x$ 1)$ 3(4xœ (4x(x1)3)%$c 3) 16(x1)dœ(4x(x3) (4x$1)%7)

30. yœ(2x5)"ax#5x b' Ê dydxœ(2x5)"(6) xa #5x (2xb& 5) ax#5x ( 1)(2xb' 5)#(2) 6 xœ a #5xb&2 x(2xa #5)5x#b'

31. h(x)œx tan 2ˆ Èx‰ Ê7 h (x)w œx dxd ˆtan 2xˆ "Î#‰‰tan 2xˆ "Î#‰†dxd (x)0

x sec 2x 2x tan 2x x sec 2 x tan 2 x x sec 2 x tan 2 x

œ #ˆ "Î#‰†dxd ˆ "Î#‰ ˆ "Î#‰œ #ˆ È ‰†È"x ˆ È ‰œÈ #ˆ È ‰ ˆ È ‰

32. k(x)œx sec# ˆ ‰"x Ê k (x)w œx # dxd ˆsec "x‰secˆ ‰"xdxd a bx # œx sec# ˆ ‰"x tanˆ ‰"xdxd ˆ ‰"x 2x secˆ ‰"x

x sec tan 2x sec 2x sec sec tan

œ # ˆ ‰"x ˆ ‰ ˆ"xx"#‰ ˆ ‰"x œ ˆ ‰"x ˆ ‰"x ˆ ‰"x

33. f( )) œˆ1sin sin cos ) ‰ Ê f ( )) œ2ˆ1 cos )dd ˆ1sin cos ) ‰œ12 sin cos ) (1 cos )(cos )(1 cos (sin )( sin ))

) ) ) ) ) ) ) ) ) )

# w #

œ (2 sin ) cos cos sin œ œ

(1 cos ) (1 cos ) (1 cos )

(2 sin ) (cos 1) 2 sin

) ) ) )

) ) )) ))

a b

# #

$ $ #

34. g(t)œˆ1sin tcos t" Ê g (t)w œ ˆ1sin tcos t# dtd ˆ1sin tcos t‰œ (1sin tcos t) (sin t)( sin t)(sin t)( cos t)(cos t)

"

# ##

œ a sin t(1#cos t)cos t# cos t#b œ 1"cos t

35. rœsina b)# cos (2 ) ) Ê ddr) œsina b)# ( sin 2 ) ) dd)(2 )) cos (2 ) cos) a a b)# b†dd)a b)# sin ( sin 2 )(2) (cos 2 ) cos (2 ) 2 sin sin ( ) 2 cos (2 ) cos œ a b)# ) ) a a b)# b ) œ a b)# # ) ) ) a b)#

36. rœŠsec È)‹tanˆ ‰") Ê drd) œŠsec È)‹ˆ sec # ")‰ ˆ)"#‰tanˆ ‰") sec Š È) tan È)‹ Š#È")

sec sec tan sec tan sec

œ )"# È) #ˆ ‰") #È") ˆ ‰") È) È)œŠ È)‹ ”tan ÈÈ)tan) ˆ ‰") sec)##ˆ ‰")

#

37. qœsinŠ tt 1‹ Ê dqdt œcosŠ tt 1dtd Š tt 1‹œcosŠ tt 1t 1 (1) t t 1

t 1

È È È È

È ˆÈ

ˆÈ

† † dtd #

cosœ ŠÈtt1‹†Èt 1t12È tt 1 œcosŠÈtt1‹ Š2(t2(t1)1)$Î#t‹œ Š2(tt1)2$Î#‹cosŠÈtt1

38. qœcotˆsin tt ‰ Ê dqdt œ csc#ˆsin tt ‰†dtd ˆsin tt ‰œ ˆ csc#ˆsin tt ‰‰ ˆt cos tt# sin t

39. yœsin ( t# 1 2) Ê dydt œ2 sin ( t1 2)†dtd sin ( t1 2)œ2 sin ( t1 2) cos ( t† 1 2)†dtd ( t1 2) 2 sin ( t 2) cos ( t 2)

œ 1 1 1

40. yœsec#1t Ê dydt œ(2 sec t)1 †dtd (sec t)1 œ(2 sec t)(sec t 1 1 tan t)1 †dtd ( t)1 œ2 1sec#1t tan t1

41. yœ(1cos 2t)% Ê dydt œ 4(1cos 2t)&dtd (1cos 2t)œ 4(1cos 2t)&( sin 2t) †dtd (2t)œ (18 sin 2tcos 2t)&

42. yœˆ1cotˆ ‰#t# Ê dydt œ 2 1ˆ cotˆ ‰#t$dtdˆ1cotˆ ‰#t ‰œ 2 1ˆ cotˆ ‰#t$†ˆcsc#ˆ ‰#t ‰†dtdˆ ‰#t œ csc

cot

# #

#

ˆ ‰ ˆ ‰

t ˆ1 t $

43. yœsin cos (2ta 5) b Ê dydt œcos (cos (2t5))†dtd cos (2t5)œcos (cos (2t5)) ( sin (2t† 5))†dtd (2t5) 2 œ cos (cos (2t5))(sin (2t5))

44. yœcos 5 sinˆ ˆ ‰3t ‰ Ê dydt œ sin 5 sinˆ ˆ ‰3t ‰†dtd ˆ5 sinˆ ‰3t ‰œ sin 5 sinˆ ˆ ‰3t ‰ ˆ5 cosˆ ‰3t ‰†dtdˆ ‰3t sin 5 sin cos

œ 53 ˆ ˆ ‰3t ‰ ˆ ˆ ‰3t

45. yœ<1tan%ˆ ‰1t#$ Ê dydt œ3 1< tan%ˆ ‰1t##dtd <1tan%ˆ ‰1t# ‘œ3 1< tan%ˆ ‰1t# ‘ <# 4 tan$ˆ ‰1t#dtd tanˆ ‰1t#

12 1 tan tan sec 1 tan tan sec

œ < %ˆ ‰1t# ‘ <# $ˆ ‰1t# #ˆ ‰1t#1"#‘œ< %ˆ ‰1t# ‘ <# $ˆ ‰1t# #ˆ ‰1t#

46. yœ"6c1cos (7t) # d$ Ê dydt œ 63c1cos (7t)# d#†2 cos (7t)( sin (7t))(7) œ 7 1c cos (7t) (cos (7t) sin (7t))# d#

47. yœa1cos ta b# b"Î# Ê dydt œ"#a1cos ta b# b"Î#dtda1cos ta b#"#a1cos ta b# b"Î#ˆsin ta b#dtd a bt# ‰ 1œ "#a cos ta b# b"Î#asin ta b# b†2tœ È1t sin tcos ta b#a b#

48. yœ4 sinŒÉ1Èt 9 Ê dyœ4 cosŒÉ1Èt9 ŒÉ1Èt9œ4 cosŒÉ1Èt9 ˆ1Èt‰

dt dt dt

d d

1 t

† † "

#É È

œ 2 cos 1 t œ cos 1 t

1 t 2 t t t

ŒÉ È ŒÉ È

É È È É È

49. yœˆ1"x$ Ê ywœ3 1ˆ "x‰ ˆ# x"#‰œ x3#ˆ1"x# Ê ywwœ ˆ x3#‰†dxd ˆ1"x#ˆ1"x#dxd ˆ ‰x3#

2 1 1 1 1 1 1

œ ˆ x3#‰ ˆ ˆ x"‰ ˆx"#‰‰ˆ ‰ ˆx6$ x"#œ x6%ˆ x"x6$ˆ x"#œ x6$ˆ x"‰ ˆx" x"

1 1

œ x6$ˆ x"‰ ˆ 2x

50. yœˆ1Èx‰" Ê ywœ ˆ1Èx‰#ˆ"#x"Î#‰œ "#ˆ1Èx‰#x"Î#

Ê ywwœ "#’ˆ1Èx‰#ˆ"#x$Î#‰x"Î#( 2) 1 ˆ Èx‰$ˆ"#x"Î#‰“

x 1 x x 1 x x 1 x x 1 x 1

œ " " œ " "

# # $Î# # " $ # " $ # "Î#

’ ˆ È ‰ ˆ È ‰ “ ˆ È ‰ < ˆ È ‰ ‘

1 x 1 1 x

œ #"xˆ È ‰$Š#È"x "# ‹œ #"xˆ È ‰$Š#3#È"x

51. yœ"9 cot (3x1) Ê ywœ "9 csc (3x# 1)(3)œ "3 csc (3x# 1) Ê ywwœ ˆ 32‰(csc (3x1)†dxd csc (3x1)) csc (3x 1)( csc (3x 1) cot (3x 1) (3x 1)) 2 csc (3x 1) cot (3x 1)

œ 23dxd œ #

52. yœ9 tanˆ ‰x3 Ê ywœ9 secˆ #ˆ ‰x3 ‰ ˆ ‰3" œ3 sec#ˆ ‰x3 Ê ywwœ3 2 sec† ˆ ‰ ˆx3 secˆ ‰x3 tanˆ ‰x3 ‰ ˆ ‰3" œ2 sec#ˆ ‰x3 tanˆ ‰x3 53. g(x)œÈx Ê g (x)w œ #Èx" Ê g(1)œ1 and g (1)w œ "#; f(u)œu& Ê1 f (u)w œ5u % Ê f (g(1))w œf (1)w œ5;

therefore, (f‰g) (1)w œf (g(1)) g (1)ww œ5†"# œ #5

54. g(x)œ(1x)" Ê g (x)w œ (1 x)#( 1) œ (1 x)" # Ê g( 1) œ "# and g ( 1)w œ "4; f(u)œ 1 "u f (u) f (g( 1)) f 4; therefore, (f g) ( 1) f (g( 1))g ( 1) 4 1

Ê w œ u"# Ê w œ wˆ ‰"# œ ‰ w œ w w œ †"4 œ

55. g(x)œ5Èx Ê g (x)w œ Ê g(1)œ5 and g (1)w œ ; f(u)œcotˆ ‰ Ê f (u)w œ csc#ˆ ‰ ˆ ‰

#5 #5 u u

x 10 10 10

È 1 1 1

csc f (g(1)) f (5) csc ; therefore, (f g) (1) f (g(1))g (1)

œ 101 #ˆ ‰110u Ê w œ w œ 101 #ˆ ‰#1 œ 101w œ w w œ 101#5 = 14

56. g(x)œ1x Ê g (x)w œ1 Ê gˆ ‰"4 œ 41 and gwˆ ‰"4 œ1; f(u)œ u sec u # Ê f (u)w œ 1 2 sec u sec u tan u†

1 2 sec u tan u f g f 1 2 sec tan 5; therefore, (f g) f g g 5

œ # Ê wˆ ˆ ‰"4 ‰œ wˆ ‰41 œ # 14 41 œ ‰ wˆ ‰"4 œ wˆ ˆ ‰"4 ‰ ˆ ‰w "4 œ 1

57. g(x)œ10x# Êx 1 g (x)w œ20x Ê1 g(0)œ1 and g (0)w œ1; f(u)œu#2u1 Ê f (u)w œ u 1 (2)u 1(2u)(2u)

#

# #

a b a b

f (g(0)) f (1) 0; therefore, (f g) (0) f (g(0))g (0) 0 1 0 œ au2u##1b2# Ê w œ w œ ‰ w œ w w œ † œ

58. g(x)œ x"# Ê1 g (x)w œ x2$ Ê g( 1) œ0 and g ( 1)w œ2; f(u)œˆuu11# Ê f (u)w œ2ˆuu11dud ˆuu11

2 f (g( 1)) f (0) 4; therefore,

œ ˆuu11‰†(u1)(1)(u1)(u# 1)(1) œ 2(u(u1)(2)1)$ œ (u4(u1)1)$ Ê w œ w œ (f‰g) ( 1)w œf (g( 1))g ( 1)w w œ ( 4)(2)œ 8

59. (a) yœ2f(x) 2f (x) Ê dydxœ w Ê dydx¹ œ2f (2)w œ2ˆ ‰3" œ 32

x=2

(b) yœf(x)g(x) f (x)Ê dydxœ w g (x) w Ê dydx¹ œf (3)w g (3)w œ2 5

x=3 1

(c) yœf(x) g(x) f(x)g (x)† Ê dydxœ w g(x)f (x) w Ê dydx¹ œf(3)g (3)w g(3)f (3)w œ3 5† ( 4)(2 )œ158

x=3 1 1

(d) yœg(x)f(x) Ê dydx œg(x)f (x)w[g(x)]f(x)g (x)# w Ê dydx œ g(2)f (2)w[g(2)]f(2)g (2)# w œ (2) #(8)( 3) œ 376

"

¹ # x=2

ˆ ‰3

(e) yœf(g(x)) f (g(x))g (x) Ê dydx œ w w Ê dydx¹ œf (g(2))g (2)w w œf (2)( 3)w œ3"( 3) œ 1

x=2

(f) yœ(f(x))"Î# Ê dydx œ"#(f(x))"Î#†f (x)w œ #Èf (x)wf(x) Ê dydx¹ œ #Èf (2)wf(2)œ #ˆ ‰È"8 œ 6È"8 œ1#"È2 œÈ242

x=2

3

(g) yœ(g(x))# Ê dydx œ 2(g(x))$†g (x) w Ê dydx¹ œ 2(g(3))$ wg (3)œ 2( 4)$†5œ 35#

x=3

(h) yœa(f(x))#(g(x))#b"Î# Ê dydx œ"#a(f(x))#(g(x))#b"Î#a2f(x) f (x)† w 2g(x) g (x)† w b

Ê dydx¹ œ a(f(2)) (g(2)) b a2f(2)f (2)2g(2)g (2)bœ a8 2 b ˆ2 8 32 2 ( 3) ‰

x=2

" " "

# # # "Î# w w # # # "Î# † † † †

œ 3È517

60. (a) yœ5f(x)g(x) 5f (x)Ê dydx œ w g (x) w Ê dydx¹ œ5f (1)w g (1)w œ5ˆ3"‰ˆ38‰œ1

x=1

(b) yœf(x)(g(x)) f(x) 3(g(x)) g (x)$ Ê dydxœ a # w b(g(x)) f (x) $ w Ê dydx¹ œ $f(0)(g(0)) g (0)# w (g(0)) f (0)$ w

x=0

3(1)(1)œ #ˆ ‰"3 (1) (5)$ œ6

(c) yœg(x)f(x)1 Ê dydx œ(g(x)(g(x)1)f (x)w 1)f(x) g (x)# w Ê dydx¹ œ (g(1)(g(1)1)f (1)w 1)f(1)g (1)# w x=1

œ ( 4 " )ˆ( 4 1)"3 #(3)ˆ38œ1

(d) yœf(g(x)) f (g(x))g (x) Ê dydx œ w w Ê dydx¹ œf (g(0))g (0)w w œf (1)w ˆ ‰3" œ ˆ 3"‰ ˆ ‰3" œ 9"

x=0

(e) yœg(f(x)) g (f(x))f (x) Ê dydx œ w w Ê dydx¹ œg (f(0))f (0)w w œg (1)(5)w œ ˆ 38‰(5)œ 403

x=0

(f) yœax""f(x)b# Ê dydx œ 2 xa ""f(x)b$a11x"!f (x) w b Ê dydx¹ œ 2(1f(1))$a11f (1)w b

x=1

2(1œ 3)$ˆ11"3‰œ ˆ 42$‰ ˆ ‰323 œ "3

(g) yœf(xg(x)) f (xÊ dydxœ w g(x)) 1a g (x) w b Ê dydx¹ œf (0w g(0)) 1a g (0)w bœf (1) 1w ˆ 3"

x=0

œ ˆ "3‰ ˆ ‰34 œ 94

61. dsdt œ dsd)ddt): sœcos ) Ê dds) œ sin ) Ê dsd)¸)=3 œ sinˆ ‰31 œ1 so that dsdt œ dsd)ddt) œ1 5† œ5

21 #

62. dydt œ dydxdxdt: yœx#7x Ê5 dydxœ2x Ê7 dydx¹ œ9 so that dydt œ dydxdxdt œ9†3" œ3

x=1

63. With yœx, we should get dydxœ1 for both (a) and (b):

(a) yœ Êu5 7 dudyœ 5"; uœ5x35 Ê dudx œ5; therefore, dxdy œ dudydudx œ5" †5œ1, as expected (b) yœ 1 "u Ê dudyœ u"#; uœ(x1)" Ê dxdu œ (x 1)#(1)œ (x"1)#; therefore dxdyœ dudydxdu

(x 1) 1, again as expected œ "u#(x"1)# œa(x"1)" #b(x"1)# œ #(x"1)# œ

64. With yœx$Î#, we should get dydx œ#3x"Î# for both (a) and (b):

(a) yœu 3u ; $ Ê dyduœ # uœÈx Ê dxduœ #È"x; therefore, dydx œ dydudxdu œ3u##È"x œ3ˆÈx‰##È"x œ #3Èx, as expected.

(b) yœÈu Ê dyduœ ; uœx 3x ; Ê dxœ therefore, dydx œdydu dxœ 3x œ 3x œ x ,

u u

du du 3

x

" " "

# $ # # # # "Î#

# #

ÈÈÈ $

again as expected.

65. yœ2 tanˆ ‰14x Ê dxdyœˆ2 sec # 14x‰ ˆ ‰14 œ 1# sec# 14x

(a) dydx¹ sec ˆ ‰4 slope of tangent is 2; thus, y(1) 2 tanˆ ‰4 2 and y (1) tangent line is

x=1œ 1# # 1 œ1 Ê œ 1 œ w œ1 Ê

given by y œ2 1(x1) Ê yœ1x 2 1

(b) ywœ #1 sec#ˆ ‰14x and the smallest value the secant function can have in # x 2 is 1 Ê the minimum value of y is and that occurs when w #1 #1 œ1# sec#ˆ ‰14x Ê 1œsec#ˆ ‰14x Ê „ œ1 secˆ ‰14x Ê xœ0.

66. (a) yœsin 2x Ê ywœ2 cos 2x Ê y (0)w œ2 cos (0)œ2 Ê tangent to yœsin 2x at the origin is yœ2x;

yœ sinˆ ‰x# Ê ywœ #" cosˆ ‰x# Ê y (0)w œ #" cos 0œ Ê#" tangent to yœ sinˆ ‰x# at the origin is yœ "#x. The tangents are perpendicular to each other at the origin since the product of their slopes is

1.

(b) yœsin (mx) Ê ywœm cos (mx) Ê y (0)w œm cos 0œm; yœ sinˆ ‰mx Ê ywœ m" cosˆ ‰mx y (0) cos (0) . Since m 1, the tangent lines are perpendicular at the origin.

Ê w œ m" œ m" †ˆm"‰œ

(c) yœsin (mx) Ê ywœm cos (mx). The largest value cos (mx) can attain is 1 at xœ0 Ê the largest value y can attain is m because yw k k k kw œkm cos (mx)kœk k km cos mxkŸk km †1œk km . Also, yœ sinˆ ‰mx

y cos y cos cos the largest value y can attain is .

Ê wœ m" ˆ ‰mx Ê k kw œ¸"m ˆ ‰mx ¸Ÿ¸ ¸ ¸m" ˆ ‰mx ¸Ÿ k km" Ê w ¸ ¸m"

(d) yœsin (mx) Ê ywœm cos (mx) Ê y (0)w œm Ê slope of curve at the origin is m. Also, sin (mx) completes m periods on [0 2 ]. Therefore the slope of the curve yß 1 œsin (mx) at the origin is the same as the number of periods it completes on [0 2 ]. In particular, for large m, we can think of “compressing" the graph ofß 1 yœsin x horizontally which gives more periods completed on [0 2 ], but also increases the slope of theß 1 graph at the origin.

67. xœcos 2t, yœsin 2t, 0Ÿ Ÿt 1 68. xœcos (1t), yœsin (1t), 0Ÿ Ÿt 1

cos 2t sin 2t 1 x y 1 cos ( t) sin ( t) 1

Ê # # œ Ê # # œ Ê # 1 # 1 œ

x y 1, y

Ê # #œ   !

69. xœ4 cos t, yœ2 sin t, 0Ÿ Ÿt 2 1 70. xœ4 sin t, yœ5 cos t, 0Ÿ Ÿt 21

1 1 1 1

Ê 16 cos t16# 4 sin t4# œ Ê x16# y4# œ Ê 16 sin t16# 25 cos t25# œ Ê x16# #y5# œ

71. xœ3t, yœ9t , # _ _ Êt yœx # 72. xœ Èt , yœt, t 0 Ê xœ Èy or yœx , x# Ÿ0

73. xœ 2t 5, yœ _ _4t 7, t 74. xœ 3 3t, yœ2t, 0Ÿ Ÿt 1 Ê y# œt

x 5 2t 2(x 5) 4t x 3 3 2x 6 3y

Ê œ Ê œ Ê œ ˆ ‰y# Ê œ

y 2(x 5) 7 y 2x 3 y 2 x, x

Ê œ Ê œ Ê œ 23 ! Ÿ Ÿ $

75. xœt, yœÈ1t , 1# Ÿ Ÿt 0 76. xœÈt1, yœÈt, t 0

y 1 x y t x y 1, y 0

Ê œÈ # Ê # œ Ê œÈ #  

77. xœsec t# 1, yœtan t, 1# t 1# 78. xœ sec t, yœtan t, #1 t #1

sec t 1 tan t x y sec t tan t 1 x y 1

Ê # œ # Ê œ # Ê # # œ Ê # # œ

79. (a) xœa cos t, yœ a sin t, 0Ÿ Ÿt 2 1 80. (a) xœa sin t, yœb cos t, 1# Ÿ Ÿt 5#1 (b) xœa cos t, yœa sin t, 0Ÿ Ÿt 2 1 (b) xœa cos t, yœb sin t, 0Ÿ Ÿt 21 (c) xœa cos t, yœ a sin t, 0Ÿ Ÿt 4 1 (c) xœa sin t, yœb cos t, 1# Ÿ Ÿt 9#1 (d) xœa cos t, yœa sin t, 0Ÿ Ÿt 4 1 (d) xœa cos t, yœb sin t, 0Ÿ Ÿt 41

81. Using a"ß $b we create the parametric equations xœ " at and y œ $ bt, representing a line which goes through a"ß $b at tœ !. We determine a and b so that the line goes through a%ß "b when tœ ".

Since % œ " Ê œ &a a . Since " œ $ Ê œ %b b . Therefore, one possible parameterization is xœ " &t, y œ $ %t, 0Ÿ Ÿ "t .

82. Using a"ß $b we create the parametric equations xœ " at and y œ $ bt, representing a line which goes through at t . We determine a and b so that the line goes through when t . Since a a . a"ß $b œ ! a$ß #b œ " $ œ " Ê œ % Since # œ $ Ê œ &b b . Therefore, one possible parameterization is xœ " %t, y œ $ &t, 0Ÿ Ÿ "t . 83. The lower half of the parabola is given by xœy# " for yŸ !. Substituting t for y, we obtain one possible

parameterization xœ " œt# , y t, tŸ Þ0

84. The vertex of the parabola is at a"ß "b, so the left half of the parabola is given by yœx# #x for xŸ ". Substituting t for x, we obtain one possible parametrization: xœt, yœ #t# t, tŸ ".

85. For simplicity, we assume that x and y are linear functions of t and that the point x, y starts at a b a#ß $b for tœ ! and passes through a"ß "b at tœ ". Then xœf t , where fa b a b! œ # and fa b" œ ".

Since slopeœ??xt œ "#"! œ $ œ, x f ta bœ $ # œ # $t t. Also, yœg t , where ga b a b! œ $ and ga b" œ ". Since slopeœ??yt œ ""!3 œ 4. yœg ta bœ % $ œ $ %t t.

One possible parameterization is: xœ # $t, yœ $ %t, t  !.

86. For simplicity, we assume that x and y are linear functions of t and that the point x, y starts at a b a"ß #b for tœ ! and passes through a!ß !b at tœ ". Then xœf t , where fa b a b! œ " and fa b" œ !.

Since slopeœ??xt œ ! ""!a b œ " œ, x f ta bœ " " œ " t a b t. Also, yœg t , where ga b a b! œ # and ga b" œ !. Since slopeœ??yt œ ! #"! œ # œ. y g ta bœ # # œ # #t t.

One possible parameterization is: xœ " t, yœ # #t, t  !.

87. tœ 14 Ê xœ2 cos 14 œÈ2, yœ2 sin 14 œÈ2; dxdt œ 2 sin t, dydt œ2 cos t Ê dxdy œ dx/dtdy/dtœ 2 cos t2 sin tœ cot t

cot 1; tangent line is y 2 1 x 2 or y x 2 2 ; csc t Ê dy¹ œ œ È œ Š È ‹ œ È dy œ

dx 1 4 dt

4

1 w #

Ê d ydx## œdy /dtdx/dtw œ csc t2 sin t œ 2 sin t$ Ê d ydx## œ 2

#

" ¹ È

14

88. tœ 231 Ê xœcos 231 œ "#, yœÈ3 cos 231 œ È#3; dxdt œ sin t, dydt œ È3 sin t Ê dxdyœ Èsin t3 sin tœÈ3

3 ; tangent line is y 3 x or y 3 x; 0 0

Ê dydx¹ œÈ Š 3‹œÈ < ˆ ‰‘ œÈ dydt œ Ê d ydx œ sin t0 œ

231

È

# #" w #

#

Ê d ydx##¹ œ0

231

89. tœ 14 Ê xœ 14, yœ"#; dxdt œ1, dydt œ #"t Ê dxdyœ dx/dtdy/dtœ 21t Ê dxdy œ " œ1; tangent line is

È È ¹ #É

14 "4

y œ"# 1†ˆx"4‰or yœ x "4; dydtw œ "4t$Î# Ê dxd y## œdy /dtdx/dtw œ "4t$Î# Ê dxd y##¹ œ 2

14

90. tœ3 Ê xœ È3 œ 1 2, yœÈ3(3)œ3; dxdt œ (t1) , dydt œ3(3t) Ê dxdyœ (3t)

(t 1)

"

# "Î# # "Î#

ˆ ‰ ˆ

3# "Î#

"

# "Î#

2; tangent line is y 3 2[x ( 2)] or y 2x 1;

œ 3 t 1 œ œ 3 3 1 œ œ œ

3t dy

dx 3(3)

È È

È È

¹t 3œ

dy d y

dt 3t dx

3t (t 1) 3 t 1 (3t) 3 3

2t 3t t 1 t 3t

w #

# "Î# # "Î#

œÈ 3 È 3 œ È È Ê # œŠ œ È

Š

3 2t 3t t 1

1 2 t 1 È È

È b cb

Ê d ydx##¹ œ 3

t 3œ

"

91. tœ Ê1 xœ5, yœ1; dxdt œ4t, dydt œ4t $ Ê dxdyœ dx/dtdy/dt œ4t4t$ œt # Ê dxdy¹ œ ( 1)#œ1; tangent line is

tœ1

y œ1 1 (x† 5) or yœ x 4; dydtw œ2t Ê d ydx## œdy /dtdx/dtw œ 4t2t œ " Ê d ydx## œ "

# ¹ #

tœ1

92. tœ 13 Ê xœ 13 sin 13 œ 13 È#3, yœ 1 cos 13 œ œ1 #" #"; dxdt œ 1 cos t, dydt œsin t Ê dxdyœ dx/dtdy/dt 3 ; tangent line is y 3 x

œ 1 cos tsin t Ê dxdy¹ œ1 cossin œ œÈ œ#" È Š 3 #3

13

ˆ ‰ ˆ ‰

Š ˆ ‰

1 È

31 3

È3

#

"

#

1

y 3x 2;

Ê œÈ 1È3 œ œ Ê œ œ ˆ

3 dt (1 cos t) 1 cos t dx dx/dt 1 cos t

dyw (1 cos t)(cos t) (sin t)(sin t) 1 d y# dy /dtw

# #

1cos t1

œ (1cos t)1 # Ê dxd y# œ 4

# ¹

13

93. tœ 12 Ê xœcos 12 œ0, yœ 1 sin 12 œ2; dxdt œ sin t, dydt œcos t Ê dxdy œcos tsin t œ cot t

cot 0; tangent line is y 2; csc t csc t 1

Ê dydx¹ œ œ œ dydt œ Ê d ydx œ csc tsin t œ Ê d ydx ¹ œ

tœ12 tœ12

1# w # # $ #

# #

#

94. tœ 14 Ê xœsec#ˆ14‰ œ1 1, yœtanˆ14‰œ 1; dxdt œ2 sec t tan t, # dydt œsec t#

cot t cot ; tangent line is

Ê dydx œ 2 sec t tan t œ 2 tan t œ Ê dydx œ 4 œ

sec t#

# " " " "

# ¹ # ˆ ‰ #

14

1

y œ ( 1) "#(x1) or yœ "#x"#; dydt œ "# csc t # Ê d ydx œ2 sec t tan t œ "4 cot t$

csc t

w #

# #

"

# #

Ê d ydx##¹ œ4

14

"

95. sœA cos (2 bt) 1 Ê vœ dsdt œ A sin (2 bt)(2 b)1 1 œ 2 bA sin (2 bt). If we replace b with 2b to double the1 1 frequency, the velocity formula gives vœ 4 bA sin (4 bt) 1 1 Ê doubling the frequency causes the velocity to double. Also vœ #1bA sin (2 bt) 1 Ê œ a dvdt œ 41# #b A cos (2 bt). If we replace b with 2b in the1 acceleration formula, we get aœ 161# #b A cos (4 bt) 1 Ê doubling the frequency causes the acceleration to quadruple. Finally, aœ 41# #b A cos (2 bt) 1 Ê œ j dadt œ81$ $b A sin (2 bt). If we replace b with 2b in the jerk1 formula, we get jœ641$ $b A sin (4 bt) 1 Ê doubling the frequency multiplies the jerk by a factor of 8.

96. (a) yœ37 sin<36521 (x101)‘25 Ê ywœ37 cos<36521 (x101)‘ ˆ36521‰œ 743651 cos<36521 (x101) .‘ The temperature is increasing the fastest when y is as large as possible. The largest value ofw cos<36521 (x101) is 1 and occurs when ‘ 36521 (x101)œ0 Ê xœ101 Ê on day 101 of the year (µApril 11), the temperature is increasing the fastest.

(b) y (101)w œ743651 cos<36521 (101101)‘œ743651 cos (0)œ 743651 ¸0.64 °F/day

97. sœ " ( 4t)"Î# Ê vœ dsdt œ "#(14t)"Î#(4)œ2(14t)"Î# Ê v(6)œ " %2( †6)"Î#œ 25 m/sec;

vœ " 2( 4t)"Î# Ê aœdvdt œ "# †2(14t)$Î#(4)œ 4(14t)$Î# Ê a(6)œ 4(14 6)† $Î#œ 1 5#4 m/sec#

98. We need to show aœ dvdt is constant: aœdvdt œdvdsdsdt and dvds œ dsd ˆkÈs‰œ 2Èks Ê œ a dvdsdsdt œ dvds †v k s which is a constant.

œ 2Èks† È œk##

99. v proportional to È" v È for some constant k . Thus, a v

s s

k dv k dv dv ds dv

ds 2s dt ds dt ds

Ê œ Ê œ $Î# œ œ † œ † acceleration is a constant times so a is inversely proportional to s . œ 2sk$Î# ks œ k s Ê s

#

# #

È # ˆ ‰" " #

100. Let dxdt œf(x). Then, aœdvdt œdvdxdxdt œ dvdx†f(x)œ dxd ˆ ‰dxdt †f(x)œ dxd (f(x)) f(x)† œf (x)f(x), as required.w 101. Tœ21ÉLg Ê dTdL œ21 g œ œ . Therefore, dTdu œ dTdL dLdu œ kLœ œ 2 k1 ÉLg

g gL gL

k L

"" † † g "

#É É È È È #

È

L L

g g

1 1 1 1

, as required.

œ kT2

102. No. The chain rule says that when g is differentiable at 0 and f is differentiable at g(0), then f‰g is differentiable at 0. But the chain rule says nothing about what happens when g is not differentiable at 0 so there is no contradiction.

103. The graph of yœ ‰(f g)(x) has a horizontal tangent at xœ1 provided that (f‰g) (1)w œ0 Ê f (g(1))g (1)w w œ0 either f (g(1)) 0 or g (1) 0 (or both) either the graph of f has a horizontal tangent at u g(1), or the

Ê w œ w œ Ê œ

graph of g has a horizontal tangent at xœ1 (or both).

104. (f‰g) ( 5)w 0 Ê f (g( 5)) g ( 5)ww 0 Ê f (g( 5)) and g ( 5) are both nonzero and have opposite signs.w w That is, either f (g( 5))c w 0 and g ( 5)w 0 or f (g( 5))d c w 0 and g ( 5)w 0 .d

105. As h Ä 0, the graph of yœ sin 2(x h) sin 2x h

approaches the graph of yœ2 cos 2x because

lim (sin 2x) 2 cos 2x.

hÄ !

sin 2(x h) sin 2x

h dx

œ d œ

106. As h Ä 0, the graph of yœ cos (xc h)h#dcos xa b# approaches the graph of yœ 2x sin x becausea b#

lim cos x 2x sin x .

hÄ !

cos (x h) cos x

h dx

c #d a b# œ d c a b# dœ a b#

107. dxdt œcos t and dydt œ2 cos 2t Ê dxdy œdx/dtdy/dt œ2 cos 2tcos t œ 2 2 cos ta cos t# 1b; then dxdy œ0 Ê 2 2 cos ta cos t# 1b œ0

2 cos t 1 0 cos t t , , , . In the 1st quadrant: t x sin and

Ê # œ Ê œ „È"2 Ê œ 14 341 541 741 œ 41 Ê œ 41 œ È#2

yœsin 2ˆ ‰14 œ1 Ê ŠÈ#2ß1 is the point where the tangent line is horizontal. At the origin: x‹ œ0 and yœ0 sin t 0 t 0 or t and sin 2t 0 t 0, , , ; thus t 0 and t give the tangent lines at Ê œ Ê œ œ1 œ Ê œ 1# 1 3#1 œ œ1

the origin. Tangents at origin: dydx¹ 2 y 2x and dydx¹ 2 y 2x

t 0œ œ Ê œ tœ œ Ê œ

1

108. dxdt 2 cos 2t and dt 3 cos 3t dx dx/dt 3 cos 3t2 cos 2t 2 2 cos t 1

dy dy dy/dt 3(cos 2t cos t sin 2t sin t)

œ œ Ê œ œ œ a #b

œ 3 2 cos t 1 (cos t) 2 sin t cos t sin t œ œ

2 2 cos t 1 2 2 cos t 1 2 2 cos t

(3 cos t) 2 cos t 1 2 sin t (3 cos t) 4 cos t 3

ca b d

a b a b a b

a b a b

#

# # #

# # #

1 ; then

0 0 3 cos t 0 or 4 cos t 3 0: 3 cos t 0 t , and

dy

dx 2 2 cos t 1

(3 cos t) 4 cos t 3 3

œ Ê a a # # b b œ Ê œ œ œ Ê œ

# #1 #1

4 cos t# œ3 0 Ê cos tœ „È#3 Ê œ t 61, 561, 761, 1161. In the 1st quadrant: tœ 16 Ê xœsin 2ˆ ‰61 œ È#3 and yœsin 3ˆ ‰16 œ1 Ê ŠÈ#3ß1 is the point where the graph has a horizontal tangent. At the origin: x‹ œ0 and yœ0 Ê sin 2tœ0 and sin 3tœ0 Ê œ t 0, , , 1# 1 3#1 and tœ0, , 13 231, , 1 431, 531 Ê œ t 0 and tœ1 give the tangent lines at the origin. Tangents at the origin: dydx¹ 2 cos 03 cos 0 3 y 3x, and dydx¹

t 0œ œ œ # Ê œ # tœ

1

y x

œ 3 cos (3 )2 cos (2 )11 œ Ê3# œ 3#

109. From the power rule, with yœx"Î%, we get dydx œ"4x$Î%. From the chain rule, yœÉÈx

x x , in agreement.

Ê dydxœ dx œ œ4

x x

d

x

" " " "

# # # $Î%

ÉÈ † ˆÈ ‰ ÉÈÈ

110. From the power rule, with yœx$Î%, we get dydx œ43x"Î%. From the chain rule, yœÉ Èx x

x x x x x

Ê dydxœ dx Ê dydx œ œ œ

x x x x x x 4 x x

d 3

x

3 x

" " " "

#É È #É È #È #É È # É È

† ˆ È ‰ †Š † È ‹ †ˆ È ‰ È

x , in agreement.

œ 3 x œ

4 x x

3 4 È È ÉÈ

"Î%

111. (a)

(b) dfdt œ1.27324 sin 2t0.42444 sin 6t0.2546 sin 10t0.18186 sin 14t (c) The curve of yœdfdt approximates yœdgdt

the best when t is not 1, 1#, 0, , nor .1# 1

112. (a)

(b) dhdt œ2.5464 cos (2t)2.5464 cos (6t)2.5465 cos (10t)2.54646 cos (14t)2.54646 cos (18t) (c)

111-116. Example CAS commands:

: Maple

f := t -> 0.78540 - 0.63662*cos(2*t) - 0.07074*cos(6*t) - 0.02546*cos(10*t) - 0.01299*cos(14*t);

g := t -> piecewise( t<-Pi/2, t+Pi, t<0, -t, t<Pi/2, t, Pi-t );

plot( [f(t),g(t)], t=-Pi..Pi );

Df := D(f);

Dg := D(g);

plot( [Df(t),Dg(t)], t=-Pi..Pi );

: (functions, domains, and value for t0 may change):

Mathematica

To see the relationship between f[t] and f'[t] in 111 and h[t] in 112

Clear[t, f]

f[t_] = 0.785400.63662 Cos[2t]0.07074 Cos[6t]0.02546 Cos[10t]0.01299 Cos[14t]

f'[t]

Plot[{f[t], f'[t]},{t, 1 1, }]

For the parametric equations in 113 - 116, do the following. Do NOT use the colon when defining tanline.

Clear[x, y, t]

t0 = p/4;

x[t_]:=1 Cos[t]

y[t_]:=1Sin[t]

p1=ParametricPlot[{x[t], y[t]},{t, 1 1, }]

yp[t_]:=y'[t]/x'[t]

ypp[t_]:=yp'[t]/x'[t]

yp[t0]//N ypp[t0]//N

tanline[x_]=y[t0]yp[t0] (xx[t0]) p2=Plot[tanline[x], {x, 0, 1}]

Show[p1, p2]