• Tidak ada hasil yang ditemukan

LAMPIRAN-LAMPIRAN Regression ESTIMASI CFO

N/A
N/A
Protected

Academic year: 2024

Membagikan "LAMPIRAN-LAMPIRAN Regression ESTIMASI CFO"

Copied!
9
0
0

Teks penuh

(1)

49

LAMPIRAN-LAMPIRAN Regression ESTIMASI CFO

Variables Entered/Removeda Model Variables

Entered

Variables Removed

Method

1

Dsi_per_AT1_i, s1_per_AT1_i, Si_per_AT1_ib

. Enter

a. Dependent Variable: CFOi_per_AT1_i b. All requested variables entered.

Model Summaryb

Model R R Square Adjusted R

Square

Std. Error of the Estimate

1 ,284a ,080 ,059 ,13204

a. Predictors: (Constant), Dsi_per_AT1_i, s1_per_AT1_i, Si_per_AT1_i b. Dependent Variable: CFOi_per_AT1_i

ANOVAa

Model Sum of Squares df Mean Square F Sig.

1

Regression ,195 3 ,065 3,732 ,013b

Residual 2,232 128 ,017

Total 2,427 131

a. Dependent Variable: CFOi_per_AT1_i

b. Predictors: (Constant), Dsi_per_AT1_i, s1_per_AT1_i, Si_per_AT1_i

(2)

50

Coefficientsa

Model Unstandardized

Coefficients

Standardized Coefficients

t Sig.

B Std. Error Beta

1

(Constant) ,095 ,026 3,635 ,000

s1_per_AT1_i -16515,973 5330,557 -,263 -3,098 ,002

Si_per_AT1_i ,024 ,020 ,152 1,245 ,215

Dsi_per_AT1_i -,020 ,060 -,041 -,333 ,739

a. Dependent Variable: CFOi_per_AT1_i

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N

Predicted Value -,0543 ,1577 ,0974 ,03860 132

Residual -,33954 ,47161 ,00000 ,13052 132

Std. Predicted Value -3,932 1,561 ,000 1,000 132

Std. Residual -2,572 3,572 ,000 ,988 132

a. Dependent Variable: CFOi_per_AT1_i

Regression ESTIMASI DISEXP

Variables Entered/Removeda Model Variables

Entered

Variables Removed

Method

1 St1_i_per_At1_i,

s1_per_AT1_ib . Enter

a. Dependent Variable: DISEXPi_per_At1_i b. All requested variables entered.

(3)

51

Model Summaryb

Model R R Square Adjusted R

Square

Std. Error of the Estimate

1 ,225a ,051 ,036 ,20800

a. Predictors: (Constant), St1_i_per_At1_i, s1_per_AT1_i b. Dependent Variable: DISEXPi_per_At1_i

ANOVAa

Model Sum of Squares df Mean Square F Sig.

1

Regression ,299 2 ,149 3,451 ,035b

Residual 5,581 129 ,043

Total 5,880 131

a. Dependent Variable: DISEXPi_per_At1_i

b. Predictors: (Constant), St1_i_per_At1_i, s1_per_AT1_i

Coefficientsa

Model Unstandardized

Coefficients

Standardized Coefficients

t Sig.

B Std. Error Beta

1

(Constant) ,135 ,041 3,289 ,001

s1_per_AT1_i 18504,933 8396,763 ,190 2,204 ,029

St1_i_per_At1_i ,034 ,027 ,109 1,264 ,208

a. Dependent Variable: DISEXPi_per_At1_i

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N

Predicted Value ,1484 ,4519 ,2120 ,04774 132

Residual -,33217 ,91758 ,00000 ,20641 132

Std. Predicted Value -1,332 5,024 ,000 1,000 132

Std. Residual -1,597 4,411 ,000 ,992 132

a. Dependent Variable: DISEXPi_per_At1_i

(4)

52

Regression ESTIMASI PROD

Variables Entered/Removeda Model Variables

Entered

Variables Removed

Method

1

DSt1_per_At1_i, s1_per_AT1_i, St1_i_per_At1_i, Dsi_per_AT1_ib

. Enter

a. Dependent Variable: PRODi_per_At1_i b. All requested variables entered.

Model Summaryb

Model R R Square Adjusted R

Square

Std. Error of the Estimate

1 ,916a ,839 ,834 ,33682

a. Predictors: (Constant), DSt1_per_At1_i, s1_per_AT1_i, St1_i_per_At1_i, Dsi_per_AT1_i

b. Dependent Variable: PRODi_per_At1_i

ANOVAa

Model Sum of Squares df Mean Square F Sig.

1

Regression 75,020 4 18,755 165,314 ,000b

Residual 14,408 127 ,113

Total 89,428 131

a. Dependent Variable: PRODi_per_At1_i

b. Predictors: (Constant), DSt1_per_At1_i, s1_per_AT1_i, St1_i_per_At1_i, Dsi_per_AT1_i

(5)

53

Coefficientsa

Model Unstandardized

Coefficients

Standardized Coefficients

t Sig.

B Std. Error Beta

1

(Constant) -,182 ,067 -2,712 ,008

s1_per_AT1_i 1635,759 13602,867 ,004 ,120 ,904

St1_i_per_At1_i ,857 ,050 ,704 17,000 ,000

Dsi_per_AT1_i 32,755 13,559 10,950 2,416 ,017

DSt1_per_At1_i -31,689 13,500 -10,632 -2,347 ,020 a. Dependent Variable: PRODi_per_At1_i

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N

Predicted Value -,0389 6,5514 1,1440 ,75675 132

Residual -1,79612 ,77708 ,00000 ,33164 132

Std. Predicted Value -1,563 7,146 ,000 1,000 132

Std. Residual -5,333 2,307 ,000 ,985 132

a. Dependent Variable: PRODi_per_At1_i

Regression

Variables Entered/Removeda Model Variables

Entered

Variables Removed

Method

1

MTB, LEV, ABN_DISEXP, SIZE,

ABN_CFO, ABN_PROD, ROAb

. Enter

a. Dependent Variable: ERC b. All requested variables entered.

(6)

54

Model Summaryb

Model R R Square Adjusted R

Square

Std. Error of the Estimate

Durbin-Watson

1 ,544a ,296 ,256 ,00181 2,158

a. Predictors: (Constant), MTB, LEV, ABN_DISEXP, SIZE, ABN_CFO, ABN_PROD, ROA b. Dependent Variable: ERC

ANOVAa

Model Sum of Squares df Mean Square F Sig.

1

Regression ,000 7 ,000 7,448 ,000b

Residual ,000 124 ,000

Total ,001 131

a. Dependent Variable: ERC

b. Predictors: (Constant), MTB, LEV, ABN_DISEXP, SIZE, ABN_CFO, ABN_PROD, ROA

Coefficientsa

Model Unstandardized

Coefficients

Standardized Coefficients

t Sig. Collinearity Statistics

B Std.

Error

Beta Tolerance VIF

1

(Constant) ,256 ,002 131,524 ,000

ABN_CFO ,002 ,002 ,115 ,963 ,338 ,395 2,535

ABN_DISEXP ,003 ,001 ,265 2,763 ,007 ,616 1,624

ABN_PROD ,002 ,001 ,337 2,750 ,007 ,378 2,642

SIZE ,000 ,000 -,305 -3,017 ,003 ,555 1,803

ROA ,016 ,003 ,859 4,637 ,000 ,165 6,046

LEV -,002 ,001 -,181 -2,024 ,045 ,710 1,409

MTB ,000 ,000 -,358 -2,409 ,017 ,257 3,892

a. Dependent Variable: ERC

(7)

55

Collinearity Diagnosticsa

Model Dimen sion

Eigen value

Condition Index

Variance Proportions (Const

ant) ABN_

CFO

ABN_DI SEXP

ABN_

PROD

SIZE ROA LEV MTB

1

1 4,210 1,000 ,00 ,00 ,00 ,00 ,00 ,00 ,00 ,01

2 2,098 1,417 ,00 ,05 ,05 ,06 ,00 ,00 ,00 ,00

3 ,932 2,125 ,00 ,11 ,40 ,01 ,00 ,00 ,00 ,00

4 ,339 3,526 ,00 ,15 ,40 ,66 ,00 ,00 ,00 ,02

5 ,257 4,050 ,00 ,46 ,00 ,00 ,00 ,02 ,01 ,23

6 ,100 6,476 ,00 ,09 ,03 ,07 ,01 ,05 ,78 ,01

7 ,060 8,343 ,01 ,05 ,03 ,02 ,00 ,76 ,06 ,71

8 ,003 36,271 ,99 ,10 ,09 ,17 ,99 ,16 ,14 ,01

a. Dependent Variable: ERC

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N

Predicted Value ,2483 ,2548 ,2508 ,00114 132

Std. Predicted Value -2,249 3,450 ,000 1,000 132

Standard Error of Predicted

Value ,000 ,001 ,000 ,000 132

Adjusted Predicted Value ,2481 ,2557 ,2509 ,00118 132

Residual -,00757 ,00550 ,00000 ,00176 132

Std. Residual -4,174 3,034 ,000 ,973 132

Stud. Residual -4,369 3,138 -,003 1,012 132

Deleted Residual -,00829 ,00588 -,00001 ,00191 132

Stud. Deleted Residual -4,731 3,258 -,004 1,036 132

Mahal. Distance 1,067 38,830 6,947 7,047 132

Cook's Distance ,000 ,228 ,011 ,031 132

Centered Leverage Value ,008 ,296 ,053 ,054 132

a. Dependent Variable: ERC

(8)

56

Charts

(9)

57

NPar Tests

One-Sample Kolmogorov-Smirnov Test

Unstandardized Residual

N 132

Normal Parametersa,b Mean 0E-7

Std. Deviation ,00176377

Most Extreme Differences

Absolute ,105

Positive ,103

Negative -,105

Kolmogorov-Smirnov Z 1,204

Asymp. Sig. (2-tailed) ,110

a. Test distribution is Normal.

b. Calculated from data.

Referensi

Dokumen terkait

Regression [DataSet1] D:\Hasil_SPSS\DataX1_X2_X3danZkeY_Langsung.sav Variables Entered/Removed b Model Variables Entered Variables Removed Method 1 Z_Kepuasakerja,

Hasil Uji Multikolinearitas Variables Entered/Removed Model Variables Entered Variables Removed Method 1 ROE1, DER1, PER1, EPS1 a. All requested

UJI AUTOKORELASI Variables Entered/Removed a Model Variables Entered Variables Removed Method 1 SQRPP, SQRNBD, SQRMVE b. All requested

Hasil Regresi Linier Berganda Variables Entered/Removed b Model Variables Entered Variables Removed Method 1 Pekerjaan, Pendidikan, Advertising, Public Relations,

Regression Variables Entered/Removed a Model Variables Entered Variables Removed Method. 1 per, der, roe,

Regression Variables Entered/Removed b Model Variables Entered Variables Removed Method 1 Ln_X4, Ln_X3, Ln_X2, Ln_X1 a.. All requested

Variables Entered/Removed a Model Variables

Dependent Variable: PV REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN.05 POUT.10 /NOORIGIN /DEPENDENT PV /METHOD=ENTER DPR STD LEV FIRM_SIZE