Pertanyaan :
1. Please calculate the internal forces using Moment Distribution and Slope – Deflection methods
2. Please draw BMD ,SFD
Diketahui :
4 digit nim terakhir a: 3
b: 0 = 10 c: 1 d: 5
Parameter Beban P1: 2 x 5 = 10 kN P2: 3 x 10 = 30 kN q1: 2 x 3 = 6 kN/m q2: 5 x 1 = 5 kN/m Mc: 7 x 5 = 35 kN.m MF: 6 x 1 = 6 kN.m
Jarak Vertikal A ke D = 4,5 m D ke F = 3,2 m B ke C = 4,5 m C ke G = 3,2 m
Jarak Horizontal E ke D = 10 m D ke C = 1 m F ke G = 1 m G ke H = 5 m
Metode Slope Deflection Penyelesaian :
Fix End Moment
• Batang ED MED = 10.10
8 = 12,5 kN.m MED = 10.10
8 = -12,5 kN.m
• Batang DC MDC = 5.6.12
192 = 0,156 kN.m MCD = 11.6.12
192 = -0,343 kN.m
• Batang FG MFG = 30.1
8 = 3,75 kN.m MGF = 30.1
8 = -3,75 kN.m
• Batang GH MGH = 5.25
12 = 10,416 kN.m MHG = 5.25
12 = -10,416 kN.m Persamaan Sudut
EI = 1200 kN.m2
• Batang AD MAD = 2.(3,2.1200)
4,5 . (θD) = 1700,667 θD …(1)
MDA = 2.(3,2.1200)
4,5 . (2θD) = 3413,333 θD …(2)
• Batang BC MBC = 2.(3,2.1200)
4,5 . (θC) = 1700,667 θC …(3)
MCB = 2.(3,2.1200)
4,5 . (2θC) = 3413,333 θC …(4)
• Batang DF MDF = 2.(2,.1200)
3,2 . (2θD + θF) = 3600 θD + 1800 θF …(5) MFD = 2.(2,.1200)
3,2 . (2θF + θD) = 3600 θF + 1800 θD …(6)
• Batang CG MCG = 2.(2,6.1200)
3,2 . (2θC + θG) = 3900 θC + 1950 θG …(7) MGC = 2.(2,6.1200)
3,2 . (2θG + θC) = 3900 θG + 1950 θC …(8)
• Batang ED MED = 2.(1,5.1200)
10 . (2θE + θD) + 5 = 720 θE + 360 θD + 12,5 ...(9) MDE = 2.(1,5.1200)
10 . (2θD + θE) – 5 = 720 θD + 360 θE - 12,5 ...(10)
• Batang DC MDC = 2.(1,8.1200)
1 . (2θD + θC) + 0,156 = 8640 θD + 4320 θC + 0,156 …(11) MCD = 2.(1,8.1200)
1 . (2θC + θD) - 0,343 = 8640 θC + 4320 θD - 0,343 …(12)
• Batang FG MFG = 2.(1,6.1200)
1 . (2θF + θG) + 3,75 = 7680 θF + 3840 θG + 3,75 …(13) MGF = 2.(1,6.1200)
1 . (2θG + θF) - 3,75 = 7680 θG + 3840 θF - 3,75 …(14)
• Batang GH MGH = 2.(1,5.1200)
5 . (2θG + θH) + 10,416 = 1440 θG + 720 θH + 10,416 …(15) MHG = 2.(1,5.1200)
5 . (2θH + θG) - 10,416 = 1440 θH + 720 θG - 10,416 …(16) Persamaan Momen
• ∑MC = 0
MCB + MCD + MCG = 0
3413,333 θC + 8640 θC + 4320 θD – 0,343 + 3900 θC + 1950 θG -35 = 0
15953,333 θC + 4320 θD + 1950 θG = 35 …(1)
• ∑MD = 0
MDA + MDE + MDF + MDC = 0
3413,333 θD + 720 θD + 360 θE – 5 + 3600 θD + 1800 θF + 8640 θD + 4320 θC + 0,156 = 0 16373,333 θD + 4320 θC + 360 θE + 1800 θF = 4,843 …(2)
• ∑ME = 0 MED = 0
720 θE + 360 θD + 12,5 = 0
720 θE + 360 θD = -12,5 …(3)
• ∑MF = 0
MFD + MFG = 0
3600 θF + 1800 θD + 7680 θF + 3840 θG + 3,75 + 6 = 0
11280 θF + 1800 θD + 3840 θG = -9,75 …(4)
• ∑MG = 0
MGC + MGF + MGH = 0
3900 θG + 1950 θC + 7680 θG + 3840 θF - 3,75 + 1440 θG + 720 θH + 10,416 = 0 13020 θG + 1950 θC + 3840 θF + 720 θH = -6,666 …(5)
• ∑MH = 0 MHG = 0
1440 θH + 720 θG – 10,416 = 0
1440 θH + 720 θG = 10,416 …(6)
Subsitusikan persamaan momen untuk mendapatkan sudut, dengan bantuan program excel hasil subsitusi yang di dapat ialah :
Step 1 : input persamaan momen menjadi matriks dengan ordo 6 x 6
Step 2 : Inverskan matriks 6 x 6
Step 3 : input hasil dari persamaan momen
Step 4 : lalu kalikan hasil dari persamaan momen dengan matriks invers dan didapatkan hasil berikut
θC = 0,00239 θD = -0,000136 θE = -0,00687 θF = -0.000443 θG = -0,00117 θH = 0,00782
Masukan sudut yang sudah di dapat ke persamaan sudut lalu kalikan 1. MAD = 1700,667 x (-0,000136) = -0,232
2. MDA = 3413,333 x (-0,000136) = -0,465 3. MBC = 1706,667 x (0,00239) = 4,088 4. MCB = 3413,333 x (0,002396) = 8,177
5. MDF = 3600 x (-0,000136) + 1800 x (-0,00044) = -1,288 6. MFD = 3600 x (-0,000443) + 1800 x (-0,00014) = -1,841 7. MCG = 3900 x (0,00239) + 1950 x (-0,00117) = 7,056 8. MGC = 3900 x (-0,00117) + 1950 x (0,00239) = 0,0988 9. MED = 720 x (-0,00687) + 360 x (-0,00014) + 5 = 0 10. MDE = 720 x (-0,000136) + 360 x (-0,00688) – 5 = -7,573 11. MDC = 8640 x (-0,000136) + 4320 x (0,00239) + 0,156 = 9,327 12. MCD = 8640 x (0,00239) + 4320 x (-0,00014) - 0,343 = 19,766 13. MFG = 7680 x (-0,00443) + 3840 x (-0.00117) + 3,75 = -4,158 14. MGF = 7680 x (-0,00117) + 3840 x (-0,00044) + (-3,75) =-14,457 15. MGH = 1440 x (-0,00117) + 720 x (0,00782) + 10,416 = 14,358 16. MHG = 1440 x (0,00782) + 720 x (-0,00117) – 10,416 = 0 Cek Kontrol
• Titik A MAD = -0,232
• Titik B MBC = 4,088
• Titik C
MCB + MCG + MCG + MC = 0
8,177 + 7,056 + 19,765 – 35 = 0 (OK)
• Titik D
MDA + MDF + MDC + MDE = 0
-0,465 – 1,288 + 9,327 – 7,573 = 0 (OK)
• Titik E MED = 0
Metode Moment Distribution
• Titik F
MFG + MFD + MF = 0
-4,158 – 1,841 + 6 = 0 (OK)
• Titik G
MGF + MGH + MGC = 0
-14,457 + 14,358 + 0,0988 = 0
• Titik H MHG = 0
4 digit nim terakhir a: 3
b: 0 = 10 c: 1 d: 5
Parameter Beban P1: 2 x 5 = 10 kN P2: 3 x 10 = 30 kN q1: 2 x 3 = 6 kN/m q2: 5 x 1 = 5 kN/m Mc: 7 x 5 = 35 kN.m MF: 6 x 1 = 6 kN.m
Jarak Vertikal A ke D = 4,5 m D ke F = 3,2 m B ke C = 4,5 m C ke G = 3,2 m
Jarak Horizontal E ke D = 10 m D ke C = 1 m F ke G = 1 m G ke H = 5 m Diketahui :
Penyelesaian : Angka Kekakuan KAD = KDA = 4 𝑥 3,2 𝑥 1200
4,5 = 3413,333 KBC = KCB = 4 𝑥 3,2 𝑥 1200
4,5 = 3413,333 KDF = KFD = 4 𝑥 2,4 𝑥 1200
3,2 = 3600 KCG = KGC = 4 𝑥 2,6 𝑥 1200
3,2 = 3900 KDE = KED = 4 𝑥 1,5 𝑥 1200
10 = 720 KDC = KCD = 4 𝑥 1,8 𝑥 1200
1 = 8640 KFG = KGF = 4 𝑥 1,6 𝑥 1200
1 = 7680 KGH = KHG = 4 𝑥 1,5 𝑥 1200
5 = 1440
Faktor Distribusi Titik C
μCB = 3413,333
3413,333+8640+3900 = 0,214 μCD = 8640
3413,333+8640+3900 = 0,542 μCG = 3900
3413,333+8640+3900 = 0,244 Titik D
μDA = 3413,333
3413,333+720+8640+3600 = 0,21 μDC = 8640
3413,333+720+8640+3600 = 0,528 μDE = 720
3413,333+720+8640+3600 = 0,042 μDF = 3600
3413,333+720+8640+3600 = 0,22 Titik F
μFD = 3600
3600+7680 = 0,319 μFG = 7680
3600+7680 = 0,681 Titik G
μGC = 3900
3900+7680+1440 = 0,3 μGC = 7680
3900+7680+1440 = 0,59 μGC = 1440
3900+7680+1440 = 0,110 Fix End Moments
Batang DC MDC = 5 𝑥 6 𝑥 1
192 = 0,156 kN.m MCD = 11 𝑥 6𝑥 1
192 = -0,343kN.m Batang ED
MED = 10 𝑥 10
8 = 12,5 kN.m MDE = 10 𝑥 10
8 = -12,5 kN.m
Tabel Moment Distribution Batang FG
MFG = 30 𝑥 1
8 = 3,75 kN.m MGF = 30 𝑥 1
8 = -3,75 kN.m Batang GH
MGH = 5 𝑥 25
12 = 10,417 kN.m MHG = 5 𝑥 25
12 = -10,417 kN.m
Diagram Gaya Dalam (Menggunakan Aplikasi SAP 2000 & SW FEA 2D Frame) BMD
SFD
Batang AD FBD
Batang BC Batang FG
Batang DF Batang CG
Batang GH Batang ED
Batang DC