• Tidak ada hasil yang ditemukan

Skule Final Exam Cheat Sheet.pdf

N/A
N/A
Dominik Danda

Academic year: 2023

Membagikan " Skule Final Exam Cheat Sheet.pdf"

Copied!
2
0
0

Teks penuh

(1)

Formula Booklet MIE100 Final Exam | Revision 2.1 Apr 20, 2019 | 1

Velocity and acceleration Special cases Rectangular coordinates SUVAT equation (a const) Projectile motion

v =ds dt a =dv

dt= 𝑣𝑑𝑣 𝑑𝑠

(a = 0) 𝑠 = 𝑠0+ 𝑣0𝑡

𝑣2= 𝑣02+ 2 ∫ 𝑎(𝑠)

𝑠 𝑠0

𝑑𝑠

𝑟⃑ = 𝑥𝑖⃑ + 𝑦𝑗⃑ + 𝑧𝑘⃑⃑

𝑣⃑ = 𝑥̇𝑖⃑ + 𝑦̇𝑗⃑ + 𝑧̇𝑘⃑⃑

𝑎⃑ = 𝑥̈𝑖⃑ + 𝑦̈𝑗⃑ + 𝑧̈𝑘 ⃑⃑

|𝑣⃑| = √𝑥̇

2

+ 𝑦̇

2

+ 𝑧̇

2

v = v0+ a0t s = s0+ 𝑣0𝑡 +1

2𝑎0𝑡2 𝑣2= v02+ 2𝑎0(𝑠 − 𝑠0)

𝑠 =(𝑣 + 𝑣0)𝑡 2

𝑣0𝑥= 𝑣0cos 𝜃 𝑣0𝑦= v0sin 𝜃

𝑎𝑥= 0 𝑥 = 𝑥0+ 𝑣0𝑡

𝑎𝑦= 𝑎0𝑦 y = y0+ 𝑣0𝑦𝑡 +1

2𝑎0𝑦𝑡2 (const a) v = v0+ a0t

s = s0+ 𝑣0𝑡 +1 2𝑎0𝑡2 𝑣2= v02+ 2𝑎0(𝑠 − 𝑠0)

𝑣 = 𝑣0+ ∫ 𝑎(𝑡)0𝑡 𝑑𝑡 s = s0+ 𝑣0𝑡 +

∫ ∫ 𝑎(𝑡)0𝑡 0𝑡 𝑑𝑡𝑑𝑡

Normal-tangential system Cylindrical 𝐫 − 𝛉 system Circular motion Dependent motion

𝑣𝑛−𝑡

⃑⃑⃑⃑⃑⃑⃑⃑ = 𝑣𝑢⃑⃑⃑ 𝑡 𝑢𝑏

⃑⃑⃑⃑ = 𝑢⃑⃑⃑ × 𝑢𝑡 ⃑⃑⃑⃑ 𝑛

v =ds

dt

𝑎 = 𝑣̇𝑢⃑⃑⃑ + 𝑣𝜃̇𝑢𝑡 ⃑⃑⃑⃑ 𝑛

= 𝑣̇𝑢⃑⃑⃑ +𝑡 𝑣2

𝜌𝑢⃑⃑⃑⃑ 𝑛 ρ =(1+(

dy dx)2)

1.5

|𝑑2𝑦𝑑𝑥2|

𝑟⃑ = 𝑟𝑢⃑⃑⃑⃑⃑ 𝑟

𝑣⃑ = 𝑟̇𝑢⃑⃑⃑⃑⃑ + 𝑟𝜃̇𝑢𝑟 ⃑⃑⃑⃑⃑𝜃

𝑎⃑ = (𝑟̈ − 𝑟𝜃̇2)𝑢⃑⃑⃑⃑⃑ +𝑟

(2𝑟̇𝜃̇ + 𝑟𝜃̈)𝑢⃑⃑⃑⃑⃑𝜃 𝑢𝑟

⃑⃑⃑⃑⃑̇ = 𝜃̇𝑢⃑⃑⃑⃑⃑ 𝜃 𝑢𝜃

⃑⃑⃑⃑⃑̇ = −𝜃̇𝑢⃑⃑⃑⃑⃑𝑟

- Rope has constant length - Define good datum lines (fixed position)

- Find fixed length if possible - Divide the rope into sections if needed

LT= 𝑠𝐴+ 𝑠𝐵

Then 𝑣A+ 𝑣𝐵= 0 𝑎A+ 𝑎𝐵= 0 Relative motion Gravitational force Frictional force (oppose motion) Spring force Equilibrium (x-y-z) Equilibrium (n-t)

𝑟𝐵

⃑⃑⃑ = 𝑟⃑⃑⃑ + 𝑟𝐴 ⃑⃑⃑⃑⃑⃑⃑ 𝐵/𝐴 𝑣𝐵

⃑⃑⃑⃑ = 𝑣⃑⃑⃑⃑ + 𝑣𝐴 ⃑⃑⃑⃑⃑⃑⃑⃑ 𝐵/𝐴

𝑎𝐵

⃑⃑⃑⃑ = 𝑎⃑⃑⃑⃑ + 𝑎𝐴 ⃑⃑⃑⃑⃑⃑⃑⃑ 𝐵/𝐴

g⃑ = −9.81

𝑗

⃑ms−2 F = mg⃑

Static 𝐹𝑓𝑠𝑚𝑎𝑥=𝜇𝑠𝐹𝑁

Kinetic 𝐹𝑓𝑘=𝜇𝑘𝐹𝑁

Fs= −𝑘𝑥 k is spring constant x is deviation from rest

∑ 𝐹𝑥= 𝑚𝑎𝑥= 𝑚

𝑥

̈

∑ 𝐹𝑦= 𝑚𝑎𝑦= 𝑚

𝑦

̈

∑ 𝐹𝑧= 𝑚𝑎𝑧= 𝑚

𝑧

̈

∑ 𝐹𝑛= 𝑚𝑎𝑛= 𝑚𝑣𝜃̇

=mv2 𝜌

∑ 𝐹𝑡= 𝑚𝑎𝑡= 𝑚𝑣̇

Equilibrium (𝐫 − 𝛉) Work and motion Work by gravitational F Work by kinetic friction Work by spring Kinetic energy

∑ 𝐹𝑟= 𝑚𝑎𝑟= 𝑚 (𝑟̈ − 𝑟𝜃̇2)

∑ 𝐹𝜃= 𝑚𝑎𝜃= 𝑚 (2𝑟̇𝜃̇ + 𝑟𝜃̈)

dU = 𝐹 ∙ d𝑟 = 𝐹 cos 𝜃 𝑑𝑟 UP>P′= ∫ 𝑑𝑈𝑃𝑃′ =

∫ 𝐹 𝑃𝑃′ d𝑟 = ∫ 𝐹 cos 𝜃𝑃𝑃′ ds

Ug= −𝑊∆𝑦

= −𝑚𝑔(𝑦2− 𝑦1)

*Always negative

*Against motion> negative

Uf= −𝐹𝑓∆𝑥 Us= ∫ −𝑘𝑥

𝑥2 𝑥1

𝑑𝑥

= −1

2𝑘(𝑥22− 𝑥12)

T =1

2𝑚𝑣2 𝑇1+ 𝑈1>2= 𝑇2 1

2𝑚𝑖𝑣𝑖12+ ∫𝑠𝑖2𝐹⃑⃑⃑⃑ 𝑖𝑡 𝑠𝑖1 ds +

𝑠𝑖2𝑓⃑⃑⃑⃑ 𝑖𝑡

𝑠𝑖1 ds =1

2𝑚𝑖𝑣𝑖22 Internal force is zero Work done by force Potential energy Conservation of energy Linear momentum Elastic collision If particles connected

by inextensible cable

𝑠𝑖2𝑓⃑⃑⃑⃑ 𝑖𝑡

𝑠𝑖1 ds = 0

Ug= −𝑚𝑔∆𝑦 𝑈𝑠= −1

2𝑘(𝑠22− 𝑠12) Uf= −𝐹𝑓𝑘∆𝑠

Vg= 𝑚𝑔ℎ 𝑉𝑠=1

2𝑘𝑥2

T1+ 𝑉1+ 𝑈1>2= 𝑇2+ 𝑉2

If (𝐔𝟏>𝟐= 𝟎) T1+ 𝑉1= 𝑇2+ 𝑉2

L⃑ = mv⃑ m1vi1+ 𝑚2𝑣𝑖2

= 𝑚1𝑣𝑓1+ 𝑚2𝑣𝑓2

Inelastic collision Conservation of

momentum: Constant force

Conservation of momentum:

Avg force

Conservation of momentum:

∑ 𝑭 = 𝟎 || ∆𝐭 = 𝟎 Multiple particles Moment m1vi1+ 𝑚2𝑣𝑖2

= (𝑚1+ 𝑚2)𝑣𝑓 ∫ 𝐹

𝑡2 𝑡1

dt = 𝐹 ∆𝑡 ∫ 𝐹

𝑡2 𝑡1

dt = 𝐹⃑⃑⃑⃑⃑⃑⃑⃑ ∆𝑡𝑎𝑣𝑔 mv⃑⃑⃑ = mv1 ⃑⃑⃑ 2

L1

⃑⃑⃑ = L⃑⃑⃑⃑ 2 ∑ 𝑚𝑖( v⃑⃑⃑⃑⃑ ) + ∑ ∫ 𝐹𝑖1 𝑡2⃑⃑ 𝑖 𝑡1 dt =

∑ 𝑚𝑖( v⃑⃑⃑⃑⃑ ) 𝑖2

𝑀0

⃑⃑⃑⃑⃑ = 𝑟⃑⃑⃑ × 𝐹 0

Angular momentum Principle of angular momentum and impulse

Conservation of linear momentum

Rigid body motions Instantaneous centre of zero velocity

(Point where perpendicular vectors of velocities meet)

𝐻

0

⃑⃑⃑⃑ = 𝑟 ⃑⃑⃑ × 𝑚𝑣

0

|𝐻 ⃑⃑⃑⃑ | = 𝑟

0 0

𝑚𝑣 sin 𝜃

= 𝑟

0

𝑚𝑣

𝜃

H01

⃑⃑⃑⃑⃑⃑ + ∫ ∑ 𝜇𝑡𝑡2 ⃑⃑⃑⃑ 𝑑𝑡0 1 = H⃑⃑⃑⃑⃑⃑ 02

𝜇⃑⃑⃑⃑ =0 𝑑H⃑⃑⃑⃑⃑ 0

𝑑𝑡

∑ 𝐻01𝑖= ∑ 𝐻02𝑖 - Translation - Fixed rotation - General motion

Fixed rotation General motion Translation

Angular displacement θ⃑ Angular velocity 𝜔⃑⃑

Angular acceleration 𝛼 v𝑃

⃑⃑⃑⃑ = 𝜔⃑⃑ × 𝑟⃑ 𝑎𝑃

⃑⃑⃑⃑ = 𝜔⃑⃑ × 𝑣⃑⃑ + 𝛼 × 𝑟 If 𝛼 constant,

ω = ω0+ 𝛼𝑐𝑡 𝜃 = 𝜃0+ ω0𝑡 +1

2𝛼𝑐𝑡2 ω2= ω02+ 2𝛼𝑐𝜃

Decompose the motion Translation > rotation

ω =

𝑣𝐵−𝑣𝐴

𝑟𝐵/𝐴

vB

⃑⃑⃑⃑ = 𝑣⃑⃑⃑⃑ + 𝜔𝐴 ⃑⃑ × 𝑟⃑⃑⃑⃑⃑⃑⃑⃑ 𝐵/𝐴

𝑎

B

⃑⃑⃑⃑

= 𝑎 ⃑⃑⃑⃑ + 𝜔

𝐴

⃑⃑ × 𝑣 ⃑⃑⃑⃑⃑⃑⃑⃑⃑

𝐵/𝐴

+ 𝛼 × 𝑟 ⃑⃑⃑⃑⃑⃑⃑⃑

𝐵/𝐴

= 𝑎 ⃑⃑⃑⃑ − 𝜔

𝐴 2

𝑟 ⃑⃑⃑⃑⃑⃑⃑

𝐵/𝐴

+ 𝛼𝑟 ⃑⃑⃑⃑⃑⃑⃑⃑

𝐵/𝐴

|𝑎𝐵/𝐴𝑡| = 𝑟𝛼

|𝑎𝐵/𝐴𝑛| = 𝜔2𝑟

𝑟𝐵

⃑⃑⃑ = 𝑟⃑⃑⃑ + 𝑟𝐴 ⃑⃑⃑⃑⃑⃑⃑ 𝐵/𝐴

𝑣𝐵

⃑⃑⃑⃑ = 𝑣⃑⃑⃑⃑ 𝐴 𝑎⃑⃑⃑⃑ = 𝑎𝐵 ⃑⃑⃑⃑ 𝐴

Magnitude don’t change Direction don’t change

Force, Moment, Angular Momentum Parallel Axis Theorem Square moment of inertia Circle moment of inertia Donut moment of inertia 𝐹 = m𝑎⃑⃑⃑⃑ = ∑ 𝑚𝐺 𝑖 𝑖𝑎⃑⃑⃑ 𝑖

HA

⃑⃑⃑⃑⃑ = r⃑⃑⃑⃑⃑⃑⃑⃑ × mvp A

= 𝑟⃑⃑⃑⃑⃑⃑⃑ × 𝐿𝑝 𝐴 ⃑ 𝐻𝐺

⃑⃑⃑⃑⃑ ̇ = ∑ 𝑀⃑⃑⃑⃑⃑ 𝐺 (𝐻⃑⃑⃑⃑⃑ ̇ = ∑ 𝑀𝐺 ⃑⃑⃑⃑⃑ 𝐺 X)

∑ 𝐻 = 𝑤𝐼 H0= 𝑤𝐼𝑜 H𝐺= 𝑤𝐼𝐺

∑ 𝑀 = 𝐼𝛼 𝑀𝐺= 𝐼𝐺α 𝑀0= 𝐼0α (pinned at O) 𝑀𝐴= 𝐼𝐴α (rolling, no slip)

Ip= I𝐺+ 𝑚𝑑2 d – distance between P and G Moment of inertia can be added/subtracted

I𝐺= 1 12𝑚𝑙2 I𝐴=1

3𝑚𝑙2 G – centre of gravity A – end part of square

IG=1

2𝑚𝑅2 IG= 𝑚𝑘𝐺2 I =1

2𝜌𝑡𝜋𝑅4 𝑘𝐺= √𝐼𝐺

𝑚=𝑅

√2 𝑘𝐺− radius of gyration

IG=1 𝑅0 – outer radius 2 𝑅𝑖 – inner radius

IG=1

2𝜌𝑡𝜋(𝑅04− 𝑅𝑖4) m = 𝜌𝑡𝜋(𝑅02− 𝑅𝑖2)

Kinetic Energy (𝐓𝟏+ 𝑼𝟏→𝟐= 𝑻𝟐) Work by forces Conservation of energy

TBody=1

2𝐼𝐼𝐶𝑤2

=1

2𝑤2(𝐼𝐺+ 𝑚𝑑2)

T = Trotate+ 𝑇𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒

=1 2𝐼𝐺𝑤2+1

2𝑚𝑣𝐺2

Ug= −𝑚𝑔∆ℎ 𝑈𝑒= −1

2𝑘(𝑠22− 𝑠12)

𝑀⃑⃑ = 𝑟 × 𝐹 𝑈𝑀= 𝑀(𝜃2− 𝜃1)

T1+ 𝑉1+ U1→2

= 𝑇2+ 𝑉2 U1→2 – work of nonconservative F

T1+ 𝑉1

= 𝑇2+ 𝑉2 If no

nonconservative F

V = V𝑒+ 𝑉𝑔

V𝑒=1

2𝑘𝑠2 𝑉𝑔= 𝑚𝑔ℎ𝐺

Momentum, impulse and angular momentum Second order differential equations

𝐿⃑ = 𝑚𝑣 L1

⃑⃑⃑ + ∑ ∫ 𝐹𝑡2⃑⃑ 𝑖 𝑡1 dt = L⃑⃑⃑⃑ 2

H⃑⃑ = r × mv⃑ = Iw 𝑀⃑⃑ = 𝑟 × 𝐹 = 𝐼α 𝐻𝐺1

⃑⃑⃑⃑⃑⃑⃑ + ∑ ∫ 𝑀𝑡2⃑⃑⃑⃑⃑ 𝐺 𝑡1 dt = 𝐻⃑⃑⃑⃑⃑⃑⃑ 𝐺 2 𝐻𝑂1

⃑⃑⃑⃑⃑⃑⃑ + ∑ ∫ 𝑀𝑡2⃑⃑⃑⃑⃑ 𝑂 𝑡1 dt = 𝐻⃑⃑⃑⃑⃑⃑⃑ 𝑂2

∫ 𝐹 𝑑𝑡 = 0 → L⃑⃑⃑ = L1 ⃑⃑⃑⃑ 2

∫ Σ𝑀⃑⃑⃑⃑⃑ 𝑑𝑡 = 0 → 𝐻𝐺 ⃑⃑⃑⃑⃑⃑⃑ = 𝐻𝐺1 ⃑⃑⃑⃑⃑⃑⃑ 𝐺 2

∫ Σ𝑀⃑⃑⃑⃑⃑ 𝑑𝑡 = 0 → 𝐻𝑂 ⃑⃑⃑⃑⃑⃑⃑ = 𝐻𝑂1 ⃑⃑⃑⃑⃑⃑⃑ 𝑂2

m𝑥̈ + c𝑥̇ + 𝑘𝑥 = 0 𝑥 = 𝑒𝜆𝑡 𝑒𝜆𝑡(𝑚𝜆2+ 𝑐𝜆 + 𝑘)

= 0

𝜆 =−𝑐±√𝑐2−4𝑘𝑚

2𝑚

𝑐2− 4𝑘𝑚 > 0

|c| > √4𝑘𝑚 𝑥

= 𝐴𝑒𝜆1𝑡+ 𝐵𝑒𝜆2𝑡 2 real λs

𝑐2− 4𝑘𝑚 = 0

|c| = √4𝑘𝑚 𝑥

= (𝐴 + 𝐵𝑡)𝑒𝜆𝑡 one real λ

𝑐2− 4𝑘𝑚 < 0 2 complex λs

λ1= 𝑎 + 𝑏𝑖 λ2= 𝑎 − 𝑏𝑖 𝑥 = 𝐴𝑒𝑎𝑡𝑒𝑏𝑡𝑖+ 𝐵𝑒𝑎𝑡𝑒−𝑏𝑡𝑖

= 𝑒𝑎𝑡(𝛼𝑐𝑜𝑠𝑏𝑡 + 𝛽𝑠𝑖𝑛𝑏𝑡)

(2)

Formula Booklet MIE100 Final Exam | Revision 2.1 Apr 20, 2019 | 2 Undamped free vibration – spring motion (horizontal) Vertical spring Parallel / Series spring Undamped free vibration – pendulum motion

𝑥̈ +𝑘 𝑚x = 0 𝑥̈ + 𝑤𝑛2x = 0 wn= √𝑘

𝑚

x

= A sin 𝑤𝑛𝑡 + 𝐵 cos 𝑤𝑛𝑡

= 𝐶 sin(𝑤𝑛𝑡 + 𝜃) C = √𝐴2+ 𝐵2 𝜏 =2𝜋

𝑤𝑛=1

𝑓 𝜃 = tan−1 𝐵

𝐴 wn= 2𝜋𝑓

∑ 𝐹𝑦= 0

𝑚𝑔 − 𝑘(𝑙 − 𝑙0) = 0 𝛿𝑒𝑞= 𝑙 − 𝑙0

=𝑚𝑔

𝑘

Parallel Series −mg sin 𝜃 = 𝑚𝑎𝑡 𝑠 = 𝑙θ m𝑙𝜃̈ = −mg sin 𝜃

= −𝑚𝑔𝜃 𝜃̈ +𝑔

𝑙𝜃 = 0

wn= √𝑔 𝑙 𝜃̈ + 𝑤𝑛2𝜃 = 0 keq= ∑ 𝑘𝑖 𝑖

1 keq=

1

𝑘𝑖 𝑖 𝑥̈ +𝑘𝑒𝑞

𝑚x = 0

Bar pendulum Square pendulum Undamped forced vibration Damping coefficient

wn= √3𝑔

2𝑙 wn= √2√2𝑎3𝑔 w0 forcing frequency

𝛿0=𝐹0

𝑘 static deflection

𝑥̈ +𝑘 𝑚x =F0

msin 𝑤0𝑡 x = x𝑐+ x𝑝

x𝑐= 𝐴 sin 𝑤𝑛𝑡 + 𝐵 cos 𝑤𝑛𝑡 (Transient) x𝑝= C sin 𝑤0𝑡 (steady) x𝑝𝑚𝑎𝑥= C = 𝐹0

(𝑤𝑛2−𝑤02)𝑚=

𝐹0/𝑘 (1−(𝑤0

𝑤𝑛)2)= 𝛿0

(1−(𝑤0 𝑤𝑛)2)

M =𝑥𝑝𝑚𝑎𝑥 𝐹0/𝑘 = 1

1 − (𝑤0 𝑤𝑘)2 Magnification factor

Fd= −𝑐𝑥̇

(c is damping coefficient)

𝑐c= √𝑘

𝑚2𝑚 = 2𝑚𝑤𝑛 (critical damping coeff) Damping equation Overdamped (𝐜 > 𝐜𝐜) Critically damped (𝐜 = 𝐜𝐜) Underdamped (𝐜 < 𝐜𝐜) Electrical circuit analogy

m𝑥̈ + c𝑥̇ + 𝑘𝑥 = 0 𝑥 = 𝑒𝜆𝑡 𝑒𝜆𝑡(𝑚𝜆2+ 𝑐𝜆 + 𝑘) = 0

𝜆 =−𝑐±√𝑐2−4𝑘𝑚

2𝑚

𝑥 = 𝐴𝑒𝜆1𝑡+ 𝐵𝑒𝜆2𝑡

2 real, negative λs No vibration

(c 2m)

2

−𝑘 𝑚> 0

one real λ No vibration

𝑐c is smallest c which system won’t vibrate

(c 2m)

2

−𝑘 𝑚= 0 𝑥 = (𝐴 + 𝐵𝑡)𝑒𝜆𝑡

2 complex λs (c

2m)2𝑘

𝑚< 0 x = D [e2mc𝑡sin(𝑤𝑑𝑡 + 𝜃)]

𝑤𝑑= 𝑤𝑛√1 − (𝑐

𝑐𝑐)2 ln (𝑥1

𝑥2) = 2𝜋(

𝑐 𝑐𝑐)

√1−(𝑐 𝑐𝑐)2

𝜏𝑑=2𝜋

𝑤𝑑> 𝜏 x = x0e

c 2m𝑡

Mass <-> inductance Damp coeff. <-> resistance Spring con. <-> 1/capacitance Force <-> voltage Displacement <-> charge Velocity <-> current

Referensi

Dokumen terkait

Figure 4.6 Comparison of current, voltage charge and voltage battery For 2- step with temperature

Kus Prihantoso Faculty of Mathematics and Natural Sciences of YSU

As the current and a voltage are created by electric charges in our case to one electron as mass - charge it has allowed movement of electron on a trajectory - cycloid to present as the

In the event that this Agreement does not enter into force under paragraph 1 or 2, it shall enter into force 60 days after the date on which at least six of the original signatories,

a Galvanostatic charge and discharge voltage profiles of the cathode and anode half-cells at a current rate of 0.025 mA/cm2 b Galvanostatic charge and discharge voltage curves of the

•If there is a material medium between the plates , then the capacitance , the charge storage ability per unit voltage , increases by a factor of called as relative permittivity... What

Figure 21 Output voltage response to current pulses outside of the trench with different values of deposited charge for a Q1 and b Q2 without guard rings.. With Guard Rings

Marx charge cycle  During the charge cycle, the Marx charges a number of stages, 𝑁𝑁, each with capacitance 𝐶𝐶0 to a voltage 𝑉𝑉0, through a chain of charging resistors 𝑅𝑅... Marx