Formula Booklet MIE100 Final Exam | Revision 2.1 Apr 20, 2019 | 1
Velocity and acceleration Special cases Rectangular coordinates SUVAT equation (a const) Projectile motion
v =ds dt a =dv
dt= 𝑣𝑑𝑣 𝑑𝑠
(a = 0) 𝑠 = 𝑠0+ 𝑣0𝑡
𝑣2= 𝑣02+ 2 ∫ 𝑎(𝑠)
𝑠 𝑠0
𝑑𝑠
𝑟⃑ = 𝑥𝑖⃑ + 𝑦𝑗⃑ + 𝑧𝑘⃑⃑
𝑣⃑ = 𝑥̇𝑖⃑ + 𝑦̇𝑗⃑ + 𝑧̇𝑘⃑⃑
𝑎⃑ = 𝑥̈𝑖⃑ + 𝑦̈𝑗⃑ + 𝑧̈𝑘 ⃑⃑
|𝑣⃑| = √𝑥̇
2+ 𝑦̇
2+ 𝑧̇
2v = v0+ a0t s = s0+ 𝑣0𝑡 +1
2𝑎0𝑡2 𝑣2= v02+ 2𝑎0(𝑠 − 𝑠0)
𝑠 =(𝑣 + 𝑣0)𝑡 2
𝑣0𝑥= 𝑣0cos 𝜃 𝑣0𝑦= v0sin 𝜃
𝑎𝑥= 0 𝑥 = 𝑥0+ 𝑣0𝑡
𝑎𝑦= 𝑎0𝑦 y = y0+ 𝑣0𝑦𝑡 +1
2𝑎0𝑦𝑡2 (const a) v = v0+ a0t
s = s0+ 𝑣0𝑡 +1 2𝑎0𝑡2 𝑣2= v02+ 2𝑎0(𝑠 − 𝑠0)
𝑣 = 𝑣0+ ∫ 𝑎(𝑡)0𝑡 𝑑𝑡 s = s0+ 𝑣0𝑡 +
∫ ∫ 𝑎(𝑡)0𝑡 0𝑡 𝑑𝑡𝑑𝑡
Normal-tangential system Cylindrical 𝐫 − 𝛉 system Circular motion Dependent motion
𝑣𝑛−𝑡
⃑⃑⃑⃑⃑⃑⃑⃑ = 𝑣𝑢⃑⃑⃑ 𝑡 𝑢𝑏
⃑⃑⃑⃑ = 𝑢⃑⃑⃑ × 𝑢𝑡 ⃑⃑⃑⃑ 𝑛
v =ds
dt
𝑎 = 𝑣̇𝑢⃑⃑⃑ + 𝑣𝜃̇𝑢𝑡 ⃑⃑⃑⃑ 𝑛
= 𝑣̇𝑢⃑⃑⃑ +𝑡 𝑣2
𝜌𝑢⃑⃑⃑⃑ 𝑛 ρ =(1+(
dy dx)2)
1.5
|𝑑2𝑦𝑑𝑥2|
𝑟⃑ = 𝑟𝑢⃑⃑⃑⃑⃑ 𝑟
𝑣⃑ = 𝑟̇𝑢⃑⃑⃑⃑⃑ + 𝑟𝜃̇𝑢𝑟 ⃑⃑⃑⃑⃑𝜃
𝑎⃑ = (𝑟̈ − 𝑟𝜃̇2)𝑢⃑⃑⃑⃑⃑ +𝑟
(2𝑟̇𝜃̇ + 𝑟𝜃̈)𝑢⃑⃑⃑⃑⃑𝜃 𝑢𝑟
⃑⃑⃑⃑⃑̇ = 𝜃̇𝑢⃑⃑⃑⃑⃑ 𝜃 𝑢𝜃
⃑⃑⃑⃑⃑̇ = −𝜃̇𝑢⃑⃑⃑⃑⃑𝑟
- Rope has constant length - Define good datum lines (fixed position)
- Find fixed length if possible - Divide the rope into sections if needed
LT= 𝑠𝐴+ 𝑠𝐵
Then 𝑣A+ 𝑣𝐵= 0 𝑎A+ 𝑎𝐵= 0 Relative motion Gravitational force Frictional force (oppose motion) Spring force Equilibrium (x-y-z) Equilibrium (n-t)
𝑟𝐵
⃑⃑⃑ = 𝑟⃑⃑⃑ + 𝑟𝐴 ⃑⃑⃑⃑⃑⃑⃑ 𝐵/𝐴 𝑣𝐵
⃑⃑⃑⃑ = 𝑣⃑⃑⃑⃑ + 𝑣𝐴 ⃑⃑⃑⃑⃑⃑⃑⃑ 𝐵/𝐴
𝑎𝐵
⃑⃑⃑⃑ = 𝑎⃑⃑⃑⃑ + 𝑎𝐴 ⃑⃑⃑⃑⃑⃑⃑⃑ 𝐵/𝐴
g⃑ = −9.81
𝑗
⃑ms−2 F = mg⃑Static 𝐹𝑓𝑠𝑚𝑎𝑥=𝜇𝑠𝐹𝑁
Kinetic 𝐹𝑓𝑘=𝜇𝑘𝐹𝑁
Fs= −𝑘𝑥 k is spring constant x is deviation from rest
∑ 𝐹𝑥= 𝑚𝑎𝑥= 𝑚
𝑥
̈∑ 𝐹𝑦= 𝑚𝑎𝑦= 𝑚
𝑦
̈∑ 𝐹𝑧= 𝑚𝑎𝑧= 𝑚
𝑧
̈∑ 𝐹𝑛= 𝑚𝑎𝑛= 𝑚𝑣𝜃̇
=mv2 𝜌
∑ 𝐹𝑡= 𝑚𝑎𝑡= 𝑚𝑣̇
Equilibrium (𝐫 − 𝛉) Work and motion Work by gravitational F Work by kinetic friction Work by spring Kinetic energy
∑ 𝐹𝑟= 𝑚𝑎𝑟= 𝑚 (𝑟̈ − 𝑟𝜃̇2)
∑ 𝐹𝜃= 𝑚𝑎𝜃= 𝑚 (2𝑟̇𝜃̇ + 𝑟𝜃̈)
dU = 𝐹 ∙ d𝑟 = 𝐹 cos 𝜃 𝑑𝑟 UP>P′= ∫ 𝑑𝑈𝑃𝑃′ =
∫ 𝐹 𝑃𝑃′ d𝑟 = ∫ 𝐹 cos 𝜃𝑃𝑃′ ds
Ug= −𝑊∆𝑦
= −𝑚𝑔(𝑦2− 𝑦1)
*Always negative
*Against motion> negative
Uf= −𝐹𝑓∆𝑥 Us= ∫ −𝑘𝑥
𝑥2 𝑥1
𝑑𝑥
= −1
2𝑘(𝑥22− 𝑥12)
T =1
2𝑚𝑣2 𝑇1+ 𝑈1>2= 𝑇2 1
2𝑚𝑖𝑣𝑖12+ ∫𝑠𝑖2𝐹⃑⃑⃑⃑ 𝑖𝑡 𝑠𝑖1 ds +
∫𝑠𝑖2𝑓⃑⃑⃑⃑ 𝑖𝑡
𝑠𝑖1 ds =1
2𝑚𝑖𝑣𝑖22 Internal force is zero Work done by force Potential energy Conservation of energy Linear momentum Elastic collision If particles connected
by inextensible cable
∫𝑠𝑖2𝑓⃑⃑⃑⃑ 𝑖𝑡
𝑠𝑖1 ds = 0
Ug= −𝑚𝑔∆𝑦 𝑈𝑠= −1
2𝑘(𝑠22− 𝑠12) Uf= −𝐹𝑓𝑘∆𝑠
Vg= 𝑚𝑔ℎ 𝑉𝑠=1
2𝑘𝑥2
T1+ 𝑉1+ 𝑈1>2= 𝑇2+ 𝑉2
If (𝐔𝟏>𝟐= 𝟎) T1+ 𝑉1= 𝑇2+ 𝑉2
L⃑ = mv⃑ m1vi1+ 𝑚2𝑣𝑖2
= 𝑚1𝑣𝑓1+ 𝑚2𝑣𝑓2
Inelastic collision Conservation of
momentum: Constant force
Conservation of momentum:
Avg force
Conservation of momentum:
∑ 𝑭 = 𝟎 || ∆𝐭 = 𝟎 Multiple particles Moment m1vi1+ 𝑚2𝑣𝑖2
= (𝑚1+ 𝑚2)𝑣𝑓 ∫ 𝐹
𝑡2 𝑡1
dt = 𝐹 ∆𝑡 ∫ 𝐹
𝑡2 𝑡1
dt = 𝐹⃑⃑⃑⃑⃑⃑⃑⃑ ∆𝑡𝑎𝑣𝑔 mv⃑⃑⃑ = mv1 ⃑⃑⃑ 2
L1
⃑⃑⃑ = L⃑⃑⃑⃑ 2 ∑ 𝑚𝑖( v⃑⃑⃑⃑⃑ ) + ∑ ∫ 𝐹𝑖1 𝑡2⃑⃑ 𝑖 𝑡1 dt =
∑ 𝑚𝑖( v⃑⃑⃑⃑⃑ ) 𝑖2
𝑀0
⃑⃑⃑⃑⃑ = 𝑟⃑⃑⃑ × 𝐹 0
Angular momentum Principle of angular momentum and impulse
Conservation of linear momentum
Rigid body motions Instantaneous centre of zero velocity
(Point where perpendicular vectors of velocities meet)
𝐻
0⃑⃑⃑⃑ = 𝑟 ⃑⃑⃑ × 𝑚𝑣
0|𝐻 ⃑⃑⃑⃑ | = 𝑟
0 0𝑚𝑣 sin 𝜃
= 𝑟
0𝑚𝑣
𝜃H01
⃑⃑⃑⃑⃑⃑ + ∫ ∑ 𝜇𝑡𝑡2 ⃑⃑⃑⃑ 𝑑𝑡0 1 = H⃑⃑⃑⃑⃑⃑ 02
𝜇⃑⃑⃑⃑ =0 𝑑H⃑⃑⃑⃑⃑ 0
𝑑𝑡
∑ 𝐻01𝑖= ∑ 𝐻02𝑖 - Translation - Fixed rotation - General motion
Fixed rotation General motion Translation
Angular displacement θ⃑ Angular velocity 𝜔⃑⃑
Angular acceleration 𝛼 v𝑃
⃑⃑⃑⃑ = 𝜔⃑⃑ × 𝑟⃑ 𝑎𝑃
⃑⃑⃑⃑ = 𝜔⃑⃑ × 𝑣⃑⃑ + 𝛼 × 𝑟 If 𝛼 constant,
ω = ω0+ 𝛼𝑐𝑡 𝜃 = 𝜃0+ ω0𝑡 +1
2𝛼𝑐𝑡2 ω2= ω02+ 2𝛼𝑐𝜃
Decompose the motion Translation > rotation
ω =
𝑣𝐵−𝑣𝐴𝑟𝐵/𝐴
vB
⃑⃑⃑⃑ = 𝑣⃑⃑⃑⃑ + 𝜔𝐴 ⃑⃑ × 𝑟⃑⃑⃑⃑⃑⃑⃑⃑ 𝐵/𝐴
𝑎
B⃑⃑⃑⃑
= 𝑎 ⃑⃑⃑⃑ + 𝜔
𝐴⃑⃑ × 𝑣 ⃑⃑⃑⃑⃑⃑⃑⃑⃑
𝐵/𝐴+ 𝛼 × 𝑟 ⃑⃑⃑⃑⃑⃑⃑⃑
𝐵/𝐴= 𝑎 ⃑⃑⃑⃑ − 𝜔
𝐴 2𝑟 ⃑⃑⃑⃑⃑⃑⃑
𝐵/𝐴+ 𝛼𝑟 ⃑⃑⃑⃑⃑⃑⃑⃑
𝐵/𝐴|𝑎𝐵/𝐴𝑡| = 𝑟𝛼
|𝑎𝐵/𝐴𝑛| = 𝜔2𝑟
𝑟𝐵
⃑⃑⃑ = 𝑟⃑⃑⃑ + 𝑟𝐴 ⃑⃑⃑⃑⃑⃑⃑ 𝐵/𝐴
𝑣𝐵
⃑⃑⃑⃑ = 𝑣⃑⃑⃑⃑ 𝐴 𝑎⃑⃑⃑⃑ = 𝑎𝐵 ⃑⃑⃑⃑ 𝐴
Magnitude don’t change Direction don’t change
Force, Moment, Angular Momentum Parallel Axis Theorem Square moment of inertia Circle moment of inertia Donut moment of inertia 𝐹 = m𝑎⃑⃑⃑⃑ = ∑ 𝑚𝐺 𝑖 𝑖𝑎⃑⃑⃑ 𝑖
HA
⃑⃑⃑⃑⃑ = r⃑⃑⃑⃑⃑⃑⃑⃑ × mvp A⁄ ⃑
= 𝑟⃑⃑⃑⃑⃑⃑⃑ × 𝐿𝑝 𝐴⁄ ⃑ 𝐻𝐺
⃑⃑⃑⃑⃑ ̇ = ∑ 𝑀⃑⃑⃑⃑⃑ 𝐺 (𝐻⃑⃑⃑⃑⃑ ̇ = ∑ 𝑀𝐺 ⃑⃑⃑⃑⃑ 𝐺 X)
∑ 𝐻 = 𝑤𝐼 H0= 𝑤𝐼𝑜 H𝐺= 𝑤𝐼𝐺
∑ 𝑀 = 𝐼𝛼 𝑀𝐺= 𝐼𝐺α 𝑀0= 𝐼0α (pinned at O) 𝑀𝐴= 𝐼𝐴α (rolling, no slip)
Ip= I𝐺+ 𝑚𝑑2 d – distance between P and G Moment of inertia can be added/subtracted
I𝐺= 1 12𝑚𝑙2 I𝐴=1
3𝑚𝑙2 G – centre of gravity A – end part of square
IG=1
2𝑚𝑅2 IG= 𝑚𝑘𝐺2 I =1
2𝜌𝑡𝜋𝑅4 𝑘𝐺= √𝐼𝐺
𝑚=𝑅
√2 𝑘𝐺− radius of gyration
IG=1 𝑅0 – outer radius 2 𝑅𝑖 – inner radius
IG=1
2𝜌𝑡𝜋(𝑅04− 𝑅𝑖4) m = 𝜌𝑡𝜋(𝑅02− 𝑅𝑖2)
Kinetic Energy (𝐓𝟏+ 𝑼𝟏→𝟐= 𝑻𝟐) Work by forces Conservation of energy
TBody=1
2𝐼𝐼𝐶𝑤2
=1
2𝑤2(𝐼𝐺+ 𝑚𝑑2)
T = Trotate+ 𝑇𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒
=1 2𝐼𝐺𝑤2+1
2𝑚𝑣𝐺2
Ug= −𝑚𝑔∆ℎ 𝑈𝑒= −1
2𝑘(𝑠22− 𝑠12)
𝑀⃑⃑ = 𝑟 × 𝐹 𝑈𝑀= 𝑀(𝜃2− 𝜃1)
T1+ 𝑉1+ U1→2
= 𝑇2+ 𝑉2 U1→2 – work of nonconservative F
T1+ 𝑉1
= 𝑇2+ 𝑉2 If no
nonconservative F
V = V𝑒+ 𝑉𝑔
V𝑒=1
2𝑘𝑠2 𝑉𝑔= 𝑚𝑔ℎ𝐺
Momentum, impulse and angular momentum Second order differential equations
𝐿⃑ = 𝑚𝑣 L1
⃑⃑⃑ + ∑ ∫ 𝐹𝑡2⃑⃑ 𝑖 𝑡1 dt = L⃑⃑⃑⃑ 2
H⃑⃑ = r × mv⃑ = Iw 𝑀⃑⃑ = 𝑟 × 𝐹 = 𝐼α 𝐻𝐺1
⃑⃑⃑⃑⃑⃑⃑ + ∑ ∫ 𝑀𝑡2⃑⃑⃑⃑⃑ 𝐺 𝑡1 dt = 𝐻⃑⃑⃑⃑⃑⃑⃑ 𝐺 2 𝐻𝑂1
⃑⃑⃑⃑⃑⃑⃑ + ∑ ∫ 𝑀𝑡2⃑⃑⃑⃑⃑ 𝑂 𝑡1 dt = 𝐻⃑⃑⃑⃑⃑⃑⃑ 𝑂2
∫ 𝐹 𝑑𝑡 = 0 → L⃑⃑⃑ = L1 ⃑⃑⃑⃑ 2
∫ Σ𝑀⃑⃑⃑⃑⃑ 𝑑𝑡 = 0 → 𝐻𝐺 ⃑⃑⃑⃑⃑⃑⃑ = 𝐻𝐺1 ⃑⃑⃑⃑⃑⃑⃑ 𝐺 2
∫ Σ𝑀⃑⃑⃑⃑⃑ 𝑑𝑡 = 0 → 𝐻𝑂 ⃑⃑⃑⃑⃑⃑⃑ = 𝐻𝑂1 ⃑⃑⃑⃑⃑⃑⃑ 𝑂2
m𝑥̈ + c𝑥̇ + 𝑘𝑥 = 0 𝑥 = 𝑒𝜆𝑡 𝑒𝜆𝑡(𝑚𝜆2+ 𝑐𝜆 + 𝑘)
= 0
𝜆 =−𝑐±√𝑐2−4𝑘𝑚
2𝑚
𝑐2− 4𝑘𝑚 > 0
|c| > √4𝑘𝑚 𝑥
= 𝐴𝑒𝜆1𝑡+ 𝐵𝑒𝜆2𝑡 2 real λs
𝑐2− 4𝑘𝑚 = 0
|c| = √4𝑘𝑚 𝑥
= (𝐴 + 𝐵𝑡)𝑒𝜆𝑡 one real λ
𝑐2− 4𝑘𝑚 < 0 2 complex λs
λ1= 𝑎 + 𝑏𝑖 λ2= 𝑎 − 𝑏𝑖 𝑥 = 𝐴𝑒𝑎𝑡𝑒𝑏𝑡𝑖+ 𝐵𝑒𝑎𝑡𝑒−𝑏𝑡𝑖
= 𝑒𝑎𝑡(𝛼𝑐𝑜𝑠𝑏𝑡 + 𝛽𝑠𝑖𝑛𝑏𝑡)
Formula Booklet MIE100 Final Exam | Revision 2.1 Apr 20, 2019 | 2 Undamped free vibration – spring motion (horizontal) Vertical spring Parallel / Series spring Undamped free vibration – pendulum motion
𝑥̈ +𝑘 𝑚x = 0 𝑥̈ + 𝑤𝑛2x = 0 wn= √𝑘
𝑚
x
= A sin 𝑤𝑛𝑡 + 𝐵 cos 𝑤𝑛𝑡
= 𝐶 sin(𝑤𝑛𝑡 + 𝜃) C = √𝐴2+ 𝐵2 𝜏 =2𝜋
𝑤𝑛=1
𝑓 𝜃 = tan−1 𝐵
𝐴 wn= 2𝜋𝑓
∑ 𝐹𝑦= 0
𝑚𝑔 − 𝑘(𝑙 − 𝑙0) = 0 𝛿𝑒𝑞= 𝑙 − 𝑙0
=𝑚𝑔
𝑘
Parallel Series −mg sin 𝜃 = 𝑚𝑎𝑡 𝑠 = 𝑙θ m𝑙𝜃̈ = −mg sin 𝜃
= −𝑚𝑔𝜃 𝜃̈ +𝑔
𝑙𝜃 = 0
wn= √𝑔 𝑙 𝜃̈ + 𝑤𝑛2𝜃 = 0 keq= ∑ 𝑘𝑖 𝑖
1 keq=
∑ 1
𝑘𝑖 𝑖 𝑥̈ +𝑘𝑒𝑞
𝑚x = 0
Bar pendulum Square pendulum Undamped forced vibration Damping coefficient
wn= √3𝑔
2𝑙 wn= √2√2𝑎3𝑔 w0 forcing frequency
𝛿0=𝐹0
𝑘 static deflection
𝑥̈ +𝑘 𝑚x =F0
msin 𝑤0𝑡 x = x𝑐+ x𝑝
x𝑐= 𝐴 sin 𝑤𝑛𝑡 + 𝐵 cos 𝑤𝑛𝑡 (Transient) x𝑝= C sin 𝑤0𝑡 (steady) x𝑝𝑚𝑎𝑥= C = 𝐹0
(𝑤𝑛2−𝑤02)𝑚=
𝐹0/𝑘 (1−(𝑤0
𝑤𝑛)2)= 𝛿0
(1−(𝑤0 𝑤𝑛)2)
M =𝑥𝑝𝑚𝑎𝑥 𝐹0/𝑘 = 1
1 − (𝑤0 𝑤𝑘)2 Magnification factor
Fd= −𝑐𝑥̇
(c is damping coefficient)
𝑐c= √𝑘
𝑚2𝑚 = 2𝑚𝑤𝑛 (critical damping coeff) Damping equation Overdamped (𝐜 > 𝐜𝐜) Critically damped (𝐜 = 𝐜𝐜) Underdamped (𝐜 < 𝐜𝐜) Electrical circuit analogy
m𝑥̈ + c𝑥̇ + 𝑘𝑥 = 0 𝑥 = 𝑒𝜆𝑡 𝑒𝜆𝑡(𝑚𝜆2+ 𝑐𝜆 + 𝑘) = 0
𝜆 =−𝑐±√𝑐2−4𝑘𝑚
2𝑚
𝑥 = 𝐴𝑒𝜆1𝑡+ 𝐵𝑒𝜆2𝑡
2 real, negative λs No vibration
(c 2m)
2
−𝑘 𝑚> 0
one real λ No vibration
𝑐c is smallest c which system won’t vibrate
(c 2m)
2
−𝑘 𝑚= 0 𝑥 = (𝐴 + 𝐵𝑡)𝑒𝜆𝑡
2 complex λs (c
2m)2−𝑘
𝑚< 0 x = D [e−2mc𝑡sin(𝑤𝑑𝑡 + 𝜃)]
𝑤𝑑= 𝑤𝑛√1 − (𝑐
𝑐𝑐)2 ln (𝑥1
𝑥2) = 2𝜋(
𝑐 𝑐𝑐)
√1−(𝑐 𝑐𝑐)2
𝜏𝑑=2𝜋
𝑤𝑑> 𝜏 x = x0e
−c 2m𝑡
Mass <-> inductance Damp coeff. <-> resistance Spring con. <-> 1/capacitance Force <-> voltage Displacement <-> charge Velocity <-> current