• Tidak ada hasil yang ditemukan

Soal Akhir Semester Matematika Wajib

N/A
N/A
SMAN7 MUARO JAMBI

Academic year: 2024

Membagikan "Soal Akhir Semester Matematika Wajib"

Copied!
11
0
0

Teks penuh

(1)

PENILAIAN AKHIR SEMESTER GASAL TAHUN PELAJARAN 2021/2022

LEMBAR SOAL

MATA PELAJARAN : MATEMATIKA WAJIB

Program Keahlian : Hari, Tanggal : 20 November 2021

Kompetensi Keahlian : Waktu : 07.30 – 09.30

Kelas : X (Sepuluh)

PETUNJUK UMUM

1. Tulislah dahulu nama dan nomor peserta ujian pada kolom yang tersedia di dalam sudut kanan atas pada lembar jawaban yang disediakan.

2. Jumlah soal sebanyak 40 butir dan semuanya harus dijawab.

3. Laporkan kepada pengawas ujian kalau ada tulisan yang kurang jelas atau rusak.

4. Apabila ada jawaban yang anda anggap salah dan ingin memperbaikinya, caranya adalahcoret pada opsi yang telah dijawab, silahkan silang jawaban yang dianggap benar.

5. Perbaikan jawaban hanya diperbolehkan paling banyak 2 (dua) kali setiap soal.

PETUNJUK KHUSUS

Untuk soal no. 1 sampai dengan 40, pilih salah satu jawaban yang paling tepat dengan memberi tanda (X) pada huruf A, B, C, D atau E pada lembar jawaban yang disediakan !

A. Pilihlah Jawaban yang Paling Benar !

1. Manakah berikut ini yang merupakan definisi dari nilai mutlak….

A. |x|=

{

x jika x>0 x jika x<0 B. |x|=

{

x jika x>0

x jika x<0 C. |x|=

{

x jika x ≤x jika x ≥00 D. |x|=

{

x jika x ≥x jika x<00

E. |x|=

{

x jika x<x jika x ≥00 2. Diketahui f(x)=¿3x+9∨¿

Nilai dari ¿−3∨¿

f(4)× f(−1)+f(3)

¿

adalah ...

A. 125 B. 126 C. 127 D. 144 E. 145

3. Penyelesaian dari nilai mutlak

|

37−2

5

|

adalah….

A. −1

12

B. −1

35

C. 1

35

D. 1

12

(2)

E. 5 12

4. Suatu persegi panjang mempunyai ukuran panjang |3−5x|cm dan lebar 8 cm. Jika luas persegi panjang tersebut adalah 136 cm2, nilai x yang memenuhi adalah ...

A .

14 5 ,4

B. 14

5 ,−4

C. −14

5 ,4 D

.

−14 5 ,−4

E. 3

5,4

5. Suatu perusahan di bidang makanan merilis sebuah produk baru bernama “snacku”. Penjualan per minggu (dalam ribuan) dnyatakan dengan model p(t)=−2|t−10|+42 , t adalah waktu dalam minggu.

Jika produk itu baru saja dipasarkan selama 7 minggu, maka berapa total penjualan yang didapatkan….

A. 28.000 bungkus B. 30.000 bungkus C. 32.000 bungkus D. 34.000 bungkus E. 36.000 bungkus

6. Jika |2x+1|=5 , nilai x yang memenuhi adalah ...

A. ( −3,2¿ D. ( 3,2¿

B. ( −3,−2¿ E. ( 3,4¿

C. ( 3,−2¿

7. Nilai x yang memenuhi persamaan nilai mutlak |4+3x|=|−4| adalah….

A.

{

0,−83

}

B.

{

1,−83

}

C. {}

D. {0;1,5}

E. {0;2,5}

8. Himpunan penyelesaian dari

|

12x+6

|

9 adalah ….

A. {x ≥12atau x ≤6}

B. {x ≥12atau x ≤−6}

C. {x>12atau x<−6}

D. {x ≥−6atau x ≤30}

E. {x ≥6atau x ≤−30}

9. Himpunan penyelesaian dari pertidaksamaan nilai mutlak |3 – 2x| < 4 adalah….

A.

{

x

|

−12 <x<7 2

}

(3)

B.

{

x

|

−12 >x>7 2

}

C.

{

x

|

12<x<−7 2

}

D.

{

x

|

−12 <x<−7 2

}

E.

{

x

|

−12 >x>7 2

}

10. Jarak rumah Amel dan sekolah |3−2x|km . Jika jarak rumah Amel lebih dari 5 km dan kurang dari 7 km, nilai yang memenuhi adalah ...

A. −2<x←1 atau 4<x<5 B. 1<x<2 atau 4<x<5 C. −1<x<2 atau 4<x<5 D. −2<x←1 atau −4<x<5 E. −2<x<1 atau −4<x<5

11. Himpunan penyelesaian pertidaksamaan x−1

x+1<1 adalah….

A. {x∈R|x>0}

B. {x∈R|x>−1}

C. {x∈R|x←1}

D. {x∈R|x←1atau x>0}

E. {x∈R|x<0atau x>1}

12. Nilai x yang memenuhi pertidaksamaan 2x−7

x−1 <1 adalah ...

A. −1<x<6 B. 1<x<6 C. −6<x<1 D. −6<x←1 E. 6<x<10

13. Himpunan penyelesaian dari pertidaksamaan 3x

2−x<3 adalah….

A. x<2atau x>2 B. x<2atau x>6 C. 1<x<2 D. 1<x<6 E. x>2

14. Sebuah benda ditembakkan vertikal keatas dari tanah . Jika jarak d (dalam meter) diatas tanah setelah t sekon (hambatan diabaikan) dirumuskan d = 112t-16t2. Selang waktu saat benda berada pada ketinggian 160m atau lebih diatas tanah adalah ...

A. t ≤−2 atau t ≥5 B. t ≤2 atau t ≥−5 C. t ≤−5 atau t ≥2 D. t ≤2 atau t ≥5 E. t ≤−2 atau t ≥−5

15. Himpunan penyelesaian dari pertidaksamaan

2x−1<1 adalah….

A.

{

xR

|

12<x<1

}

B.

{

xR

|

−12 <x<1

}

(4)

C.

{

xR

|

x<12atau x>1

}

D.

{

xR

|

x12atau x>1

}

E.

{

xR

|

−12 >x>−1

}

16. Nilai x yang memenuhi pertidaksamaan

4x+8−

x−3<4 adalah ...

A. t ≤−2 atau t ≥5 B. t ≤2 atau x>31 9 C. −31

9 <x<7 D. 31

9 <x<7

E. t ≤−2 atau t ≥−5

17. Himpunan penyelesaian dari pertidaksamaan x

6−x ≥0 adalah….

A. {x∈R|x←3atau x ≥2}

B. {x∈R|x ≤−3atau2≤ x ≤6}

C. {x∈R|0≤ x ≤6}

D. {x∈R|2≤ x ≤6}

E. {x∈R|x ≤6}

18. Himpunan penyelesaian dari

x243−x adalah….

A.

{

xR

|

x ≤−2atau−2≤ x ≤136

}

B. {x∈R|x ≤−2atau2≤ x}

C.

{

xR

|

2≤ x ≤136

}

D.

{

xR

|

x ≤136

}

E.

{

xR

|

2≤ x ≤136

}

19. Agar bentuk

x+1 mempunyai nilai lebih kecil dari bentuk

x23x4 , nilai x yang memenuhi adalah ...

A. x<1atau x>5 B. x←1atau x>5 C. x←1atau x←5 D. −5<x<1 E. −5<x←1

20. Manakah pernyataan berikut yang bukan merupakan bentuk sistem persamaan linear tiga variabel….

A. x+2y+3z=14 2x−3y+3z=10

x−2y+z=15

B. a+2b−3c=12 – a−2b+3c=14

2a+4b−3c=10

C. 1

2 p+1 3q+1

4r=4 1

2p−2 3q+3

4r=8 1

6 p+1 3q+12

3 r=9

(5)

D. 1 2k+2

4l−1 3m=10 1

2a+2 4b−1

3c=12 1

3k+2 6l−1

3m=7

E. 3x+2y+3z=14 2x−3y+3z=10

6x−2y+z=15

21. Diketahui keliling sigitiga ABC 70cm. Panjang AC adalah 2 cm lebih dari panjang AB. Panjang BC adalah 6 cm kurang dari panjang AC. Jika x menyatakan panjang AB, y menyatakan panjang BC, dan z menyatakan panjang AC, SPLTV dari hubungan panjang sisi-sisi segitiga ABC adalah ...

A. x+z−4=0 B. xz−4=0 C. xy+4=0 D. x+y−4=0 E. xy−4=0

22. Toko alat tulis “JAYA ABADI” menyediakan buku tulis, bolpoin, dan spidol. Catatan banyaknya alat tulis yang terjual dan nilai jualnya selama 3 hari disajikan dalam tabel berikut.

Hari ke-

Buku tulis

Bolpoi

n Spidol Nilai Jual

1 12 15 30 114.00

0

2 10 12 36 113.00

0

3 18 20 24 128.00

0 Bentuk SPLTV dari tabel tersebut adalah ...

A. 5x−6y+18z=56500 4x+5y+10z=38000 9x+10y−12z=64000 B. 5x+6y+18z=38000

4x+5y+10z=56500 9x+10y+12z=64000 C. 5x+6y+18z=38000

4x+5y+10z=64000 9x+10y+12z=56500 D. 5x+6y+18z=56500

4x+5y+10z=64000 9x+10y+12z=38000 E. 5x−6y+18z=56500

4x+5y+10z=38000 9x+10y−12z=64000

23. Ali, Badar, dan Carli berbelanja di sebuah toko buku. Ali membeli dua buah buku tulis, sebuah pensil, dan sebuah penghapus. Ali harus membayar Rp4.700. Badar membeli sebuah buku tulis, dua buah pensil, dan sebuah penghapus. Badar harus membayar Rp4.300. Carli membeli tiga buah buku tulis, dua buah pensil, dan sebuah penghapus. Carli harus membayar Rp7.100. Pemodelan matematika dari permasalahan tersebut adalah….

A. 2x+y+z=4.700 x+2y+z=4.300

3x+2y+z=7.100

B. 2x+y+z=4.300 x+2y+z=4.700

3x+2y+z=7.100

C. x+y+z=4.700 x+2y+z=4.300

(6)

x+2y+z=7.100

D. 2x+y+z=4.700 3x+y+z=4.300

3x+y+z=7.100

E. 2x+y+z=4.700 2 x+2y+z=4.300

3x+y+z=7.100

24. Rama mempunyai kelereng merah, biru dan hijau. Perbandingan antara banyaknya kelereng merah dan biru adalah 3:4. Jumlah kelereng merah dan hijau adalah 21. Jika 2 kali banyaknya kelereng biru ditambah kelereng hijau sama dengan 37, banyaknya kelereng merah, biru dan hijau berturut-turut adalah ...

A. 9, 12dan13 B. 12, 9dan13 C. 12,13dan9 D. 8, 12dan13 E. 9, 13dan12

25. Yaumi, Zahroh dan Zaki berbelanja buah di Toko “JAGAT”. Yaumi membeli 2 kg jeruk, 1 kg apel dan 4 kg pir seharga Rp 112.000,00. Zahroh membeli 2 kg apel dan 1 kg pir seharga Rp 58.000,00. Zaki membeli 3 kg jeruk dan 2 kg pir seharga Rp 79.000,00. Buah yang paling mahal adalah ...

A. Jeruk B. Apel C. Pir

D. Apel dan Jeruk E. Jeruk dan Pir

26. Perhatikan grafik berikut !

y ≤2x2−2x−4 2y+3x>6

Daerah penyelesaian dari sistem pertidaksamaan diatas ditunjukkan oleh nomor ...

A. I, dan II B. I, II, dan IV C. II, III dan IV D. III saja

E. I, II, III, dan IV

27. Grafik yang sesuai dengan pertidaksamaan y ≥ x2+5x+4 adalah ...

A.

(7)

B.

C.

D.

E.

28. Bangun yang terbentuk dari sistem pertidaksamaan berikut adalah....

yx2+2x−1 x−2y ≥6 x ≤2 y ≥−3 A. Segitiga B. Persegi

C. Persegi panjang D. Trapesium E. Oval

29. Himpunan titik yang berada didaerah penyelesaian sistem pertidaksamaan y ≥ x2−4

(8)

y ≤ x2+4x adalah ...

A. (0,-3), (1,-1) dan (0,3) B. (0,-3), (1,-1) dan (-1,-1) C. (0,-3), (1,-1) dan (-2,0) D. (0,-3), (1,-1) dan (2,0) E. (0,-3), (-1,-1) dan (2,0)

30. Perhatikan himpunan pasangan berurutan dibawah ini : P={(0,0),(2,1),(4,2) (6,3)}

Q={(1,3),(2,3),(1,4)(2,4)}

R={(1,5),(2,5),(3,5) (4,5)} S={(5,1),(5,2),(4,1) (4,2) }

Dari himpunan diatas, yang merupakan pemetaan adalah ...

A. Semua B. S saja C. P, Q dan R D. Q dan S E. P dan R

31. Suatu fungsi f(x) = 2x – 4, dengan domain fungsi ={ 0,1,2,3,4,5,6), range dari fungsi tersebut adalah ...

A. {-8,-4,-2,0,2,4,6}

B. {-6,-4,-2,0,2,4,6}

C. {-4,-3,-2,0,2,4,6}

D. {-4,-2,0,2,4,6,8}

E. {-8,-4,-2,2,4,6}

32. Jika f (x)=

{

x22+1x−1,untuk, untuk x yang lain0<x<1

Maka nilai dari f (2). f(−4)+f

(

12

)

. f(3) adalah ...

A. 87 B. 85 C. -85 D. -87 E. -90

33. Fungsi h pada himpunan bilangan real ditentukan oleh rumus h(x)=ax+b , dengan a dan b bilangan bulat. Jika h(−2)=−4 dan h(1)=5 , rumus dari fungsi h(x) adalah ...

A. h(x)=9x−14 B. h(x)=9x+14 C. h(x)=−9x+14 D. h(x)=−9x−14 E. h(x)=−9x+4 34. Perhatikan grafik berikut !

Persamaan garis yang sesuai dengan grafik diatas adalah ...

A. −3y+2x=6 B. 3y−2x=6 C. 3y+2x=6

(9)

D. 3y+2x=−6 E. 3y−2x=−6

35. Grafik yang sesuai dengan fungsi kuadrat f(x)=2x2−5x−3 adalah ....

A.

B.

C.

D.

E.

36. Titik-titik yang termuat pada fungsi kuadrat f(x)=x2−2x−8 adalah ...

A. (-2,0), (4,0) dan (1,-9) B. (2,0), (4,0) dan (1,-9) C. (-2,0), (-4,0) dan (1,-9) D. (-2,0), (4,0) dan (-1,-9)

(10)

E. (-2,0), (-4,0) dan (-1,-9)

37. Jika fungsi kuadrat dari f(x) dinyatakan dengan rumus f(x)=qx2rx+5 maka rumus untuk diskriminan fungsinya adalah ...

A. −r2−4q−5 B. −r2−4q+5 C. r2−4q+5 D. r2+4q+5 E. r2−4q−5

38. Titik optimum dari fungsi kuadrat f (x)=2x2+3x+5 adalah ...

A.

(

−34 ,31 8

)

B.

(

34,31 8

)

C.

(

−34 ,−31 8

)

D.

(

34,−31 8

)

E.

(

−34 ,0

)

39. Suatu fungsi kuadrat memiliki nilai minimum -2 untuk x = 3, sedangkan untuk x=0 nilai fungsi itu 16.

Fungsi kuadrat itu adalah ...

A. y=2x2+12x+16 B. y=2x2−12x−16 C. y=−2x2−12x+16 D. y=−2x2+12x+16 E. y=2x2−12x+16

40.Diketahui fungsi f(x)=x+5 dan g(x)=x2−16 Daerah asal yang memenuhi fungsi f(x) + g(x) adalah ….

A. {x|x=0} B. {x|x ≠0, x∈R} C. {x|x ≥0, x∈R} D. {x|x ≤0, x∈R} E. {x|x∈R}

(11)

KUNCI JAWABAN MATEMATIKA WAJIB KELAS X

1. E 2. B 3. C 4. C 5. E 6. A 7. A 8. E 9. A 10. A 11. B 12. B 13. C 14. D 15. A 16. D 17. D 18. E 19. B 20. D 21. E 22. E 23. A 24. A 25. B 26. C 27. A 28. A 29. D 30. E 31. D 32. B 33. C 34. C 35. B 36. A 37. C 38. A 39. E 40. E

Referensi

Dokumen terkait

Penelitian ini merupakan penelitian kualitatif dengan focus penelitiannya adalah aspek kognitif yang terdapat pada soal ujian akhir semester matematika siswa kelas VIII

Soal Ujian Akhir Semester 2 Rumah Qur’an Ibnu Mas’ud plus tahun pelajaran 2021/2022 Mata pelajaran : Hadits Berilah tanda v pada pernyataan yang benar dan tanda xpada pernyataan yang

Kumpulan soal ujian semester mata pelajaran sains untuk tahun ajaran

Hasil penelitian menunjukkan bahwa kualitas soal penilaian akhir semester gasal mata pelajaran biologi kelas X tahun ajaran 2022/2023 dengan persentase sebesar 42,5% HOTs deskripsikan

KEMENTERIAN AGAMA REPUBLIK INDONESIA MADRASAH IBTIDAIYAH NEGERI MIN 1 TANGGAMUS LEMBAR SOAL UJIAN PENILAIAN TENGAH SEMESTER PTS GENAP TAHUN PELAJARAN 2022/2023 Mata Pelajaran :

KEMENTERIAN AGAMA REPUBLIK INDONESIA MADRASAH IBTIDAIYAH NEGERI MIN 1 TANGGAMUS LEMBAR SOAL UJIAN PENILAIAN TENGAH SEMESTER PTS GENAP TAHUN PELAJARAN 2022/2023 Mata Pelajaran :

Soal matematika ujian semester akhir (SAS) untuk siswa kelas 1 (satu) sekolah dasar

Soal-soal ujian untuk mata pelajaran Matematika, Bahasa Indonesia, dan