• Tidak ada hasil yang ditemukan

[1] S. Ahmad. Pseudospectra of Matrix pencils and their Applications in Pertur- bation Analysis of Eigenvalues and Eigendecompositions. PhD thesis, Indian Institute of Technology Guwahati, 2007.

[2] R. Alam and S. Bora. On stable eigendecompositions of matrices. SIAM J.

Matrix Anal. Appl., 26(3):830–848, 2005.

[3] R. Alam, S. Bora, M. Karow, V. Mehrmann, and J. Moro. Perturbation theory for Hamiltonian matrices and the distance to bounded-realness. SIAM J. Matrix Anal. Appl., 32(2):484–514, 2011.

[4] A. Berman and R. Plemmons. Nonnegative Matrices in the Mathematical Sci- ences, volume 9 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994. Revised reprint of the 1979 original.

[5] T. Betcke, N. Higham, V. Mehrmann, C. Schröder, and F. Tisseur. NLEVP:

a collection of nonlinear eigenvalue problems. ACM Trans. Math. Software, 39(2):Art. 7, 28, 2013.

[6] D. Bindel and A. Hood. Localization theorems for nonlinear eigenvalue problems.

SIAM J. Matrix Anal. Appl., 34(4):1728–1749, 2013.

[7] D. Bini, V. Noferini, and M. Sharify. Locating the eigenvalues of matrix poly- nomials. SIAM Journal on Matrix Analysis and Applications, 34(4):1708–1727, 2013.

[8] L. Boulton, P. Lancaster, and P. Psarrakos. On pseudospectra of matrix poly- nomials and their boundaries. Mathematics of Computation, 77(261):313–334, 2008.

[9] A. Brauer. Limits for the characteristic roots of a matrix. II. Duke Math. J., 14:21–26, 1947.

[10] R. Brualdi. Matrices, eigenvalues, and directed graphs. Linear and Multilinear Algebra, 11(2):143–165, 1982.

[11] R. Brualdi and D. Cvetković. A Combinatorial Approach to Matrix theory and its Applications. Discrete Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton, FL, 2009.

[12] T. Cameron. Spectral bounds for matrix polynomials with unitary coefficients.

Electronic Journal of Linear Algebra, 30:585–591, 2015.

[13] T. Cameron and P. Psarrakos. On Householder sets for matrix polynomials.

Linear Algebra Appl., 585:105–126, 2020.

[14] J. Demmel. The condition number of equivalence transformations that block diagonalize matrix pencils. SIAM J. Numer. Anal., 20(3):599–610, 1983.

[15] J. Demmel. Computing stable eigendecompositions of matrices. Linear Algebra Appl., 79:163–193, 1986.

[16] M. Embree and L. Trefethen. Generalizing eigenvalue theorems to pseudospectra theorems. volume 23, pages 583–590. 2001.

[17] D. Feingold and R. Varga. Block diagonally dominant matrices and general- izations of the Gerschgorin Circle Theorem. Pacific Journal of Mathematics, 12:1241–1250, 1962.

[18] M. Fiedler and V. Pták. Generalized norms of matrices and the location of the spectrum. Czechoslovak Math. J., 12(87):558–571, 1962.

[19] G. Freiling, V. Mehrmann, and H. Xu. Existence, uniqueness, and parametriza- tion of Lagrangian invariant subspaces.SIAM J. Matrix Anal. Appl., 23(4):1045–

1069, 2002.

[20] S. Gershgorin. Über die Abgrenzung der eigenwerte einer matrix. Izv. Akad.

Nauk SSSR, (6):749–754, 1931.

126 Bibliography [21] N. Gräbner, V. Mehrmann, S. Quraishi, C. Schröder, and U. Wagner. Numerical methods for parametric model reduction in the simulation of disk brake squeal.

ZAMM Z. Angew. Math. Mech., 96(12):1388–1405, 2016.

[22] L. Grammont and A. Largillier. On Ô-spectra and stability radii. J. Comput.

Appl. Math., 147(2):453–469, 2002.

[23] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex program- ming, version 2.1. http://cvxr.com/cvx, March 2014.

[24] M. Gu and M. Overton. An algorithm to compute Sepλ. SIAM J. Matrix Anal.

Appl., 28(2):348–359, 2006.

[25] W. Hager. Condition estimates. SIAM J. Sci. Statist. Comput., 5(2):311–316, 1984.

[26] N. Higham, D. Mackey, N. Mackey, and F. Tisseur. Symmetric linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl., 29(1):143–159, 2006.

[27] N. Higham and F. Tisseur. A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl., 21(4):1185–1201, 2000.

[28] N. Higham and F. Tisseur. Bounds for eigenvalues of matrix polynomials. Linear Algebra Appl., 358:5–22, 2003.

[29] R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press, Cam- bridge, 1985.

[30] R. Horn and C. Johnson.Topics in matrix analysis. Cambridge University Press, Cambridge, 1991.

[31] R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press, 2012.

[32] D. Johnson. Finding all the elementary circuits of a directed graph. SIAM J.

Comput., 4:77–84, 1975.

[33] M. Karow and D. Kressner. On a perturbation bound for invariant subspaces of matrices. SIAM J. Matrix Anal. Appl., 35(2):599–618, 2014.

[34] V. Kostić. On general principles of eigenvalue localizations via diagonal domi- nance. Adv. Comput. Math., 41(1):55–75, 2015.

[35] V. Kostić and L. Cvetković. On the inertia of the block H-matrices. Numer.

Linear Algebra Appl., 24(5):e2101–12, 2017.

[36] V. Kostić, L. Cvetković, and R. Varga. Geršgorin-type localizations of general- ized eigenvalues. Numer. Linear Algebra Appl., 16(11-12):883–898, 2009.

[37] V. Kostić and D. Gardašević. On the Geršgorin-type localizations for nonlinear eigenvalue problems. Applied Mathematics and Computation, 337:179–189, 2018.

[38] V. Kostić, A. Międlar, and L. Cvetković. An algorithm for computing minimal Geršgorin sets. Numer. Linear Algebra Appl., 23(2):272–290, 2016.

[39] V. Kostić, R. Varga, and L. Cvetković. Localization of generalized eigenvalues by Cartesian ovals. Numer. Linear Algebra Appl., 19(4):728–741, 2012.

[40] A. Krautstengl and R. Varga. Minimal Gerschgorin sets for partitioned matrices.

II. The spectral conjecture. Electron. Trans. Numer. Anal., 3(June):66–82, 1995.

[41] P. Lancaster. Lambda-Matrices and Vibrating Systems. International Series of Monographs in Pure and Applied Mathematics, volume 94. Pergamon Press, Oxford-New York-Paris, 1966.

[42] P. Lancaster. Quadratic eigenvalue problems.Linear Algebra Appl., 150:499–506, 1991.

[43] B. Levinger and R. Varga. Minimal Gerschgorin sets. II. Pacific J. Math., 17:199–210, 1966.

[44] D. Mackey. Structured Linearizations for Matrix Polynomials. PhD thesis, Uni- versity of Manchester, 2006.

[45] D. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Palindromic polynomial eigenvalue problems: good vibrations from good linearizations. SIAM J. Matrix Anal. Appl., 28(4):1029–1051, 2006.

[46] D. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Vector spaces of lineariza- tions for matrix polynomials. SIAM J. Matrix Anal. Appl., 28(4):971–1004, 2006.

[47] D. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Möbius transformations of matrix polynomials. Linear Algebra Appl., 470:120–184, 2015.

[48] V. Mehrmann. The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution, volume 163. Springer, 1991.

128 Bibliography [49] V. Mehrmann and H. Xu. Perturbation of purely imaginary eigenvalues of Hamil- tonian matrices under structured perturbations. Electronic Journal of Linear Algebra, 17:234–257, 2008.

[50] A. Melman. Generalization and variations of Pellet’s theorem for matrix poly- nomials. Linear Algebra and its Applications, 439(5):1550–1567, 2013.

[51] A. Melman. Bounds for eigenvalues of matrix polynomials with applications to scalar polynomials. Linear Algebra and its Applications, 504:190–203, 2016.

[52] C. Michailidou and P. Psarrakos. Gershgorin type sets for eigenvalues of matrix polynomials. Electronic Journal of Linear Algebra, 34:652–674, 2018.

[53] S. Milićević, V. Kostić, L. Cvetković, and A. Miedlar. An implicit algorithm for computing the minimal Geršgorin set. Filomat, 33(13):4229–4238, 2019.

[54] Y. Nakatsukasa. Gerschgorin’s theorem for generalized eigenvalue problems in the Euclidean metric. Math. Comp., 80(276):2127–2142, 2011.

[55] V. Noferini, M. Sharify, and F. Tisseur. Tropical roots as approximations to eigenvalues of matrix polynomials. SIAM J. Matrix Anal. Appl., 36(1):138–157, 2015.

[56] A. Ostrowski. On some metrical properties of operator matrices and matrices partitioned into blocks. J. Math. Anal. Appl., 2:161–209, 1961.

[57] C. Pester. Hamiltonian eigenvalue symmetry for quadratic operator eigenvalue problems. J. Integral Equations Appl., 17:71–89, 2005.

[58] A. Ran and L. Rodman. Stability of invariant maximal semidefinite subspaces.

I. Linear Algebra Appl., 62:51–86, 1984.

[59] A. Ran and L. Rodman. Stability of invariant Lagrangian subspaces I. In Topics in Operator Theory, volume 32 of Oper. Theory Adv. Appl., pages 181–

218. Birkhäuser, Basel, 1988.

[60] A. Ran and L. Rodman. Stability of invariant Lagrangian subspaces II. In The Gohberg anniversary collection, Vol. I (Calgary, AB, 1988), volume 40 of Oper.

Theory Adv. Appl., pages 391–425. Birkhäuser, Basel, 1989.

[61] N. Roy, M. Karow, S. Bora, and G. Armentia. Approximation of pseudospectra of block triangular matrices. Linear Algebra Appl., 623:398–419, 2021.

[62] G. Stewart. Error and perturbation bounds for subspaces associated with certain eigenvalue problems. SIAM Rev., 15:727–764, 1973.

[63] G. Stewart. Gerschgorin theory for the generalized eigenvalue problem Ax = λBx. Mathematics of Computation, 29(130):600–606, 1975.

[64] G. Stewart and J. Sun. Matrix Perturbation Theory. Computer Science and Scientific Computing. Academic Press, Inc., Boston, MA, 1990.

[65] J. Sun. A note on simple non-zero singular values. J. Comput. Math., 6(3):258–

266, 1988.

[66] R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2):146–160, 1972.

[67] F. Tisseur. Backward error and condition of polynomial eigenvalue problems.

Linear Algebra Appl., 309:339–361, 2000.

[68] F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem.SIAM Review, 43(2):235–286, 2001.

[69] L. Trefethen and M. Embree. Spectra And Pseudospectra : The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton, NJ, 2005.

[70] A. Van der Sluis. Gershgorin domains for partitioned matrices. Linear Algebra and its Applications, 26:265–280, 1979.

[71] J. Varah. On the separation of two matrices. SIAM J. Numer. Anal., 16(2):216–

222, 1979.

[72] R. Varga. Minimal Gerschgorin sets. Pacific J. Math., 15:719–729, 1965.

[73] R. Varga. Minimal Gerschgorin sets for partitioned matrices. SIAM J. Numer.

Anal., 7:493–507, 1970.

[74] R. Varga. Matrix Iterative Analysis, volume 27 of Springer Series in Computa- tional Mathematics. Springer-Verlag, Berlin, expanded edition, 2000.

[75] R. Varga. Geršgorin-type eigenvalue inclusion theorems and their sharpness.

Electron. Trans. Numer. Anal., 12:113–133, 2001.

[76] R. Varga. Geršgorin and His Circles, volume 36. Springer-Verlag, Berlin, 2004.