• Tidak ada hasil yang ditemukan

COL783: Digital Image Processing

N/A
N/A
Protected

Academic year: 2025

Membagikan "COL783: Digital Image Processing"

Copied!
26
0
0

Teks penuh

(1)

COL783: Digital Image Processing

Prem Kalra

[email protected]

h4p://www.cse.iitd.ac.in/~pkalra/col783

Department of Computer Science and Engineering

Indian InsEtute of Technology Delhi

(2)

Recap: Image Enhancement in Spatial Domain

Local Histogram Equaliza2on x

Local Neighborhood Intensity at x is changed considering

the local histogram in a neighborhood region

Averaging Filter: Simple, Weighted Average Gaussian

(Low Pass Filter)

Spa2al Filtering

(3)

Recap: Image Enhancement in Spatial Domain

Spa2al Filtering

Median Filter: Salt and Pepper Noise removal (Non Linear Filter)

Sharpening Filter: Enhance Details (High Pass Filter)

Gradient Filter: Roberts Prewi4

Sobel

High Boost Filter

(4)

Image Enhancement in Spatial Domain

Laplace Filter

In x direcEon second difference: f(x-1,y)-2f(x,y)+f(x+1,y) In y direcEon second difference: f(x,y-1)-2f(x,y)+f(x,y+1) The combined difference:

f(x-1,y)+f(x+1,y)+f(x-1,y)+f(x+1,y)-4f(x,y)

(5)

Image Enhancement in Spatial Domain

Laplace Filter

(6)

Image Enhancement in Spatial Domain

Image Subtrac2on Image Addi2on

g(x,y) = f(x,y) – h(x,y)

g(x,y) = f(x,y) + n(x,y) Uncorrelated

zero mean noise

(7)

Image Enhancement in Spatial Domain

Convolu2on

1D ConEnuous Domain

1/2 1

1

f(α) h(α)

1

(8)

Image Enhancement in Spatial Domain

Convolu2on

1D ConEnuous Domain

1/2 1 1

1

f(α) h(α)

h(-α) 1

-1

(9)

Image Enhancement in Spatial Domain

Convolu2on

1D ConEnuous Domain

1/2 1 1

1

f(α) h(α)

x

h(x-α) 1

-1

(10)

Image Enhancement in Spatial Domain

Convolu2on

1D ConEnuous Domain

f(α) 1

x h(x-α)

-1

f(α) 1

x h(x-α)

1 -1 f(α)* h(x-α)

1

1 1

2

1/2

(11)

Image Enhancement in Spatial Domain

0 0 0 0 1 0 0 0 0 0 1 2 3 4 5 5 4 3 2 1

0 0 0 0 1 0 0 0 0 0

1D Discrete Domain

Convolu2on

f(α) h(α)

h(-α)

Origin

(12)

Image Enhancement in Spatial Domain

0 0 0 0 1 0 0 0 0 0 1 2 3 4 5 5 4 3 2 1

0 0 0 0 1 0 0 0 0 0

1D Discrete Domain

Convolu2on

f(α) h(α)

h(x-α)

(13)

Image Enhancement in Spatial Domain

0 0 0 0 1 0 0 0 0 0 1 2 3 4 5 5 4 3 2 1

0 0 0 0 1 0 0 0 0 0

1D Discrete Domain

Convolu2on

f(α) h(α)

h(x-α)

(14)

Image Enhancement in Spatial Domain

0 0 0 0 1 0 0 0 0 0 1 2 3 4 5 5 4 3 2 1

0 0 0 0 1 0 0 0 0 0

1D Discrete Domain

Convolu2on

f(α) h(α)

h(x-α)

(15)

Image Enhancement in Spatial Domain

0 0 0 0 1 0 0 0 0 0 1 2 3 4 5 5 4 3 2 1

0 0 0 0 1 0 0 0 0 0

1D Discrete Domain

Convolu2on

f(α) h(α)

h(x-α)

(16)

Image Enhancement in Spatial Domain

0 0 0 0 1 0 0 0 0 0 1 2 3 4 5 5 4 3 2 1

0 0 0 0 1 2 3 4 5 0

1D Discrete Domain

Convolu2on

f(α) h(α)

h(x-α)

(17)

Image Enhancement in Spatial Domain

0 0 0 0 1 0 0 0 0 0 1 2 3 4 5 5 4 3 2 1

0 0 0 0 1 2 3 4 5 0 0

1D Discrete Domain

Convolu2on

f(α) h(α)

h(x-α)

(18)

Image Enhancement in Spatial Domain

0 0 0 0 1 0 0 0 0 0 1 2 3 4 5 5 4 3 2 1

0 0 0 0 1 2 3 4 5 0 0 0 0 0 0

1D Discrete Domain

Convolu2on

f(α) h(α)

h(x-α)

Result

(19)

Image Enhancement in Spatial Domain

Convolu2on

(20)

Halftoning

(21)

Halftoning

(22)

Halftoning

(23)

Halftoning

(24)

Halftoning

Floyed Steinberg Method

(25)

Halftoning

Floyed Steinberg Method

(26)

Referensi

Dokumen terkait

Dari sebuah histogram dapat diketahui frekuensi kemunculan nisbi (relative) dari intensitas pada citra tersebut (Munir, 2004). Penelitian ini diharapkan dapat memberikan solusi

The size, orientation, and eccentricity (ratio of major to minor area) of these ellipses vary throughout the color space. It is related to the X, Y, Z system via

Teknik yang dapat digunakan untuk Edge Linking adalah local processing , yaitu dengan menganalisa karakteristik pixel-pixel di dalam suatu tetangga (3 x 3 atau 5 x 5)

Salt and pepper noise, Gaussian noise and speckle noise can all be cleaned by using spatial filtering techniques.. Periodic noise, however, requires the use of frequency

This project work is on Spatial Domain Image Watermarking using FPGA and Spintronic logic and applications of single spin logic where the spin of electron is used in addition to its

"Intensity average value of image segmentation for infrared image of environmental condition", 2015 2nd International Conference on Information Technology, Computer, and Electrical

2 Convert the gray image to an edge image.3 Compute the horizontal and vertical projection profiles of candidate text regions using a histogram with an appropriate threshold value.4 Use

Making sense of the content of the page may be viewed as being in the domain of image analysis and even computer vision, depending on the level of complexity implied by the statement