• Tidak ada hasil yang ditemukan

Contents

N/A
N/A
Protected

Academic year: 2024

Membagikan "Contents"

Copied!
5
0
0

Teks penuh

(1)

Certificate of approval . . . i

Certificate . . . iii

Declaration . . . v

Curriculum vita . . . vii

Acknowledgements . . . ix

Contents . . . xi

List of figures . . . xvi

List of tables . . . xxiii

Nomenclature . . . xxiv

Abstract . . . xxxi

1 Introduction and Literature Review 1 1.1 Introduction to jet . . . 2

1.2 Applications of jets . . . 4

1.3 Literature review . . . 4

1.3.1 Literature related to turbulent offset jet and wall jet flows in the quiescent medium . . . 4

1.3.2 Literature related to turbulent offset jet and wall jet flows in an external stream . . . 8

1.3.3 Literature related to buoyancy-opposed jet flow . . . 10

1.3.4 Literature related to turbulent natural convection flow in a cavity . . . 12

1.4 Objectives of the present study . . . 15

2 Mathematical Formulation 17 2.1 Introduction . . . 17

xi

(2)

2.2 High-Reynolds number standard k − model and low-Reynolds

numberk−models . . . 17

2.3 Different turbulence models considered . . . 18

2.3.1 Standardk−model . . . 18

2.3.2 Launder and Sharma model . . . 18

2.3.3 Yang and Shih model . . . 19

2.3.4 Low-Reynolds numberk−ωmodel . . . 19

2.3.5 Shear stress transport model . . . 20

2.4 Governing equations for forced convection flow . . . 20

2.4.1 Turbulent transport equations for standardk−model, YS model and LS model . . . 21

2.4.2 Turbulent transport equations for SST model . . . 22

2.5 Governing equations for natural convection flow in a cavity . . . 24

2.5.1 Turbulent transport equations for YS model . . . 25

2.5.2 Turbulent transport equations for SST model . . . 26

2.5.3 Turbulent transport equations for the low-Reynolds num- berk−ωmodel . . . 27

2.5.4 Modeling of turbulent heat flux . . . 29

2.5.5 Buoyancy production term . . . 30

2.6 Governing equations for mixed convection flow . . . 30

2.6.1 YS model . . . 30

2.7 Numerical scheme and method of solution . . . 31

3 A Comparative Study of Flow Characteristics of Wall-bounded Jets Using Different Turbulence Models 33 3.1 Introduction . . . 33

3.2 Boundary conditions . . . 34

3.3 Results and discussion . . . 35

3.3.1 Reattachment length and skin friction coefficient . . . 35

3.3.2 Similarity solution . . . 38

3.3.3 Velocity profile(u+−y+) . . . 39

3.3.4 Variation of local maximum axial velocity(Umax) . . . 45

3.3.5 Jet half-width(Y0.5)variation alongX-direction . . . 48

3.3.6 Moffatt vortices . . . 52

3.3.7 Pressure distribution(P)in the domain . . . 53

3.3.8 Reynolds shear stress(uUv2 0 )distribution . . . 53

3.3.9 Evolution of the momentum flux in the axial direction . . . . 60

3.4 Summary . . . 63

(3)

4 A Comparative Study of Heat Transfer Characteristics of Wall-bounded

Jets Using Different Turbulence Models 65

4.1 Introduction . . . 65

4.2 Boundary conditions . . . 66

4.3 Results and discussion . . . 66

4.3.1 Study of wall-bounded jets in the quiescent medium . . . . 66

4.3.1.1 Thermal characteristics of heated offset jet and wall jet flows over adiabatic surface . . . 66

4.3.1.2 Contour plots and temperature profile at various axial locations . . . 67

4.3.1.3 Decay of local maximum axial temperature and similarity solution for temperature . . . 74

4.3.1.4 Thermal characteristics of wall jet flow under isothermal and constant heat flux boundary con- ditions . . . 77

4.3.1.5 Temperature profile in the thermal sublayer and entire thermal boundary layer . . . 79

4.3.1.6 Similarity solution for temperature and axial vari- ation of local heat transfer coefficient . . . 79

4.3.1.7 Temperature profile in wall coordinates (T+−y+) . 83 4.3.2 Study of wall-bounded jet in the presence of an external moving stream . . . 85

4.3.2.1 Velocity similarity profile and velocity profile (u+− y+) . . . 85

4.3.2.2 Temperature profile and variation of local heat transfer coefficient . . . 88

4.4 Summary . . . 90

5 Effects of Freestream Motion on Flow and Heat Transfer Characteristics of Turbulent Offset Jet 91 5.1 Introduction . . . 91

5.2 Boundary conditions . . . 92

5.3 Results and discussion . . . 93

5.3.1 Reattachment length, streamlines and vector plots . . . 93

5.3.2 Velocity profile and the decay of local maximum axial velocity 94 5.3.3 Entrainment volume flow rate . . . 96

5.3.4 Velocity similarity profile and skin friction coefficient . . . . 98

5.3.5 Logarithmic velocity profile and velocity defect law profiles . 99 5.3.6 Axial variation ofY0.5 . . . 100

(4)

5.3.7 Thermal characteristics of heated jet submitted to adiabatic

wall . . . 103

5.3.8 Thermal characteristics of unheated jet submitted to the isothermal/isoflux surface . . . 106

5.4 Summary . . . 107

6 Investigation on the Relative Performance of Various Low-Reynolds Number Turbulence Models for Buoyancy-driven Flow in a Tall Cavity 109 6.1 Introduction . . . 109

6.2 Problem description . . . 112

6.3 Boundary conditions . . . 112

6.4 Results and discussion . . . 112

6.4.1 Non-dimensional velocity profile(v+−x+)and variation of vertical velocity . . . 112

6.4.2 Non-dimensional temperature profile(T+−x+)and varia- tion of temperature . . . 117

6.4.3 Variation of local Nusselt number and transition location . . 120

6.4.4 Wall shear stress . . . 122

6.4.5 Variation of turbulent kinetic energy and Reynolds stress . . 122

6.4.6 Shearing and swirling zone . . . 125

6.4.7 Flux Richardson number . . . 128

6.5 Summary . . . 130

7 Numerical Investigation of a Buoyancy-Opposed Wall Jet Flow 131 7.1 Introduction . . . 131

7.2 Geometrical details . . . 132

7.3 Boundary condition . . . 133

7.4 Results and discussion . . . 133

7.5 Summary . . . 151

8 Conclusion and Scope for Future Work 153 8.1 Scope for future study . . . 155 A Validation of the Computer Code and Grid Independence Study for

Chapter 3 157

B Grid independence study for Chapter 4 161

C Grid Independence Study for Chapter 5 163

D Grid Independence Study for Chapter 6 165

(5)

E Grid Independence Study for Chapter 7 169

Bibliography 171

Referensi

Dokumen terkait

calculation, all wall particles are involved in simulating the heat transfer from the melt to the wall.. The boundary treatment in the fluid dynamics

The Congress topics include the development and application of numerical methods to solve engineering problems, including topics as: Fluid mechanics; Turbulence; Heat and mass

Part I: Cooling characteristics of single and array impinging jets In Part I, the single and array impinging jet heat transfer with CO2 and N2 are experimentally performed compared

3.2 Modeling of Heat Flux Transients To model the peak heat transfer rate at the casting/mold wall interface at different levels of superheat, a dimensionless ratio of thermal

Wasewar “Study on concentric tube heat exchanger heat transfer performance using al2o3 – water based nano fluids” International Journal of Heat and Mass Transfer Certified Journal of

3.1 Calculation of cooling load of a Compact Car Overall heat transfer coefficient: [1] Heat transfer through glass: conduction Heat transfer through body: conduction Heat transfer

คือ ความชื้นสุดทายตองไมเกิน 14 % wb คําสําคัญ: การถายเทความรอน,พริก, การอบแหงสุญญากาศ ABSTRACT This article aims to study heat transfer of a dryer wall for argicultural

Heat transfer prediction challenges The T56 disc assembly flowfield involves the following: • The NGV support plate/1st disc rotor-stator cavity, involving preswirl injection jets