• Tidak ada hasil yang ditemukan

lectures

N/A
N/A
Protected

Academic year: 2025

Membagikan "lectures"

Copied!
19
0
0

Teks penuh

(1)

lectures Submodular functions El 260

and

discrete optimization

• Combinatorial optimization in ML

• Submodeleh functions

maximizing monotone submodularfeinch.org

-

Greedy method

-

( I

-

E) appronimahion

TA Semion ( Hw 3) : 22

"

Monday 1800 hors

.

- Francis Bach ( monograph )

(2)

So far , woe have seen Corwen optimization

problems in ML

wt WI

"

classify

'

+

'

and

-

-

'

by finding

a separating hyperplane

solve for the best vector the minimizes

the L( an id 1-

Size of margin WI = arg min Llw )

we

(3)

Feature selection :

-

• Predict Y from a subset ✗ a = { Xi , ,

- -.

✗ in }

• Given random variables Y , X , ,

- - -

, ✗ n

ÑE2=k

^ " " % "

" " d "

{ " " = { " " " }

model

Az = { * , , ✗ u } .

Recent travel # I

, ,

L

female cough Ago ; { ✗ s , Xo }

✗ iz ✗ is

wish to select

'

K' most informative features :

A- * = arg Max IG ( Xa ; y ) St

.

I Alek

(4)

Infineon gain :

IG ( ✗ a ;y ) = HCY )

-

HCYI ✗ a)

~ -

uncertainty before uncertainty after

knowing Xp Knowing ✗ A

This is a combinatorial problem 1 !

.

=

Senior ptgcmnt ( set cover problem )

• • • • • • • ←-

possible

• ☒

.

location

• •

• •

How to place K sensors

°

.

• • • • • ✓ Out of V candidate

positions to increase the

Nodes predicts / measures values coverage ?

with dome radius / coverage

.
(5)

Factoring distributions :

-

-

Given random variables ×

, ,

- -

no , portion V

them into set A and D= VIA that are

as independent as possible

r

✗ , Xu ✗ 2×3

A- * = ang min I ( xp ; Xu

/ a) ✗

6 ✗ 5

A

St

.

O c l Al C N A flu

D= VIA

1- ( ✗ a i ✗

ya ) ✗ i ✗ a

✗ 6

✗ z × ,

= H( Xp )

-

H ( ✗ 31 ✗ a) ✗ r

Again , combinatorial ! !

(6)

Set functions :

f : 2✗ → IR

→ Takes as input a set ; inputs are subsets of

the ground set ✗ = { 1 , 2 ,

- .

,N )

→ I is the power set ( set of all subsets )

minimization ( His manimizalion ) of a set

function

min

.

F- (A) = min

.

f- (A)

AC ✗

A C- É

5. t

.

constraints on the sub # d- A

(7)

Reformulation as Boolean function :

min f- ( w ) with FA CV

If { 0,13N

-

e- (

IA ) = f- (A)

• •

( 1,1111-{1/2,3}

• • ( 1,1 ,o ) - { 1,2 }

• •

( 90,0 ) - { } ( 011,0 )~{ 2 }

(8)

flee ) = £ Wi Ii

i= ,

' -

=

maximize f- ( ee )

} Optimally

( P ) solve this

we c- { 0,1 } "

we have to

enhaujtivedy

St

.

Hello € k

enumerate

FzTÉ=k over all

concave

CoÑ^ :

f function K

-

✗ pane

vectors

( Pe ) maximize f- ( w )

s.to to c- { 0,1 ] " : born constraint

Heelless the ( best convene

OE Wi £1

approximation

of do

-

norm )

(9)

key property :

"

Diminishing returns : "

A B

!?

& ④

I

• am

:

Afc 400,000 Bank

100 Alc

cash

back

+ 5° N

t 50 Ry

( pay -1M ) !

(10)

Submo@aoteenh_ons.A set function is said to be submodule - if

and only if

f- ( B u { i } )

-

f (B) E f / A u { i } )

-

9- (A)

F A C- BE ✗ and i ¢ B

Eq-mi.hn :

f- (A) tf (B) f f ( Anb ) + f- ( AUB )

FA , BE ✗

• Equality leader to modular functions

• F- (4) = 0

(11)

T oÉ :

let A ' = A u { i } and NB ' = B

f ( AU { i } ) + f- (B)

= f- ( A ' ) + f ( B ' ) z f- ( A ' no ' ) + f ( A ' UB ' )

= # ( Av { i } n B) + f- ( Au { i } ur )

= f- (A) + f( Bu { i } )

: if is super modular if and only

if

-

f is sub modular

.

→ of submodule "

Sufy inn : → Lovato difference

{ " " " Kh " % " " " M "

minimization of sub modular {

^^ "

functions :

✗ aeity

functions

.

or

Active learning , feature clustering , structure learning

TMAP inference in mmarkov random fields selection , ranking

(12)

Min f- ( n )

-

scn )

NEX

Difference convene fn

.

f- ( n ) & gcn ) are convene

T

ffn )

-

9( Noi )

-

791¥ no

Scp : min

NEX

(13)

EnÉf 8ubmo_Iion :

⇐ : flows

, sat cover , differ heal entropic

EH :

Given p random variables ✗ i ,

- -

xp

F- (A) as the joint entropy of variables ( ✗ a) kea

€8B f- (A) in sub modular

if A C- B and K & B

f- ( Au { 1k } )

-

F- (A) = H( ✗ a. ✗ a)

-

H ( Xa )

= HCXKIXA )

( conditioning reduces Entropy ) 7 H( ✗ ✗ Ixn )

= f- ( Bulk } )

-

f- (B) ☐•

(14)

Manimzing submo ta^ :

maximize f (A)

5. to I Al s k

A C- V Nemhauser (197-8) :

If F in ✗ ubmodvlar , monotone increasing , and nonempty

- -

f( Au Ei } ) > f- (A) f( 07=0 Then Greedy algorithm : A = 01

for i = 1 , 2 ,

. .

K

i ← arg i ¢ max A [ * ( A u{ i } )

-

F- (A) ]

A ← A u { i } ; return A

(15)

The above greedy method satisfied :

e- (A) 3 ( I

-

E) e- ( Aopt )

f- ( Aopt ) = arg max ¥

AEV ; / A1 =p ,

A) { Enhaeesliue

]

search

=-D Although this bound is not that tight ,

results are close to exhaustive search in

practice ( whenever , verifiable ) .

(16)

claim : pick any A E V Buch that I Al C K

.

Then

Max § ( Au { i } )

-

f- CAD 3 ÷ fflotopt )

-

flab

i c- V

PII :

let Aoptl A = { i , ,

. . .

ip } so that psk

Then £ ( Aopt ) I f ( A- opt U A) ( monotonicity )

p

= f- (A) + E ' 7- ( D- u { i , .

. -

i ;] )

-

f(Au{ in

. -

ij.is/j--iCsubmodnlantu)st- (A) + & 4- ( Au { i ; } )

-

f. ( A ) )

j= I

c- f- (A) + § Max ff ( Au { i } )

-

f- (A) J

j

-

i i c- A

(17)

( psk ) I f- (A) + K max [ f- ( A u{ i } )

-

f- ( A1 )

i

-

A

appÉ BBB

let Ak be the Foliation of the greedy method

at step K

.

Then from the previous result

FCA " )

-

f( A " " ) > ⇐ fflaoet )

-

flank

-

' 7 ]

f- ( AK ) 7 ¥ f( Aopt ) + ( I

-

¥ ) f( A " ' )

> ± 7- ( Aopt ) + ( I

-

÷ ) ( I ftp.opt )

+ ( 1- E) flak -2 ) )

(18)

( psk ) I f- (A) + k max [ f- ( A u{ i } )

-

f- ( A1 )

i

-

A

appÉ BBB

let Ai be the Bolivian of the greedy method

at step i. Then from the previous result

FCA " )

-

f( A " ' ) > 1- fflaoet )

-

f( ai -17 ]

$4

f(A°A )

-

flail e ( I

-

fflaoet )

-

ffa " ' ) )

combining for every iteration : Hei E K

e- ( Aat )

-

e- ( AK ) e ( I

-

Ig ) " [ f / A 't )

-

e- ( O ) )

I

(19)

e- ( AK ) z e- ( Aat )

-

( I

-

E) ⇐ { f- ( Aert ) ]

Using the fact that I

-

n s e

-

n

( I

-

E) keel

e- ( AK ) 7 ( I

-

I )f( sort

☐•B

Referensi

Dokumen terkait

KEY WORDS: Active Learning, Remote Sensing, Land Cover Classification, Segmentation, Hierarchical Clustering, Active

Through experiments on various synthetic and real-world datasets for feature extraction and clustering, ARDPNMF demonstrates its effectiveness in model selection for PNMF..

The feature selection through the approaches of classification and clustering in the specific context of early prediction and diagnosis of chronic diseases deliver enhanced quality of

Keywords: active learning, lectures, international students, information systems, peer interaction, student engagement, collaborative learning 1 Introduction The global demand for

In this study, a decision support framework is proposed for the selection of Event Management Company and ranking them using the Analytic Hierarchy Process AHP method and Generic

3 ENSAMBLE, VALIDATION AND COMPARISON Each best selected number of features that are obtained from feature ranking step for respective feature selection technique will be used to

A clustering based feature selection method in spectro-temporal domain for speech recognition Nafiseh Esfandiana, Farbod Razzazia,n, Alireza Behradb aDepartment of Electrical and

Small Imbalance Dataset Data Encoding Data Normalization SMOTE Upsampling 300% SVM Feature Weighting Genetic Algorithm Feature Selection Predict new Data Random Forest