!"
# $%
#&' ()
* + ,
*
)
: !"# $%&' (*
(
*
!
!
"# $ % &!
) '( * :
++
/ , / -, .01 * :
- / 22 / -, (
! "#
$%
"&
$'(#
' #' . ' ' )'
"
*
$ **+ ,-/ $ " 01!
$*"
) #"# 2 .
3 4 " $ 4
' ' 5'(
0'1!
"
%! $*"
##
. ! #"6 $ $*" 7 8
"9 $*" (-
: "#
;"# <" =>
?9!
;@
"9 - 7A " $
*
$ : "#
;&!
&
&!
. *" $!9! " **+ 6 BC
$ 0'%!
. ,+/ + "D $ $+ &!## )*! E!
"9 *"
$ + :9
&
.
* 3
"9 $*'" 7 8!
"#
FG H 9!
*
$(
:9 )6 IJ 9!
&
. *" **+
$ '+ !'/ K'/ L"M $ 7A
&
2!
)6 3 J
/
±F OP / QR HS 2
&
. $# "#
;@
$8'T ' ' )' E! 3 &'
.
9-
$(
*
$(
U// $ IJ
/ F RG / PP & #"6 HV + .
3 E!
4
!/
"1( $ &
;@
#"'+
#" &(@ "#
;@
# "A .
:
( $*" **+ $*" 7 8!
&(@
* :
:
:
E-mail: [email protected]
! "#
$%&
' (&
(Watson & Marden 2004) ) * +
,
- ) ./0!
, , . . $/ )
. 2 3! 4+5 /!+ 6
.
) "07 89 :;
;
/ (Greenway,
1987) 2& ; . + <+=
$2> 6=
' ?@
. + <+= $2> 2 :; A
' ?@ 2&
(Pollen, 2007) .
-
, "07 3 B 6*2 ; 2 /CD 2 $ ; E. >
6=(
/ (Thorne, 1990) 3 - F09 .
/ /( > "07 0
G H/&
'&. I .
'+= + J> 0! ) 50(K 6/9
22>
2
: / 2 ) "07 %
L M 'N (Greenway, 1987)
. %
2 ) "07
/ 2 /9 O
++ O (Wu et al., 1979)
> +P .
-
/ O , (7.
)
. $/ ) ,/
F +
(Gray & Sotir
1996; Schmidt et al., 2001) &@ .7Q +
2 /CD M
22> '+= !/
) 2 + <)H 7.
-(K 7= 2 "# J
S#=
( 2 "# '7 + )
'D7 '7
2
"# D+ U 'D7 (
J VK2 + /9
'7) W&
( + <I 2
N : >
Reinforcement Compression Tension Tensile strength Wu
Root Area Ratio
(Greenway, 1987; Schmidt et al., 2001) .
++ 2 ) "07 O (Wu et al., 1979)
X/>
; '+= > '
) '+=
U 7.
G(K ( , . .7Q ) +
+ YF#Z N /
+ [%! B
2 /CD M , &@ .7Q
) cr
(
) O/&
&@
/ . S = c + cr + σN tanφ
σN(: OF /0Y) U '+= s : P Y $ O/
N5Z :]
φ +) UF#Z +
U 4^
)
° ( : .7Q c
) Y OF /0 (:
cr
.7Q /CD M , &@
2 ) Y OF /0 (
. 60N
) . $/
' '+= $%& 2 $= > >
.
> _P )
+= G(7 $= - J> + 22> '
/. /.
) .P : I / .`+
'+=
/. J> + 22>
, 5
% + 60N %.
$ /.
X
' $%&
. S#= "# '7
; 2 J> a /9 ; 2 ( /
(Bischetti et al., 2005) 'N +
Z9 > + / + bP :; c/ M
.
?0(K d % /. B / -
/
6 - + 4+5(
'D P +
=#
G d J 6L +
(Watson & Marden 2004) .
"# 0> /
$> ) 0Z& + ; d9 $%& ; 2 (Abernethy & Rutherfurd. 2000)
.
<_ /!+
2 / +&
(Danjon et al., 1999; Jackson et al., 1996;
Coulomb equation Cohesive
Frictional forces
!" # $% &'( ) $&'(
*+
,- $ / 0 $ /+12
"34 $ +
5
*6
Keyes & Grier 1981; Kramer & Boyer 1995) : (2 - + +
.`
, %>( e//%&/>
- + ,
5
2 ) "07 M ) /I
.
(2
- P , + Ef / ++ /
-> X + ;
- +
2
BQ/>
) g h i (0 (
. I .
6
: $%& . $= aK2 $%& OD 4 c/@/ -
(Abernethy, & Rutherfurd. 2000;
Bischetti et al.,2005; Roering et al., 2003) .
.j 6 & ) Y+)
c/ :) "07
N + /.
/. - :
6Y / a(K
=#
)/ + , ' ) ) 7
/ "2 /9 / , - .
+ ) + + -
(&. <_
/ )
Bibalani (2001) <
. + M /.
:F/
_ :k
0 :) :
F0
%& l/0 + & :
$
/ . + @ X
+ /CD + F
. /CD F
/ N .
/G (
m / d9 '7 4
( + '&G L
0Y 4/Z n
. G
$+`
. <_
! c/ ) (&
Y
$+` - .
Y $+` - ) A
+ 22> '+= Y
2 J>
/9 .`+
) ) '7 W&
+
, . ) P )
% 0_ /. M
) "07
U . 6L +P $/ Y '
. M 5 + 'o 4
) + A -
$+`
+ % G/GQ M %&
$
'+=
.
In situ
- 2+` :)/P 6G! ) J $K
SL+ + ,)/D
KP
% pq 6G! )
/2Y O
+ ir /0>
/ ( s ( '&. <_
.
'2 _ ( ) 0
& V 4/Z
%.
$
. 3t ; 2 "# '7 +P /I
:
,/ ]+
u (Abernethy, & Rutherfurd.
2000; Bischetti et al.,2005; Burke, &
Raynal 1994; Schmid, & Kazda 2001;
Simon & Collison 2002 ; Sun et al., 2008) / , . '&. L .
/ + '
u 0Z&
+ H ' ( v
- X
2 ( - + 2 d9 /.
. + 3t
/ , d& ' B %
ir ( (
E. '9 + aK2
. 2
+ ] P #L
, . /Y ) 3 ,) .
. VK2 '+=
; O+! /
) i ( ID .
.
2 , '2 $)P <_ 0_
O wx +P S!
. /.
u ;
% / 0_ ( *
+D d9 ) 2 yr
+P S! ((
(Cofie, & Koolen,
2001) . 2 :$ $ _ ) ./0!
7> 3t + , % -Q J B
+ , , L *(
% 6* O/0N ir
%
{L ) ./0!
&@ P (Cofie, &
Koolen, 2001) .
(5 B 0Z&
3 S! )
'&. <_ 22> '+= $)P :+P (Bischetti
et al., 2005) .
$ 2 $)P ) 'L
3t ./ + G(7*
Profile trenching method
2 /
+D O/ J iq
( ( ,
(Cofie, & Koolen, 2001) .
$ :$)P )
2 #L
,)
?0(K '7L n .
P ' + '7L (Cofie, & Koolen,
2001) . G( 22> '+= $)P ,
+(7
6 / qrr
<_ <./0>
. / 2
+ - /9 4/Z (&. L ,G( B&
. J*N
B& >
<_ ! $ > '&.
6ZD )
2 -(K7. 89 P
/2 B& 6N ) .
$)P
'9 ir 0 =L ( (Bischetti et al.,
2005) '& -(K7. 0D .
'
# 2 -(K7. <)H + J7=
S#= "
/ 22> '+= :2
N
.
$)P
B& 6N * % 2 G(K7. >
u
6Lf E
] AED P n( + , /
(Bischetti et al., 2005; Pollen, 2007) .
/Q
- /.
/ 2& ) 6ZD $ 6 G(K7.
+ , u v&
, u 22Y '+= L+ %
' .
! "
) (kPa
)
° (
P1 /
/
P2 /
/
P3 /
/
P4 /
/
P5 /
/
P6 /
/
P7 /
/
P8 /
/
(kPa) لﺎﻜﺳﺎﭘ ﻮﻠﻴﻛ
Instron
/!+
F
% c/ 2 "# '7
- d9 $%& + : / )
% $>
'&
) 6*
i .(
(2 -
% 2 "# '7
O+ d&
, / . /
G - qq
% '7
2 "#
ir ( O+ ( + xp % '7 - gr
( L O+ ( .
(2 - ^/5 d9 %
|q
( +N O+ (
/ . Y + 2
%
X 2 "# '7 rrg
/ r % + qp / y % .
0 10 20 30 40 50 60 70
0.00 0.30 0.60 0.90 1.20 1.50 1.80
,-. )* " + $%& '( # )
0121
± 13 4' (
0> / 2
$> d9 $%&
) 6*
g ( ' / S P $Y /G Y )
qw / r
(r=
+ P d& X 2 2 + Y + , O+
. -G / yg
% 2 6Y
ir + O+ ((
qy
% 2 6Y
gr
, O+ ((
.
!" # $% &'( ) $&'(
*+
,- $ / 0 $ /+12
"34 $ +
5
*6
7
32
4 3 10 12 21 18
0 5 10 15 20 25 30 35 40
5 15 25 35 45 55 65
# 6 7 + 8 '( )*
+ ) 1 2 1 0
± 3 4' 1
(
$)P
, / / >
)
+ B&
+ B& ]. + / J> 6
]. + / ) 6 B& 6N ) -(K7.
u B&
. <_ - 7
)P $ X ]. + % :# + /)P 4/Z
aK2 _ 4/Z .
+ :$2> $)P
22>
) (TF
$%& 2 #L $%&
Y '&
-
/ #
/ S v
' , ) 6*
y .(
0 100 200 300 400 500 600
0 1 2 3 4 5 6
# 9 1 ++8 : ( ;!
1 2.
%<
,-.
.
> ?> 4@ + AB C
) . DE / r =G (
igp
igp / + d&/ $)P
'&. <_
.
/ #L
- y / r q 0 '+= -G :(
2>
q / i yp± / g~
+
% Y + 2 '+=
X
|i / ii +
|q / O*G .
) c/
/ 22> '+=
0> / + :' /!+
+ 22> '+= #L $%&
2Y ' )
6*
p .(
10 20 30 40 50 60 70
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
# H % 1 ++8 0
%<
> ?> AB +
4 ).
I6 / r =G (
S!
, "# '7 + 22> '+=
2 ,
. ++ O )
(Wu et al., 1979)
:
0_ /. /CD M ; ) "07 ) +P N
. :2 "# '7 !/
"07 M '& $> d9 $%& % )
. % -(2
) "07 ir
((
+ O+
~r / pp + O*/0>
Y ( - d9 P
|q + ((
|q / i O*/0>
+P ) 6*
q .(
0 10 20 30 40 50 60 70
0 10 20 30 40 50
# E J*
K
LM N
)O +
,-.
) 1 2 1 0
± 3 4' 1
.(
M 'N 4 2 "# '7 e (
/.
: . , L N + .
'7 - 0> / Em / $> 6
: :; J> $%& % + /
$> d9 $%&
(Bischetti et al.,
2005) . - 2 "# '7 /G %
!" # $% &'( ) $&'(
*+
,- $ / 0 $ /+12
"34 $ +
5
*6
2
4/Z d9 # 2Y
P ' .
$>
d9 $%& 2 J>
) 7 0+
G2+`
(Greenway, 1987; Keyes, & Grier
1981; Schmid & Kazda 2001; Schmidt et al., 2001) ]%.
' , . & )
% '7
"#
- ,P ' 2
n( '7
G G2+`
0! ) k - 6G!
(Greenway, 1987; Shields & Gray 1993)
,) > ' (.%
I 6 A( -
-(&.
?0(K #L
> /
2 AED
/#L -
G* n( :
' / /K .
0_ 22> '+=
) q / i yp± / g~
OFG (
7 /.
*/ tP )
yg O*G (
> :
) yg OFG (
6/ : ) gx OFG (
l/0 + )
yi
OFG (
. n( -j (Watson &
Marden 2004) /. /
0)/
//>
) g~
OFG (
'2G n + )
i|
/ gw
OFG (
' 7= 6L .
Morgan, & Rickson
(1995) 22Y '+=
/. )
) 4/Z , ]%.
: y|
h
~ :OFG
/Z yw h q F/ :OFG xp
h p & + OFG
yr h iq OFG .
Bibalani, (2001)
'+= %
22Y ) Y l/
p h r 0 ( ( )
/.
6G!
O :
F0 w / gp ) :
~ / yr F/ : g
/ g~
k : gw l/0 : x / yy & : y / gw +
_ 0 i / q~
Y ]%. OFG .
9 A(
22Y '+=
/. v
/ 6
N
# + ?0(K
-(&. I
?0(K
#L / G2+`
+ l/ 9 A(
_ 0 + - 7 ) ) +D irr (%
. !/
Y / A( -
G( 4+5 ,
,) . P 'L +
.
$%& > 2 22> '+= $)P n(
4/Z '+= #L $> /
. - 0+ _(
7 ) G2+`
(Bischetti
et al., 2005; Burroughs & Thomas 1977;
Gray & Sotir 1996) ( + ' , ]%.
n
/K $+` -
. ( ) Bibalani, 2001 (
/ F0 & + ( - _ & Y ,
% :#L $
22Y '+=
%&
$ . + ( / G
/.
/
( /
_
G
G2+`
' , .
(Nilaweera, 1994)
m / 'M X@
α ) β, ( /.
( k -
/Z 0 4
: r / wx
<
α
<
i / g~
+
p / r h
<
β <
w / r h Y ? . - @ X
/
22Y '+= l/
L -
. ( +
n - G2+`
/K
)
X./
×
|x / g~
Y =
.(
( L -
n (Bischetti et al.,
2005) + ] Y
/K /
$+` P /Q
I / 9 %
(Nilaweera, 1994)
'&G L .
/CD ; ) "07 % +P n(
2 - d9 $%& > 2 0_
%
$>
. (Mattia et al., 2005) -Q %
_(
+ ]%.
>
$> - /G >
2 "# '7 $>
. !/
.7Q l/ 9
O+! U i
) r / y~
h
g / yg ( / .7Q M Y '&
, &@
/!+ M
2 O+ d&
)
~r / pp Y OF /0 (
%
ID 6L
%& +
9 $ d -
%
.7Q '7
Q U /
% )
|q / i ( / +
M ID 6L
' /K .
@& ) +
O +) Y ' -
0 UF#Z
U 4^
) φ ( :
/CD
. 2 m , + Y
- M 6
.7Q 2
, &@
(Mattia et al., 2005;
Pollen, 2007) +P
/ . : /!+ -
Bibalani, (2001)
, . ++ O ) (Wu et
al., 1979) M
. $/
/ N .
F φ m(
$/ /!+ 'D + , &
.
φ N
+ , , . M P ) $/
. ' , +P .
/ .P $+` - n(
.`+
'7) W&
( + <I / 0_ /. 2
2K . 6L
+P > ' /
/ $ .`+
'7)
W&
/.
) ' +N J 6/9 ) * ]+
&
; '7)
. - 0> /
/!+ $+`
"# '7 + d9 - $> #
- 3*9 # % + ) "07 4L + d9 :2 #L + 22> '+=
/9 .`+
'7) W&
2 l/ <L , 0_ /.
.
1- Bibalani, G, 2001. Protective role of forest and non forest species. PhD Thesis. Islamic Azad University, Tehran, Iran. 149 p.
2- Abernethy, B., & IAN D. Rutherfurd. 2000. The effect of riparian tree roots on the mass- stability of riverbanks. Earth Surf. Process. Landforms 25: 921- 937.
3- Bischetti, G.B., Chiaradia. E.A., Simonato. T., Speziali. B., Vitali. B., Vullo. P., &
Antonio Zocco. 2005. Root strength and root area ratio of forest species in Lombardy (Northern Italy). Plant and Soil: 278:11–22.
4- Burke, M.K., & Raynal, D.J. 1994. Fine root growth phenology, production and turnover in a northern hardwood forest ecosystem. Plant Soil 162, 135–146.
5- Burroughs, E.R., & Thomas, B.R. 1977. Declining root strength in Douglas-fir after felling as a factor in slope stability USDA Forest Service Research Paper INT-190, 27 p.
6- Cofie, P., & Koolen, A. J., 2001. Test speed and other factors affecting the measurements of tree root properties used in soil reinforcement models. Soil and Tillage Research. 63: 51- 56.
7- Danjon, F., Bert, D., Godin, C. & Trichet, P. 1999. Structural root architecture of 5-year- old Pinus pinaster measured by 3D digitising and analysed with AMAPmod. Plant Soil 217, 49–63.
8- Gray, D.H., & Sotir, R.B. 1996. Biotechnical and Soil Bioengineering Slope Stabilization: A Practical Guide for Erosion Control. J. Wiley, Chichester.
9- Greenway, D.R. 1987. Vegetation and slope stability. In Slope Stability. Eds. M G Anderson and K S Richards. J Wiley & Sons Ltd.
10- Greenwood, J.R., Norris. J.R. & J. Wint. 2006. Site investigation for the effects of vegetation on ground stability. Geotechnical and Geological Engineering 24: 467–481
11- Jackson, R.B., Canadell, J. Ehleringer, J.R., Mooney, H.A., Sala, O.E. & Schulze, E.D.
1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411.
12- Keyes, M.R., & Grier, C.C. 1981. Above and below ground net production in 40-year- old Douglas-fir stands on low and high productivity sites. Can. J. For. Res. 11, 599–605.
13- Kramer, J.P., & Boyer, S.J. 1995. Water Relations of Plants and Soils. Academic Press, San Diego, USA.
14- Mattia, C., Bischetti, G.B., & Gentile, F. 2005. Biotechnical characteristics of root system of typical Mediterranean species. Plant and Soil. 278: 23-32.
15- Morgan, R.P., & R.J. Rickson. 1995. Slope Stabilization and Erosion Control-A Bioengineering Approach. Chapman and Hall, University Press, Cambridge.
!" # $% &'( ) $&'(
*+
,- $ / 0 $ /+12
"34 $ +
5
*6
*/
16- Nilaweera, N.S. 1994. Effects of tree roots on slope stability: the case of Khao Luang Mountain area, So Thailand. Dissert. No. Gt-93-2.
17- Phillips, C.J., Watson, A.J. 1994. Structural tree root research in New Zealand. Manaaki Whenua Press, Lincoln, Landcare Research Science Series No. 7. 71 p.
18- Pollen, N. 2007. Temporal and spatial variability in root reinforcement of stream banks:
Accounting for soil shear strength and moisture. Catena. 69: 197-205.
19- Roering, J.J. Schmidt, K.M., Stock, J.D. Dietrich, W.E. & Montgomery, D.R. 2003.
Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range. Can. Geotech. J. 40, 237–253.
20- Schiechtl, H.M. 1980. Bioengineering for Land Reclamation and Conservation.
University of Alberta Press, Edmonton, Alberta, Canada.
21- Schmid, I. & Kazda M. 2001. Vertical distribution and radial growth of coarse roots in pure and mixed stands of Fagus sylvatica and Picea abies. Can. J. Forest. Res. 31, 539–548.
22- Schmidt, K.M., Roering, J.J., Stock, J.D., Dietrich, W.E., Montgomery, D.R. & Schaub, T. 2001. The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Can. Geotech. J. 38, 995–1024.
23- Shields, F.D, & Gray, D. H. 1993. Effects of woody vegetation on the structural integrity of sandy levees. Water Resour. Bull. 28(5), 917–931.
24- Simon, A., & Collison, A. J. C. 2002. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surf. Process. Landforms 27:
527–546
25- Sun, H.L., Li, S.C., Xiong, W.L., Yang, Z.R., Cui, B.S., & Yang, T. 2008. Influence of slope on root system anchorage of Pinus yunnanensis. ecological engineering 32: 60–67
26- Thorne, C.R. 1990. Effects of vegetation on riverbank erosion and stability. In: Thornes, J.B. (Ed.), Vegetation and Erosion. John Wiley and Sons Inc, Chichester, pp. 125–143.
27- Watson, A.J., & Marden, M. 2004. Live root-wood tensile strengths of some common New Zealand indigenous and plantation tree species. New Zealand journal of forestry science 34(3): 344-353.
28- Wu, T.H. 1976. Investigation of Landslides on Prince of Wales Island. Geotech. Eng.
Rep. 5 Civil Eng. Dep. Ohio State Univ. Columbus Ohio, USA.
Investigation of Biotechnical Properties of Parottia persica in Order to Use in Bioengineering
(Case Study: Patom district of Kheyrud Forest)
E. Abdi*1, B. Majnounian2, H. Rahimi3, M. Zobeiri4 and Gh. Habibi Bibalani5
1 Assistant Professor, Faculty of Natural Resources, University of Tehran, Karaj, I. R. Iran
2 Associate Professor, Faculty of Natural Resources, University of Tehran, Karaj, I. R. Iran
3 Professor, Faculty of Soil and Water Engineering, University of Tehran, Karaj, I. R. Iran
4Professor, Faculty of Natural Resources, University of Tehran, Karaj, I. R. Iran
3 Associate Professor, Islamic Azad University of Shabestar, Shabestar, I.R. Iran (Received: 13 October 2008, Accepted: 27 January 2009)
Abstract
Vegetation is known to increase hillslope stability by reinforcing soil shear resistance. This reinforcement depends on the density and tensile strength of the root systems. This paper presents the results of research carried out in order to evaluate the biotechnical characteristics of the root system of Parrotia Persica. The profile trenching methods was used to obtaining root area ratio (RAR) and number of roots in each depth and RAR and numbers were counted. Single root specimens were sampled and tested for tensile strength measurement. The findings indicated that the general behavior of root density and number of roots is to decrease with depth. Maximum RAR values and number of roots were located within the first 0.1 m, with maximum rooting depth at about 0.60 m. In general root tensile strength tends to decrease with diameter according to a power law, with an average of 29.34±1.5 MPa. The resulting data have been used to calculate the reinforcing effect in terms of increased shear strength of the soil. The results show that root reinforcement exerted by Parrotia Persica is about 44.90 kPa in upper layers and 1.65 kPa in deeper horizons. The results presented in this paper can be used in practical bioengineering.
Keywords: Biotechnical, Root Area Ratio, Root tensile strength, Shear strength, Soil reinforcement, Bioengineering
*Corresponding author: Tel: +98261-2249312 , Fax: +98261-2249312 , E-mail: [email protected]