12 2
1401
293 - 277
DOI: 10.22059/jwim.2022.338119.961
: ! "#
PYSEBAL SEBS
- !
"#
$!
%
1 2
*
1 !" .
$ % & ' ()
*+, ' -" .+ / 0, 1 " ' 2" 34 5 ( * 67 (' ) +:; % &&:
.
2 . +"
5 ( * 67 (' ) +:; % &&: *+, ' -" .+ / 0, 1 " ' 2" 34 $ % & ' () .
: = > ? @ 07
/ 11 / 1400 : = E( FG ? @
05 / 03 / 1401
-
" # $# # % & ' () *
+ , -.
/$ $ $ 0 "
"
.# $ 2 $ 3# .- 4" $ 56 7 ('
8 2$
9 8
#/$
# 6 - & ' ':$
; 8 # < #
% #
= 0 $ : $ . > ? $ # .@8$
-
& ' ':$
+ ,
$/
7 AB$ # C8 ? D: @3# # SEBS
PYSEBAL $
15 G H TM 22 G ETM+
24 G MODIS 5
$ K #
* 8 2000 2003
#N
# 8$
O . 3 4, P
#$#
Q ( R S /
$#
@T"
3
?(U #
# <
@3#
? D:
# .
$ :
= 0 .
% 2 . /$
@8#
6 9 ? $ 7 AB$ # /$
@8#
7 AB$ " 6 PYSEBAL
V
% /$ 0 ?
# 6 -
& ' 7 W ) 5 U X $ # 4 S
# 8 W 0 :$ P # 8$ " C8
#$# /$
/
$ /$ @8$
Y'Z 7 AB$ 8 . # 3 $
* 7 AB$ "
PYSEBAL #
8 9 8 MODIS H LANDSAT-ETM+
LANDSAT-TM [
$ . RMSE H $ 45 / 0 H 46 / 0 02 / 2 H/
$ . R2 96
/ 0 H 95 / 0 82 / 0
# S () V
$
@ 7 AB$
# < #SEBS
'B - # 3$#
@8$
.
#
$#$
%
? $ "
'
?
$ . 6 "
K , -
& ' 3
# /$
8 8$
? 4 $ ) # D 8
5
G<
H@8$
Z [
$ Kc ( $ [8 8 ' #
@ 6 X <
# 3 . 8 W 9 $ 3 0
?(U @:# /$ 5 T
R PYSEBAL A ( [ Z $ .
68 / 0 /$ # 8$ @ V # 3$# [ Z ? $ # 6 #
9 8
#/$
$ 5$ )
[8 DA % . 3 .- # X6 @ # V # / D K , /$ 0 %
7 AB$ :
Q ' H 9 8
#/$
6 @ H 0 [ Z H
.
Comparison and study of the role of PYSEBAL and SEBS algorithms in estimating actual evapotranspiration in Qazvin plain
Mohadese Sadat Fakhar1, Abbas Kaviani2*
1. M. Sc. Student, Department of Water Science and Engineering, Faculty of Agricultural and Natural Resources, Imam Khomeini International University, Qazvin, Iran.
2. Associate Professor, Department of Water Science and Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.
Received: January 27, 2022 Accepted: May 26, 2022
Abstract
There are several methods for monitoring evapotranspiration, which are mainly measured on a point that will be difficult to generalize to the whole area. In recent years, remote sensing-based methods for estimating actual evapotranspiration have been widely considered. In this study, the amount of actual evapotranspiration per day in Qazvin plain was used by SEBS and PYSEBAL algorithms for 15 TM images, 22 ETM + images and 24 MODIS images without clouds and snow during the years 2000 to 2003. The results were compared with a drained lysimeter planted with grass in the Qazvin plain. Comparing the outputs obtained from the two algorithms, it was concluded that the PYSEBAL algorithm, using the latest methods of estimating evapotranspiration, such as the user not selecting two hot and cold pixels and minimal use of ground data, has been able to cover many of the weaknesses of other algorithms, so that the PYSEBAL algorithm in all three MODIS sensors, LANDSAT-ETM+ and LANDSAT-TM respectively with RMSE values (0.45, 0.46 and 2.02 mm/day, and R2 values of 0.96, 0.95 and 0.82) had better performance than SEBS algorithm in the study area.
Furthermore, considering that determining the amount of water used for evapotranspiration is one of the most basic factors in planning in order to achieve more product, Kc coefficient can be considered as a suitable and fast guide in irrigation management. Studies on grass plant show the high accuracy of PYSEBAL model in estimating this coefficient. And finally, the use of remote sensing methods can be a good alternative to avoid high costs and improve water management in the region.
Keywords: Crop Coefficient, Remote Sensing, Single source algorithm, Water management.
% QT2
B 8
# 9 $ 3 3 $#$
'(%
@
# G :$ 3
$`a #$ H
$
B 6 #
# /
@8$
H $
? " @8 ' 5$
Z . 8 X6 2050
/$
40 $ 2 3 , #
. 3
$
? 6 # H
#D Q X6 # ("
Bb (V
# $ 2
(Nazari & Fakhar, 2021)
. 8
/$ . :# + )N*$ H / T" X6 @ -
+ )N*$ ? $ .# $# / ':$ & ' + cD% $ $#
4 < 5$ H 3 = " S ) D d-8 # $
#$# W 9 $ Z P
(Sánchez et al., 2008)
# . ? (
= /$ # 8$ 8$
9 8
#/$
G
$ $
* e /$ S "
$
"
fg 5 .
= , 5$D # 6 # -
& '
(Wu et al., 2010)
#$# . 9 8
#/$
$ S
/$
? V
$
# 6 h :#
-
& ' #
h*
i D 3 )
Kazamias & Sapountzis, 2017
( .
Q S 9 8
#/$
H
" $ $ 8
$ = 7 $ = ; 8 h* # ? / d-8
. "
# 6 $ -
& ' + : /$
#$# 7" C8 Q S 9 8
#/$
#
'8 2$ # U *
#$#
3 ? $ .@8$
" * 4 3
" 9 / 6
) ? / d-8 # l2 3 (LST
$ 0
/$ $ 0 C 4< # & '
"
)
Ke
et al., 2016
(
# 6 . 8
/ -
& '
#
m . .-
$ / 8
#
$
; X6
/ / Z
@8$
(Senay et al., 2016)
. #
8 2$
AB$
7
# '
$ # 6 -
9 8 /$ # 8$ & ' c$ $ #/$
$ .@8$ 3 ?
7 AB$
"
- $ N
n $ 5 $ 8$
H 5/$
n $ H <-8 W
$#
56 (%/$
5$
7 AB$
7 5 U
1SEBS
H
SEBAL 2
METRIC PYSEBAL 3
3$
# "
"
W$ "
5$D
o +$
- & '
$
@:#
8 <
"
(Gowda et al., 2008)
. 7 AB$ /$ Q
Q ' 0>
# 2 l
$
$#
H
* "
AB$ # 7
SEBAL
0 "
$ G
$
#$#
Hd-8 # n $ 5N ? ( $ 8 3$
G /$ 4 S # H 0 3 $ $ + ,
<B 8 < G @= # 5 / $ $
3 W 0 $ @ V # # $/ /
#$# 7 (' 3
# )
Kunstmann et al., 2018
(
# .
AB$
7 Q ' H 0 p 2 ) (9 5$ )
Q # P$ ;
= 0 3
# )
Nishida et al.,
(2003
7 AB$ . # ;T'T % n $ 5N
56 /$ % 2 ? / d-8 3
* e "
lB 2 ;T'T 8 < 5 S $ X`%
3 C8
8 7 $ = ? / d-8 # (4 S ) ;T'T ? $ . 6
d-8 $ + $ P % # KN 2$ % lB 2 0 3 Y'Z + 3 H? / 3 @ .
# c6
$D%$ ? / d-8 S Y
(%/$
5 %
0 5 % m < 0 5 % Hp 2 0 7 . 5 V 3
# /$ 5 V 0 5 % .
: 4, P n $ 5N B# '
3
#
(Bastiaanssen, 2000)
.
PYSEBAL
$ /$
AB$
7
SEBAL
C8 " @8$
Hessels et al.
) ( 2017
'8
=
@8$
#$# / 7 AB$ ? $ . # $ # /
T" /$ # 56 @:#
?
? 9 + ,
85 / 0 95 / 0 / $ @8$ 3
(Hessels et al., 2017)
.
PYSEBAL
. $ n $ /$
3 2 . $
X6
( $
$
? ( /
$ .
? 4 S # 8
$ W 0 + ,
"# 2 8 <
# "
X $ 4 S
0 3 q $D /$ # 8 " R 7"$
*
6 4 "
# 8$ H 3 3 3
# X $
4 S W 0
# .*
"
3 Q
#
<-8 R
$#
X $
3 . (%/$
0>
7 AB$
PYSEBAL
5$
/ 8$ % /$
H& ' (
? r p 2 @ * D
# " 3$
.
>
.@8$ = 0 + , / ? $ #
5$D T > # -
.- # & '
Burkina
@'8 Faso
1200 .@= 0 $ : / $ # S
# 8$ " #$# 5 T > ? $ /$ 4, P O /$
PYSEBAL
#
<
C ( QT2 $
5$ )
$
$
> $ 8$ '8
$ # V
@ X6
6 T" # 3 QT2 7 :$
)
Sawadogo et
al., 2020
(.
# 6 " $#6 # -
':$ & '
7 AB$ C8
PYSEBAL
G # 8$
LANDSAT-5TM
.@= 0 $ : / $ # 5 T O
- $ " #$#
? 2 -
$ . 3 # 6 & '
/$ $ 0
@8$ ( R C8 3 H
* [ Z "
A ( 73
/ 0 51 / 0
RMSE=
. 3 /
# 9 H - 8 G< ':$ & ' $
5$
# R @:#
$#6
#/ ? ( "
)
Sawadogo et al.,
(2020
G /$ # 8$ T > # .
MODIS
Landsat8
7
? U 7 AB$ /$ # 8$
PYSEBAL
MPYSEBAL
W$ :$
8
$ f$
? '-: W )
@
O # 6 -
':$ & '
$ # <
$ @3#
. # "
O 9 8 )$
#$#
R ( / / # 2010
- 2011 # 56 /$ " P
"
MPYSEBAL
@
PYSEBAL
70
-2 , # 7"
# 6 # -
# $# $/ & '
)
Owlia & Sima, 2021
( 5 8 V3 / T" @3# # . $ . Hm = 5 8$ @3#
- $/ & '
= 9
FAO-56
G /$ # 8$
LANDSAT–OLI
AB$
7
PYSEBAL
. #
$ . 4, P O " @= 0 $ : / $ 67 / 0
RMSE=
/ R @:# /$ 5 T
7 AB$
PYSEBAL
@8$
(Caiserman et al., 2021)
.
7 AB$ 'B - ? $ # D SEBS
8 # $ :
7 AB$ .@= 0 7 8
5N n $ d-8 ) (SEBS
( AB$
Q '
@8$
"
$ . 3 5 % 36
( $
$ .
<-8
$
# 8$
/$
9 8 #/$
5 7 . 3
n $ # #
/$
0 3 d-8
p 2
# 6
"
)
Su,
(2002
.
? $ 7 AB$
4 3
$D $ :
# 6
$ =
Q D
<-8 H 7 5 U
# / d-8 H?
B6 H 0 4 / d-8
? .@8$ ...
? $ /$ # 8$
7 AB$
# 6 -
Y t . # & '
5 V%
W 9 $ 3
Y 8 /$ 7 AB$ ? $ .@8$
ST 4 ? $ " @8$ 3 5N # 6 4 3
/ * e$ 8$ H n $ . $ # 6
+ $ P V #
$ e$ 8$ @ .# $ 2 @ f
H n $ 5N B# ' HY 8 ? $ /$ # 8$
4 S / C $ 3 # 8 < X * QT2
$#$ # . 3 $ 2 m 8$
4 S ? $ 5N $D%$
H n $ e$ 8$ 3 $ . H
> . 3 $ 2 / ? $ #
W 9 $ 3
@8$
H
* "
Hailegiorgis
) (2006
# 6 #
- 8 * # ':$ & ' 2000
2003
7 AB$ /$ # 8$ H5 4G= # #N
SEBS
G
LANDSAT-7
#$# /$ # 8$ 56 .
- ':$ & ' /$ $
0 " 8 9 ? $ 3
#$# 0$ P 9 8 )$ $ /
- & '
':$
@8#
6 O H# m 8# # 7 AB$ /$
@8#
6 7 AB$ /$
$ SEBS
5$
4 :
# ( )$
.@ $#
'B - # $
(Mutiga et al., 2010)
/ $
- 7 AB$ /$ # 8$ H 3# 6 & '
SEBS
/$ $ # . 0
p 2 @ * /6 # 3 . #$# W 9 $
m 8$
56 /$ 4, P O 3# 6 # . ? +
/$ $ 0 /$ $ 3# 6 # . ? 3 0
3
? + u 8 $ 10
15 , #
@8#
. 6
7 56 D B 6 O ? U & ' # 6 @:# #$# 5 T
H# $# 0 q R t $
* "
+ u
T > # .#$# 5 T 8 . # $ V ? ( A #
(Shan et al., 2007)
S +$ o # 6
/ -
# ':$ & ' /$ V 2# Z P
7 AB$
9 8
#/$
9 8 G SEBS MODIS
56 + 'B - O . 3 # 8$
# . #$# 5 T -
0 l2 3 & ' 3$# R A ( NDVI
H 7 . t $ $ $#
*
" P$ # "
$ . # / 0 3 -
@8$ # R & '
)
Hailegiorgis2006
7 AB$ T > # .(
SEBS
/ S +$ o / $ -
# ':$ & '
5 8$ /$
Overijssel
/$ # 8$ T"
9 8 G
LANDSAT-7-ETM+
# 8$#
$ :
= 0 + u 0 [ Z $ . > ? $ # .@
m 8$
- & '
@8#
6 d-8 / " 3 ) m 8$
l2 3 8 < NDVI
3 7 AB$ /$ # 8$ (#
- SEBS
) ;% 0 4 & '
ETo
(
@8#
6 O . 3 8 < v ?( =
A ( [ Z $ . 2 @. - 98
/ 0 $ #
Z 0 [ c$ $
3 .- # 'B - #
# .#$# 5 T
m . SEBS
5 8$ B "
H
$ λE
@8$ 7V d-8 n $ # ' $ : /$ 5 (*$
(Kalma et al., 2008)
C8 " T > # .
Ma et al.
) $ . 8 = 0 + , (2012
- & '
/$ # 8$
16 SEBS
9 8 /$ G
LANDSAT
8 * # 2009
2011 .- $ T" /$ $
#$# /$ # 8$ 56 . B$ 8$
. 2$# /
# 6 + , A ( /$ 5 T = 0 98
/ 0
R2=
@3$#
)
Mahour et al., 2015
# 6 8 T > # .(
- 7 AB$ C8 & ' G /$ # 8$ SEBS
MODIS
O . 2$# 5$ $ # A $ 5 " Q #
$ . " #$# 5 T 56 /$ 4, P -
Q #D ':$ & '
71 / 5 # /
(Singh & Senay, 2016)
# .
n $ 5N 7 AB$ VU H T >
METRIC
H
SEBAL
H
SEBS SSEBOP
G /$ # 8$
LANDSAT
#
@= 0 $ : . # < +R $ X a 5 8 7 AB$ " #$# 5 T 56 /$ 4, P O
METRIC
SSEBOP
$ $#
93 / 0
RMSE=
/ 3
7 AB$
SEBS SEBAL
-2 # $ (
@8$
)
Bansouleh et al., 2015
( ? ( # . -
& '
7 AB$ . 8 + u
SEBS SEBAL
G VU /$ # 8$
LANDSAT-ETM+
8 # 2010
2$#
V # # ( R /$ # 8$ $ O @
.
#$# $ : - $ Q " #$# 5 T 56 /$ 4, P O .
? .- -
3 # 6 #/ ? ( ':$ & '
8
+ ?
SEBAL
( R SEBS
[ 79 / 9 , # 56
/ 4 , # & ' –
/$ $
# 3 0 )
Liaqat & Choi, 2015
( /$ # 8$ .
7 AB$ #
METRIC
$ $ <-8 n $ 3SEBS
7 8 "$
86 (3
@8#
56 . # 6
> ? $
8 * # $ 2002
2012 G /$ # 8$
LANDSAT
#$# $#$ # #$# W 9 $ /$ 4, P
/$ 4, P % 2 .@= 0 $ : . # / @3$#
7 AB$ " #$# 5 T 56 $ V # 6 SEBS
$ (
5$D 8 T > # .@8$ 3$#
- & '
7 AB$ /$ # 8$
SEBAL
@T" # SEBS
@' ,
. 2$# 5 8/ 2 5 8$ # ;:$ H " $ ST
$ # ?
5$D >
- /$ # 8$ ':$ & '
Priestly-Taylor
2 3 8 <
% $ . /$ 5 T
# 7 AB$ # # B : 4 : h - 4Z )
Jalili et
al., 2020
( . K /$
>
Z P 8
# . -
':$ & ' Z
[ 0
@T" ?(U R # 3
(
# .
@8#
AB$ # /$ 6 7
SEBS PYSEBAL
#
D: @3#
? .@8$
#
$#$
( $ %
@ V # 6
# . -
& ' .
# . 9 8 8 /$ 4, P
8 # D
2$#
. 3
(3 # ? D: 5 8$
T" a
= 0 $ : / T"
.- .# $# 5 8$ # G :$ # (V . 'B - #
@3#
@P ? D:
506218 & 3 D" # < S
4 ST $ 5 8$
# /$
# / T" +R G<
@3# ? +N= # @3# ? $ .@8$ @ ( $ $ $# 5$ $
$ $# T" D"
X6
$ (
5 HQT2
5 / W 0
w
A $ @3# ? $ # .@8$ # 8
6 ? D: Q 8 8 3$
+ .# $# # %
? $ # H? D: Q 8 A $ + 6 %
>
#$# /$
# A $ ? $ . 3 # 8$ A $ ? $
=$ o% * 03
/ 50
=$ o% x ) : 3 % #
15 / 36 .# $# $ : B (3 % # .
h - T.
DEM
(STRM)
?
? R
? ) $ t . 5 8$
[
$ 245 4119 3
"
? A q $ /$
d-8
#
$ 1290 #
= 0 3
#.
# # ? A
y"$ P /$ 8 42
4:$ P 24 8 % # #$ 0
o
A $ 6 h * R 8 @ * ? A .@8$
8 # ? D: Q 8 'B - #
9 / 52 , #
=6 + ) 8 4" #$ ' 2896
.@8$ 8 # @) 8
# @3
D:
? D%
S /$
[-:
7V
# / / T"
#
T"
X <
3
#
? ( 4 B#
$ K
? $
>
X $ 3
@8$
.
!"# $ %&' () *
+ 'B - W 9 $ 9 8
#/$
/$ # 8$ WD
#$#
A $ 'B - ? $ # .@8$ 8 3$
#$# /$
-
@ f 3 8 # ? D: Q 8 A $ C8
1379 1382
# 8$
3
#$# ? $ " H@8$
) /$
8 [ P ) $ # (#$ 0
+ , (" #
q $ # # @) 8 H $/ C8 # T 10
+ 8 < # " ( f [ P ) # q $
4 3 T. .( , # [ P ) @ * #
Z$ $ "
l T $ )$ / h* 5# "
7 AB$ C8 W 0 # 8 4 S "# 2 X $
PYSEBAL
@8$ W/R .
( R S
? ' /$
/$ $ 7 . 0 -
@8$ & ' .
#$#
C -
S / ( R C8 & '
$#
.- #
A $ # ;:$
. .<
X6 p 2 4 ) (8$
# 6 D:
?
# ' $ 2
× 1 h() 5 / 1 P
$ 2 ;
$
3 . ( R # C8 '-:
/
# ' $ 50
× 50
) 2500
; ( [G . 3
* "
3 0 #
@V%
(3 X % X a
& 3
# P 50 .@8$
#$#
$#
/$
( R m 8$
-
& ' 0
;%
?(U
* # 8 1379
1382 @8$
+ ,
$/
A 3$ %$
@8$
)
Ebrahimi pak, 2000
(.
Figure 1. Geographical location of Qazvin plain and land use map of the studied area
#
? $ 'B - /$
G 8 9 8
MODIS
H
Landsat-5-TM Landsat-7-ETM+
# 8$
3 "
+ cD%
56 #
% ) 1 ( 5 T
#$#
3
@8$
.
9 8
MODIS
H 9 8 " @8$ $
$
Terra
$ :
#$#
3
? $ .@8$
9 8
#
q $
705 "
/ d-8 /$
? x ) 3
2330
"
X /
#
@=
/$ 3
/ d-8 Y
? # $ 36
* /$) 4 / 0
4 / 14 S /$ 4ST ( 11
* # Y c H O
* # Y 5 #
#D D : HQ
14 # Y *
5 # D : "
3 #
Y *
5 # V D :
"
.
9 8 G
MODIS
5$ ) +R G<
MODIS
# Y d-8 # #
#$# m 8#
#$# H $ d-8 W 2
$
#$# $ +R G< ? $ W # d-8
7
#$#
e$ 8$
$ G /$ 3
$
HLST
. ... NDVI
$ #
? G< /$ >
# / d-8
?
(LST)
"
MOD11A1
H l2 3
3 0 ) ) " H(NDVI MOD13Q1
( H 7 ? U
/$
G<
MOD09GA
$ h* e$ 8$
$ $#
a # 0
# 8$
3 "
Q S S
/ ( 9 8 ) % #
1 3$ ( .@8$ 3
3 $ 8 @
2000 2002
(' * 7" $ , # G # Q
X $
3
@8$
H { "
8 # 9 8 /$
# 8$#
) 4S3 # 2
( (
#$#
3 . $
Table 1. Data of input sensors along with the specifications of each of them in order to run the algorithm Images used Sensors
Spatial resolution (m) Temporal resolution
(DEM) SRTM
30 -
(Albedo) MOD09GA
MODIS
500 Daily
Land Surface Temperature (LST) MOD11A1
1000 Daily
Vegetation index (NDVI) MOD13Q1
250 16 days
Bands 1 to 5 and 7 LANDSAT-TM
30 15 days
Bands 1 to 7 LANDSAT-ETM+
30 15 days
Figure 2. List of images without clouds and snow examined in each sensor
+ " ,
PYSEBAL
m 8$
$
? 7 AB$
B# ' /$ # 8$
5N n $
8 <
$ . 3 0 5 V 5$ )
:
? $ B# '
$ 4 S 3
.
- $ ) 1 ( λ
# $
? B# ' 0 3λET
5 V )
W/m2
(H
Rn
5$D 3 2 lB 2
)
W/m2
( 3 G
0 p 2 )
W/m2
( 0 3 H
) m <
W/m2
( 3 .
X $ S 4
# 8 HW 0 4 3
? ' Q ' /$
'
? 3
@8$
. ' /$
'
? 3 4 3
# d-8 ) 0 3 l2 3 H(Ts
) (HNDVI
*
/
$ . $ W
)
Zom
( B6 ) d-8 .@8$ (α
$ .
% W ( " Rn
5 T
% 2 /$
(
3 T
# + , / 8 <
3
# .
- $ ) 2 (
1 ↓ ↓
H(W/m2 ) # " e *RS B# ' ?$ # "
RL
* e
# )
W/m2
H(
0T $ H <-8
@ f 5 8$
? D B )
W/m2/K4 5.67 10 8
(
Ts
# / d-8
?
" [ P )
? .@8$ ( 5$ ) G
"
/$
8 < Rn
3
#
PYSEBAL
/$
B# '
9 '8 G
#$#
3 C8 8
? # 8$
"
(Bastiaanssen, 1995)
.
- $ ) 3 (
.
. 0.0038 0.007 1 0.98&'() *
TS datum
#
<G d 3 / d-8 /$
? @8$
Ts
m 8$
3 ? = 0 # # .- Dem
[
@8#
6 . Q B "
5 8$
2$#
# H PYSEBAL
()$
3 H#
? $ / d <G ( $
TS
$
# . # H PYSEBAL
@ . /$ # 8$
# c6 S ) B# ' h - 4
8 < ( 3
#.
- $ ) 4 (
+*,-* .
/01
"
56 # B AU ρ
) $
Kg/m3
H(
Cp
0
>
#
' T=
?
[1004 J kg-1 k-1]
H
rah
@ .
# c6 S #
$ + $ P . $
?
z1
z2
) .@8$ (m/s
$
dT
KN 2$
#
? # q $ Q #D d-8
) @8$
z1 = 0.1
m z2 = 2 m
( R R "
) H(K
"
5$ ) Q
;
-2 /$
#
<-8
|N,$
3
Ts datum
H
? (
#/
3
# B# ' ) 5 .(
[ $ Z ) (a
) (b
# B# ' ) 5 (
$
4 S
# 8 W 0 + ,
$ S
? ' 3
#}
$
?
$ G
$
$ .-
~ 2
$ .
+
@8$
.
- $ ) 5 (
2 3 4 * .
- $ ) 6 (
3 . .1567 859:
;.:06<=.1567 .;.:06<=.859:
- $ ) 7 (
4 . .156>0
;.:06<=.156
,
"
+ SEBS
7 AB$
- SEBS
3 /$ # 8$ $ ':$ & '
.- m . # 36 0 ? ( $
( AB$ /
? ( $ ( : -
H < m . # ':$ & '
Z P
#$# /$ # 8$ $
#$# 8 3$
9 8
#/$
@8$
(Su, 2002)
7 AB$ . 8 SEBS
4 3 $ ) (9 .# $# / # #$# ) (9
0 3 $
9 8
#/$
H B6 }@8$
d-8 #
#$# 4 3 W # ) (9 . a 8 3$
W 8 ) (9 .@8$ T= H# @) 8 H$ #
$ 4 3 9 8
#/$
H
* e
* e .@8$ # "
# 3 $ . 8 <
0
7 AB$ # p 2 ) - $ /$SEBS
8 # 8$ ( 3
#
(Su,
2002)
.
- $ ) 8 (
?@
.
* B c 1 fc * s c C
$ "
e 3 4 " 0 05
/ 0
=
÷Γc
C8
v c$ $ 3
@ B p 2 $ @8$
)
Daughtry et
al., 1989
( $ . 315 / 0
=
Γc
$ .# " # V T $
8 <
3 0 m <
7 AB$ # /$ SEBS
@V T
# 8$
3
@8$
.
#
? $ /$
U
- $ # Q
$ =
$ S
$
# 6 3 0
m <
# 8$
3
#.
* @) 8 ? A /$ "
7 AB$ # # 4 = #
# 8$SEBS
3 .@8$
- $ ) 9 (
D F∗Bln I7I5=5 m I7 5 m J5 C
- $ ) 10 (
KL K
M .
N* ∗*+*,-B) I7I515 h I7 5 h O oh z PC
56 # "
H( [ P ) ? / d-8 /$ q $Z u*
@) 8
" S-,$
H θo
? / d-8 # 4 #
H(? " [ P ) [ P ) $ 4 # θa
H(? "
Ψh
$ |N,$ ; 0 . $
H5 V
Ψm
; $ |N,$
HW . $
zoh
Hd-8 / q $ [ P ) 0 . $
H(
do
q $
%
% .@8$
-. * /
. K O
- & ' AB$ /$ 4, P 7
PYSEBAL
# . SEBS
$ T R /$
( #
6 /$ 'B - # .-
$ 7 5 U
? A
-2 h -
) H(MAE
? A
`%
+ ' -2
) H(RMSE
-2
# $ 8$
) (SE
-2 [ $
? A
) Z (MBE
[ A ( )
(r
# 8$
.@8$ 3
# .
ETmod
H
ETL
QQQQQ QQQQQQQQL H [
- & '
( ?
#/
3 AB$ /$ # 8$
7 8 #
H
- /$ $ & ' 0
/$ 3 R ( $ . A
?
# . /$ Q (
#/ ? /$ $ 3 0
3
3 . - $ ) 11 (
RS T∑WXYZ?.=5:7?.V [
Z
- $ ) 12 (
R\ ∑WXYZ| ?.=5:7?.V|
- $ ) 13 (
R^ ∑WXYZ?.=5:7?.V
- $ ) 14 (
S ∑WXYZ?.=5:7_7?.V Z
- $ ) 15 (
` B∑ ?.V7?.QQQQQQ ?.V =5:7?.QQQQQQQQQQ C=5:
a∑ ?.V7?.QQQQQQ ∑ ?.V =5:7?.QQQQQQQQQQ=5:
012 3" 4
? $ % # 6 'B - ? $ ,$ K "
- & '
7 AB$ /$ # 8$ $/
SEBS YSEBAL
@3# #
H@8$ ? D:
# $ $ S /$
2 U 8 <
$
$ / d-8
? C8 9 8 8 G
MODIS
H
LANDSAT-TM LANDSAT-ETM+
"
.- 'B - #
3 $ . 3 e$ 8$ #
8 3$ $
@8#
6 HQ 8 A $ /$
/$ $ . 3 V .- ( R A $ Q #D 0
.@= 0 W 9 $ $/ 4S3 8 @ 3 #
$ = -
& ' m 8$
€ R * $ = Q
7 AB$ /$ # 8$
$ . . 3 8 < "`
-
# < # ':$ & ' 'B - #
7 AB$ # $
SEBS PYSEBAL
W 0 # 8 /$ ?
c$ $ 3
T. .@8$
V S / +$ o $ . 3
- & ' 3# 6 ':$
5 T $ .- 42$#
. #
(%/$
q H Z$ $ " # q @ ) S +$ o
# .@8$ 0 @T" { ' )$ / Z$ $ # 0
? $
>
/$
15 G H TM
22 G 24 ETM+
G
MODIS
5 $ K #
* 8 1379
1382
# 8$
3 "
q (9 # /$
# 7 AB$
122
% 2 4, P 3 . O D B 6 6
# 8$
/$
9 8 # Y
) 4S3 3 (
#$# 5 T .@8$ 3
. /$ K " 9 6/$
$
?
9 8
#/$
H
? ( -
& ' ':$
+ ,
$/
$ D
6 H@8$
? (
?
# 6 3 /$ $ 0 3 l2 3 8 6
% #
$ :
@= 0 . h * O 6 /$
? AB$ # 7
8 # H AB$
7
PYSEBAL
7"
? `% $ .
-2
? A 9 8 8 # + '
MODIS
H
ETM+
)TM
45 / 0 H 46 / 0 02 / 2 /
(
5$ ) 7 AB$
# .-
= ' 3
@8$
. h *
8 W 9 $ 3 O - & ' 9 8
MODIS
#ETM+
AB$ # 7
A ( R
# .
( R B P # .# $#
"
9
@8#
AB$ # 6 7
PYSEBAL
9 8 /$
H TM
$ . -2
# $ 8$
R
$ Y ,
"
. B$
5$
$
? " # " 3$ q Z
@ )
? $ 9 8 "
9 8 @ TM
# 6 ETM+
Y 'Z S 5$ # V H 3$# $
Q / R
# 9 8 .@8$ETM+
$/$
? H
<
$ )N*$
.
$ P # 4 (S + )N*$
8 S' $
R
$ 2
#.
O l2 3 6
#
4S3 ) 3 ( 5 T
# 9 8 # TM
PYSEBAL
$ . SEBS
[ RMSE
) 02 / 2
34 / 1 /
Z $ . ( [
? ' ) 81 / 0 72 / 0 (
Y 'Z
? O
$ /$
# 2 5 T
#$#
$ @ ) "
? $ $
5$
+ # 5 / G H $#
Hq $ + ( /6
+ 3 2 7
? U +
# [ $ Z 5 8$ B "
@ $#
9 8 . # 6 ETM+
V @ $
9 8
@8$ 3$#TM
H
* "
-2 l2 3 $ .
9 8 # # $ 8$
AB$ # #ETM+
7 8 3
$ . $
[ 17 / 0 30 / 0 # $ $# $
@8$
.
B P # "
9 8 # # TM
7 AB$
PYSEBAL
$ . $
26 / 2 /
$# 2
@8$
.
" * l2 3
-2
# $ 8$
# # /$
9 8
MODIS
$ . ETM+
7"
/$
Q # 6
5 T " @8$ 3 #
Q #D 5#
0 "$
7"
#$#
# 6 3
@ /$ $ 0 + ,
= 0 /$
( R
@8$
5 ( .
*
"
# 4S3 ) 3 ( D ( 5
@8$
9 8
MODIS
4 S /$ $ @ ) # / #$ '
$ : 4 S Q # x $ ) /$
D ( W ) ? $ 0
5$D x $ ) ? -
& '
@ f 3 $ 2 f$
$ H@3$`0
$
?
# %
? V
# 6
$
@ #
9 8 A # # .- 3$#
H@8$
* "
$ .
Z
# ? ' [
? $ 9 8 # #
PYSEBAL
[ SEBS
$ .
$ ) 97 / 0 73 / 0 (
$ (
#
@8$
.
# .
$ # MBE
8
+ ,
= 0 /$
% 2
@8#
6 5 T /$
7"
# 6 5#
7 AB$
8 <
3 .# $#
(%/$
>
- T
W 9 $ 3 5$
T >
C8 "
Owlia
& Sima
) (2021
#
$ @3#
W 9 $ 3
# 3$
# "
"
O
" P /$
@:#
R 4 : : 5#
O
@8#
6 /$
9 8
MODIS
@8$ 3$#
" # .
(Sawadogo et al., 2020)
@:#
O R
@8#
6
7 AB$
PYSEBAL
# . " # " 3$ ( R
O
@8#
.@8$ # Q #D > ? $ /$ 6
5 ( *
"
# 4S3 ) 4 4 : ( T
@8$
.U
W 0 8 Q #D H 3
$ . -
& '
# 3 "
(%/$
4 R#
56
$D=$
, # 3 0
+R G<
@T"
3
$D=$
#
$ 3 .
?(Z #
.U G=
# 8 8 Q #D H 3 7"$
3
0 7"
# 9 5$D -
& ' "
$
# "
@8$
.
% 4S3 ) 4 ( 5$
$
? 0 t 8$
# "
"
# 8$
/$
7 AB$
PYSEBAL
# W 0
8 O
h :#
$ # 2 /$
5 T H #
* "
h *
8 W 9 $ 3
#
#$#
7"
?
KN 2$
@
#$#
( R
#
@8$
"
4 B#
? $
q Z
$
# % 3 0 7"$
# W$ "
/$
{ 8 #
H 3 B P # "
? $ SEBS
+ ,
# .
w
/$
Q f #
# 6 -
& '
$# 2
@8$
.
) 4S3 # 5
T. ( -
# $/ & '
#$#
7 AB$ # $
SEBS PYSEBAL
4 : PN
7"$ ? $ G X $ @ ) @8$
3
/$ Q # + cD% V . 0
7 AB$
.@8 5 (
* ) 4S3 # "
5 ( 4 : T
G @8$
LANDSAT
S Q S + : 4 B#
Z$ $ / T" Z$ $ ? / @8$ $ R 9 8 G /$ V $
MODIS
( . #
* + , 8 # "
C8 #$# 5 T = 0
5$D KN 2$
- # & ' Z$ $ 7 # H 6 Z$ $
9 8 G #
MODIS
@
LANDSAT-
7 AB$ # [ ETM+
PYSEBAL SEBS
) @8$ $ 24
/ 0 H 31 / 0 13 / 0 ) ( 36 / 0 42 / 0
19 / 0 9 8 (
LANDSAT-TM
@
LANDSAT-ETM+
) $ 26 / 0 H 32 / 0 18 / 0 (
) 31 / 0 H 38 / 0 17 / 0
$ (
? $ @ ) .@8 G "
LANDSAT-ETM+
H@= 0 $ : / $ ? $ '
9 8 @ 56 R S Q S
MODIS
# V 5$
Q S / R #
9 8
9 8 @ ETM+
/$ # 8$ $ / .@8$ TM
G + :
H R S Q S Q S # $
Z$ $ "
fg ## 0 ;:$
m 8$
4 S
. # l T $ Y Z$ $ l2 3
Figure 3. Comparison of Evapotranspiration Results Estimated Using SEBS and PYSEBAL Algorithms by Three Sensors
y = 0.9769x + 0.2815 R² = 0.9572 RMSE=0.46 mm
MAE=0.35 MBE=-0.21 SE=0.17
0 2 4 6 8 10 12
PYSEBAL
LYSIMETER
LANDSAT-ETM+
y = 1.0738x - 0.0211 R² = 0.8157 RMSE= 2.02 mm
MAE=1.81 MBE=-0.17 SE=2.26
0 2 4 6 8 10 12
PYSEBAL
LYSIMETER
LANDSAT-TM
y = 1.0473x - 0.284 R² = 0.9664 RMSE=0.45mm
MAE=0.36 MBE=-0.02 SE=0.15
0 2 4 6 8 10 12
PYSEBAL
LYSIMETER
MODIS
y = 0.9622x + 0.0101 R²=0.7359 RMSE=1.17 mm
MAE=0.87 MBE=0.17 SE=0.76
0 2 4 6 8 10 12
SEBS
LYSIMETER
MODIS y = 0.7589x + 0.8628
R2=0.7271 RMSE=1.34 mm
MAE=1.36 MBE=0.89 SE=1.01
0 2 4 6 8 10 12
SEBS
LYSIMETER
LANDSAT-TM
y = 0.9573x - 0.0309 R2=0/=.9089 RMSE=0.61mm
MAE=0.50 MBE=0.26 SE=0.30
0 2 4 6 8 10 12
SEBS
LYSIMETER
LANDSAT-ETM+
Figure 4. Estimated evapotranspiration time series using two algorithms SEBS and PYSEBAL by three sensors in Qazvin plain
T > #
Ramírez-Cuesta et al.
) (2019
fb
# 6 # S Q S + : -
9 $ & '
" q B6 $ . H / [ Z $ . # o .@ $# Z$ $
# / fb # S Q S + :
$ . # 6 -
8 & ' " # $# ? $ /$ 5 T
7 AB$
PYSEBAL
Z$ $ # & ' # 6 # $ R @:# V # S () Y "
$ (
# . . .@8$ 3$#
@8#
6
" T.
# < Z$ $ 'B - #
" @3$# ? $ /$ 5 T
7"
? KN 2$
# Z$ $
# KN 2$ ?
" # =$ & $ 7 # Z$ $ 56 4 R# /$ S
3 $
. 3 7 # Z$ $ # R 7"$ 0 3 # /$
0 2 4 6 8 10 12 14
ET(mm/day)
Day of year
Landsat-7 Lysimeter
PYSEBAL SEBS
0 2 4 6 8 10 12 14
ET(mm/day)
Day of year
MODIS Lysimeter
PYSEBAL SEBS
0 2 4 6 8 10 12 14
ET(mm/day)
Day of year Landsat-5
Lysimeter PYSEBAL SEBS
SEBS
PYSEBAL
LANDSAT-TM
MODIS LANDSAT-ETM+
Figure 5. Actual evapotranspiration map estimated by three sensors in PYSEBAL and SEBS algorithms in August 2001.
%
? $ "
Bg # %
# S a 0 [ Z $ . 8 <
w B a
#$# /$ # 8$
-.
# 6 8 < $ 3
#
# . /$ # 8$
, 3 [8 ( $ $ Kc
# ' 8
# 3 X < 6 D H
$
• <B @8$ ?S( " @3$# % q Z ? $ # . $ ? $ / S 3 +$ o
4 : V%
X6 5$D 8 < # -2
# # 9 $ 0 /
.# 3
$ #
? . >
Z [ 0 ?(U
Z [ 0
@8#
AB$ /$ 6 7
PYSEBAL
% . 3 2$# SEBS
? $ "
Z [ 0
c$ $ ) (9 #
$ U /$
0>
7 5 U 0 q $ H
B6 0 p 2 d-8 H
0 e @ . /$
@8$ p 2 H
0 "
S ;% ?(U /$ $ # Q
"
(
? %
? $ "
/ / #
0 'B - #
@T" ?(U
@8$ 3 .
8 $`B
# . Z [ 0
@T" ?(U R # 3
(
# .
@8#
AB$ # /$ 6 7
SEBS PYSEBAL
. 3 2$#
i d-8 l2 3 /$ ' 0 [ Z )
) 0 3 l2 3 (LAI
@8$ (NDVI
)
Jafari
Sayadi et al., 2018
( % .
? $ "
3 l2 3
/$ $ h * /$ 0 0
* 4 : 8 <
@8$
$ . # / t $ t $ ? $ H# $# 0 [ Z
l2 3 ? $ A S
':$ 3 # * # 0
S 3 @ # $ 6
fg .# 3 ;:$
O % 2
@8#
6 7 AB$ # /$
SEBS
PYSEBAL
9 8 #
MODIS
# . 56 .
7 AB$ " #$# 5 T ( R
PYSEBAL
SEBS
3$# $ 8 # S () 0 [ Z $ . # 6 # # -
H $
* ) % h - "
2 l2 3 O (
7 AB$ #$# 5 T 6
PYSEBAL
$ . 16 / 0
RMSE=
A ( $ . 68
/ 0 $ V # S ()
7 AB$ @ 3$# SEBS
@8$
8
W 9 $ 3 C8 l2 3
=$
4h D 5 T
#
@<,
$
? .@8$ q Z 7
# $ 8$ -2 8 # ? U
/$ 0 [ Z 7 AB$ # # " #$# 5 T # . # $# 2 (" 0 "$
@ f 3
.@8$ # Q #D ( R C8
Table 2. Comparison of estimated plant coefficient results using SEBS and PYSEBAL algorithms by
MODIS sensor
SE Ia
R MBE MAE RMSE Algorithm
0.03 0.60 0.68 0.03 0.10 0.16
PYSEBAL
0.03 0.27 0.62 0.11 0.15 0.19 SEBS
5 ( 4S3 # " * )
6 D ( 4 : PN @8$
# @T [ Z +$ o W 0
% 8
? $ "
7"$ /$ 0 3
@8$ $# 2 H
$D=$
@8$ = .
* # "
#$#
0 3 7"$ 5$D ? R # 0 "
$ :
= 0
$ # ', D [ Z ? $ @8$
.@8$ 3$# #
4 $ ) /$ A # S 4 :
% 3# 6 # . #
[ Z 7 AB$ C8 Kc
3 SEBS
.
* "
8 + , 0 [ Z " #$# 5 T = 0
y"$ # 7 AB$ ? $ C8 3# 6 8 W 0
7 AB$ C8 3# 6 [ Z @
PYSEBAL
.@8$ # $ ( # 6
0 [ Z # .
@( : #
@ Y
# 8$ Z$ $ 6 S +$ o 4 B# ? ( .# 3
3 $ 2 • <B D 6 / + 8 < # 56 /
0 [ Z ? (
':$ $ . # 6 # $
6 S 3 Q d-8 # 0 = G X6 fg
;:$
T" Z$ $ 0$ .# 3 ; 8 d-8 # /
/$
HX6 ;
)$ / p 2 6 X6 3 @=6 H ( 3 3$# @ # < ( 3 4 y"$ P 8#
@ # < ? $ +$ f$
3 Hi d-8 l2 3 #
$ 2 • <B 0 [ Z # 6 # 56 9 # 0 4 B# ? ( . 3 , #
+ /$ # 8$ W ) 9 8
#/$
) D ':$ C $ 3 /$
x = X - P # ( 3
$ " # % ; h * /$ 0 [ Z $ . 3 C $ 3
$ 6 #
= 0 # $ # " 3 $ 2 # 8$ H
-2 ':$ # . # / KN 2$ # % + , 4 : V%
6 $ . 8 < # . 3 $ 2 = G X
Figure 6. Investigation of values obtained from the plant coefficient by SEBS and PYSEBAL algorithms and its comparison with lysimetric data
0 0.3 0.6 0.9 1.2 1.5 1.8
Crop Coefficient (kc)
Day of year PYSEBAL
LYSIMETER SEBS
5 4 6
>
/$ @= 0 + , ? D: @3# # Z P 7V 56 K$ $ ? # 6 5$
- & '
7 AB$ # G /$ # 8$
SEBS PYSEBAL
W
)$ / h* # .#
"b 7 AB$ # # S () <
#$# /$ # 8$ 56 . $ "
+ , ( R
.# T0 X6 ; @ # T # $ 5$ @= 0
" * h* " #$# 5 T > ? $ /$ 4, P O H
7"$ 0 3 # . H
- & ' 3$#
7 @8$
7 AB$ # . # ? U
" * 7 AB$
PYSEBAL
S () @8$ $ @ $ V #
7 AB$
8 # $ / . ( # 9 $ SEBS
+ ,
= 0 9 8 H 9 8 8 C8
LANDSAT-
# @ ETM+
# 9 8 S Q S + : /$ A
h :# R T. % $ # $# 2
4 : 5$D Z$ $ "
S Q S # B : Z$ $
7 . ( 4() h= / T"
? $ % ? U "
9 8
MODIS
• <B/$
/ Q S + : + ,
$/
# 6 # 2 @:# @8$ $ H 3
+ , 9 8 4 . # $ H 3 3$# = 0
LANDSAT-ETM+
$# 2 8 S Q S /$
T $`B .@8$
# V 3 # + , # # 6
- & '
9 8 H; 8 # < $
MODIS
# 6 @:# /$
4 : QU " m . .* # $ H@8$ $# 2 B :
h :# # 6 G h /$
MODIS
LANDSAT
S Q S G /$ # 3 # 8$
6 # - .# 3 # 8$ .- # & '
( 7* 4
1. Surface Energy Balance System
2. Surface Energy Balance Algorithm for Land 3. Mapping Evapotranspiration at high Resolution with
Internalized Calibration 4. Index of Agreement (Ia)
89 : ;
‚ 0
# % 5 0 C8 ;= x '
.# $
82
1. Bansouleh, B. F., Karimi, A. R., & Hesadi, H.
(2015). Evaluation of SEBAL and SEBS algorithms in the estimation of maize evapotranspiration. International Journal of Plant & Soil Science, 350-358.
2. Bastiaanssen, Wilhelmus Gerardus Maria.
(1995). Regionalization of surface flux densities and moisture indicators in composite terrain: A remote sensing approach under clear skies in Mediterranean climates. Wageningen University and Research, 271.
3. Bastiaanssen, Wim G M. (2000). SEBAL- based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229(1-2), 87-100.
4. Caiserman, A., Amiraslani, F., & Dumas, D.
(2021). Assessment of the agricultural water budget in southern Iran using Sentinel-2 to Landsat-8 datasets. Journal of Arid Environments, 188, 104461.
5. Daughtry, C. S. T., Biehl, L. L., & Ranson, K.
J. (1989). A new technique to measure the spectral properties of conifer needles. Remote Sensing of Environment, 27(1), 81-91.
6. Ebrahimi pak N.A. (2000). Determination of evapotranspiration potential of reference plant (grass) by lysymeter method and comparison with experimental methods in Qazvin. Ministry of Agricultural Jihad, Agricultural Research, Education and Promotion Organization, Qazvin Agricultural and Natural Resources Research Center. (In Persian).
7. Gowda, P. H., Chavez, J. L., Colaizzi, P. D., Evett, S. R., Howell, T. A., & Tolk, J. A.
(2008). ET mapping for agricultural water management: present status and challenges.
Irrigation Science, 26(3), 223-237.
8. Hailegiorgis, W. S. (2006). Remote Sensing analysis of summer time Evapotranspiration using SEBS algorithm. ITC, Enschede, 130.
9. Hessels, T., van Opstal, J., Trambauer, P., Bastiaanssen, W., Faouzi, M., Mohamed, Y., &
ErRaji, A. (2017). pySEBAL Version 3.3. 7.
10. Jafari Sayadi, F., Gholami Sefidkouhi, M. A.,
& Ziyaeetabar Ahmadi, M. (2018). Leaf Area Index and Crop Coefficient Estimation from Operational Land Imager (OLI) Sensor Data.
Journal of Water Research in Agriculture, 32(3), 395-404.(In Persian)