٠
ﺐﻟﺎﻄﻣ ﺖﺳﺮﻬﻓ :
ﻩﺪﻴﻜﭼ
...
...
...
...
...
. ۱
ﻪﻣﺪﻘﻣ
...
...
...
...
...
. ۲
ﻲﻄﺧﺮﻴﻏ ﻱﺎﻫ ﻢﺘﺴﻴﺳ ﻱﺍﺮﺑ ﻩﺪﻨﻨﮐ ﻝﺮﺘﻨﮐ ﻲﺣﺍﺮﻃ
...
...
...
۴
ﺵﻭﺭ FEEDBACK LINEARIZATION
...
...
...
...
٤
ﺵﻭﺭ LINEARIZATION
INPUT-OUTPUT
...
...
...
...
٦
ﺵﻭﺭ LINEARIZATION
INPUT STATE
...
...
...
...
٨
ﻢﺘﺴﻴﺳ ﻲﺿﺎﻳﺭ ﻝﺪﻣ
...
...
...
...
...
۱۰
ﺵﻭﺭ ﻲﺳﺭﺮﺑ FEEDBACK LINEARIZATION
ﻲﺸﻨﮐﺍﻭ ﻲﺸﺧﺮﭼ ﻝﻭﺪﻧﺎﭘ ﻱﻭﺭ ﺮﺑ
...
۱۱
ﻱﺯﺎﺳ ﻪﻴﺒﺷ ﻭ ﺞﻳﺎﺘﻧ :
...
...
...
...
...
۱۴
ﻪﺠﻴﺘﻧ ﻱﺮﻴﮔ :
...
...
...
...
...
۲۱
١
ﻩﺪﻴﻜﭼ :
ﻝﺮﺘﻨﻛ ﻭ ﻞﻴﻠﺤﺗ ﻩﮊﻭﺮﭘ ﻦﻳﺍ ﺭﺩ ﻳ
ﺳ ﮏ ﻴ ﺸﺧﺮﭼ ﻝﻭﺪﻧﺎﭘ ﻢﺘﺴ ﻲ
ﺸﻨﮐﺍﻭ
١ﻲ ﺳﺭﺮﺑ ﺩﺭﻮﻣ ﻲ
ﻪـﺘﻓﺮﮔ ﺭﺍﺮـﻗ
ﺳﺍ ﺖ . ﺵﻭﺭ ﺯﺍ ﻢﺘﺴﻴﺳ ﻦﻳﺍ ﻝﺮﺘﻨﻛ ﻱﺍﺮﺑ Feedback linearization
ﺷ ﻩﺩﺎﻔﺘﺳﺍ ﺖـﺳﺍ ﻩﺪ
. ﻱﺮﻴﮔﺭﺎـﻜﺑ
ﻲﻣ ﻥﺎﺸﻧ ﺵﻭﺭ ﻦﻳﺍ ﻪﻛ ﺪﻫﺩ
ﻲﻣ ﻲﺑﻮﺨﺑ ﺵﻭﺭ ﻦﻳﺍ ﺍﻮﺗ
ﺪﻧ ﻩﺪﺷ ﺺﺨﺸﻣ ﻩﺩﻭﺪﺤﻣ ﺭﺩ ﺪـﻨﻛ ﺭﺍﺪﻳﺎﭘ ﺍﺭ ﻢﺘﺴﻴﺳ
.
ﺭﺍﺰـﻓﺍ ﻡﺮـﻧ ﺭﺩ ﻱﺮﺗﻮﻴﭙﻣﺎـﻛ ﻱﺯﺎـﺳ ﻪﻴﺒـﺷ ﺯﺍ ﻩﺩﺎﻔﺘـﺳﺍ ﺎـﺑ ﺵﻭﺭ ﻦـﻳﺍ ﻱﺮﻴﮔﺭﺎـﻜﺑ ﺯﺍ ﻞﺻﺎﺣ ﺞﻳﺎﺘﻧ ﻥﺎﻳﺎﭘ ﺭﺩ ﻤﻴﺳ ﺖﺳﺍ ﻩﺪﻣﺁ ﻚﻨﻴﻟﻮ .
Reaction Wheel Pendulum١
٢
ﻪﻣﺪﻘﻣ :
ﺧﺮﭼ ﻝﻭﺪﻧﺎﭘ ﺸ
ﻲ ﺸﻨﮐﺍﻭ ﻲ ﻪﮐ ﻪﻧﻮﮕﻧﺎﻤﻫ ﻞﮑﺷ ﺭﺩ
۱ ﺖﺳﺍ ﻩﺪﺷ ﻩﺩﺍﺩ ﻥﺎﺸﻧ ﺖﺳﺍ ﻲﮑﻳﺰﻴﻓ ﻝﻭﺪﻧﺎﭘ ﮏﻳ
ﺖـﺳﺍ ﻩﺪﺷ ﻞﺼﺘﻣ ﻥﺁ ﻱﺎﻬﺘﻧﺍ ﻪﺑ ﻥﺭﺎﻘﺘﻣ ﮏﺴﻳﺩ ﮏﻳ ﻪﮐ .
ﺎـﺑ ﻱﺯﺍﻮـﻣ ﺖـﻬﺟ ﺭﺩ ﺪـﻧﺍﻮﺗ ﻲـﻣ ﮏـﺴﻳﺩ ﻦـﻳﺍ
ﻪﻧﺍﺩﺍﺯﺁ ﺕﺭﻮﺼﺑ ﻝﻭﺪﻧﺎﭘ ﺶﺧﺮﭼ ﺪﺧﺮﭽﺑ
. ﺭﻮـﺗﻮﻣ ﮏـﻳ ﻂﺳﻮﺗ ﮏﺴﻳﺩ ـﻳﺮﺤﺗDC
ﺭﻭﺎﺘـﺸﮔ ﻭ ﺩﻮـﺷ ﻲـﻣ ﮏ
ﺍﺰﺠﻣ ﻱ ﻟﻮﺗ ﻴ ﺍ ﻪﻈﺤﻟ ﺏﺎﺘﺷ ﻂﺳﻮﺗ ﻩﺪﺷ ﺪ ﻱ
ﺩﻳ ﻣ ﮏﺴ ﻲ ﺪﻧﺍﻮﺗ ﺳ ﻝﺮﺘﻨﮐ ﺖﻬﺟ ﻴ
ﻢﺘـﺴ ﺭﺍﺮـﻗ ﻩﺩﺎﻔﺘـﺳﺍ ﺩﺭﻮـﻣ
ﮔﻴ ﺩﺮ .
ﻞﮑﺷ ۱ - ﺸﺧﺮﭼ ﻝﻭﺪﻧﺎﭘ ﻲ
ﺸﻨﮐﺍﻭ ﻲ
ﺍﺮﺑ ﻩﺪﺷ ﻩﺩﺎﻔﺘﺳﺍ ﻪﻟﺎﻘﻣ ﺭﺩ ﻱ
ﺍﻳ ﻟﺮﺘﻨﮐ ﺵﻭﺭ ﻭﺩ ﻩﮊﻭﺮﭘ ﻦ ﻲ
ﺍﺮﺑ ﻱ ﺍ ﻝﺮﺘﻨﮐ ﻳ
ﺳ ﻦ ﻴ ﺭﺎﮐ ﻪﺑ ﻢﺘﺴ
ﺖﺳﺍ ﻩﺪﺷ ﻩﺩﺮﺑ .
ﺵﻭﺭ
Swingup Control
ﻭ
Feedback Linearization
. ﺭﺩ ﻪﮐ ﺭﻮﻄﻧﺎﻤﻫ
ﺎﻫ ﺶﺨﺑ ﻱ
ﺪﻌﺑ ﻱ
ﺵﻭﺭ ﺪﺷ ﺪﻫﺍﻮﺧ ﺺﺨﺸﻣ ﻢﻫ ﻪﻟﺎﻘﻣ
Feedback Linearization
ﺎﻬﻨﺗ
ﻩﺩﻭﺪﺤﻣ ﺭﺩ
2
1 <π
ﺍﻳ
qﺳ ﻦ ﻴ ﺩﺮﮐ ﺪﻫﺍﻮﺧ ﻝﺮﺘﻨﮐ ﺍﺭ ﻢﺘﺴ .
ﺍﺮﺑﺎﻨﺑ ﻳ ﺍﺮﺑ ﻪﻃﻮﺑﺮﻣ ﻪﻟﺎﻘﻣ ﺭﺩ ﻦ ﻱ
ﺳ ﻥﺪﻧﺎﺳﺭ ﻴ
ﺍ ﻪﺑ ﻢﺘﺴ ﻳ
ﺵﻭﺭ ﺯﺍ ﻩﺩﻭﺪﺤﻣ ﻦ
Swingup Control
ﻩﺪﺷ ﻩﺩﺎﻔﺘﺳﺍ ﺖﺳﺍ
.
ﻳ
ﻨﻌ
ﻲ
ﺭﺩ
٣
ﺳ ﻝﺮﺘﻨﮐ ﻊﻗﺍﻭ ﻴ
ﻩﺩﻭﺪﺤﻣ ﺭﺩ ﻢﺘﺴ
2
1 ≥π
ﻨﭽﻤﻫ ﻭ
qﻴ ﻝﻭﺪﻧﺎﭘ ﻥﺩﺮﺑ ﻻﺎﺑ ﻦ ﻪﻴﺣﺎﻧ ﻦﻳﺍ ﺯﺍ
ﻟﺮﺘﻨﮐ ﺵﻭﺭ ﻂﺳﻮﺗ ﻲ
Swingup Control
ﻣ ﻡﺎﺠﻧﺍ ﻲ ﺩﻮﺷ .
ﺍ ﻡﺎﺠﻧﺍ ﺯﺍ ﻑﺪﻫ ﻪﮐ ﺎﺠﻧﺁ ﺯﺍ ﻳ
ﺳﺭﺮﺑ ﻩﮊﻭﺮﭘ ﻦ ﻲ
ﺵﻭﺭ
Feedback Linearization
ﻭﺭ ﺮﺑ ﻱ ﺍﻳ ﻦ
ﺳ ﻴ ﻢﺘﺴ ﺍ ﺭﺩ ﺍﺬﻟ ﺖﺳﺍ ﻳ
ﺍ ﺎﻬﻨﺗ ﺵﺭﺍﺰﮔ ﻦ ﻳ
ﺳﺭﺮﺑ ﺯﺍ ﻭ ﻩﺩﺍﺩ ﻪﺟﻮﺗ ﺩﺭﻮﻣ ﺍﺭ ﺵﻭﺭ ﻦ ﻲ
ﺵﻭﺭ
ﻟﺮﺘﻨﮐ ﻲ
Swingup Control
ﻣ ﺮﻈﻨﻓﺮﺻ ﻲ
ﺩﻮﺷ .
ﺍ ﺭﺩ ﻳ ﺳﺭﺮﺑ ﻪﺑ ﺍﺪﺘﺑﺍ ﺵﺭﺍﺰﮔ ﻦ ﻲ
ﻠﮐ ﻲ ﺎﻫ ﻩﺪﻨﻨﮐ ﻝﺮﺘﻨﮐ ﻱ
ﻏ ﻴ ﻄﺧﺮ ﻲ , ﺵﻭﺭ
Feedback
Linearization
ﺎﻫ ﺶﺨﺑ ﻭ ﻱ
ﻫﺍﻮﺧ ﻥﺁ ﻒﻠﺘﺨﻣ ﻴ
ﺖﺧﺍﺩﺮﭘ ﻢ .
ﺳﺭﺮﺑ ﻪﺑ ﺲﭙﺳ ﻲ
ﺭ ﻝﺪﻣ ﻳ ﺿﺎ ﻲ
ﺳ ﻴ ﻣ ﻢﺘﺴ ﻲ ﭘ ﺯﺍﺩﺮ ﻳ ﺵﻭﺭ ﻭ ﻢ
Feedback Linearization
ﻭﺭ ﺮﺑ ﺍﺭ ﻱ ﺍﻳ ﺳ ﻦ ﻴ ﻣ ﻝﺎﻤﻋﺍ ﻢﺘﺴ ﻲ
ﻨﮐ ﻴ ﻢ . ﻧ ﺎﻬﺘﻧﺍ ﺭﺩ ﻴ
ﺎﺘﻧ ﺰ ﻳ ﺒﺷ ﻭ ﺞ ﻴ
ﺯﺎﺳ ﻪ ﻱ ﺎﻫ ﻱ ﺍ ﻝﺎﻤﻋﺍ ﺯﺍ ﻞﺻﺎﺣ ﻳ
ﻭﺭ ﺮﺑ ﺵﻭﺭ ﻦ ﻱ
ﺳ ﻴ ﺍﺭ ﻢﺘﺴ
ﻣ ﺭﺍﺮﻗ ﻪﺟﻮﺗ ﺩﺭﻮﻣ ﻲ
ﻫﺩ ﻴ ﻢ .
٤
ﻲﻄﺧﺮﻴﻏ ﻱﺎﻫ ﻢﺘﺴﻴﺳ ﻱﺍﺮﺑ ﻩﺪﻨﻨﮐ ﻝﺮﺘﻨﮐ ﻲﺣﺍﺮﻃ :
ﺘﻨﮐ ﺯﺍ ﻩﺩﺎﻔﺘﺳﺍ ﻩﺪﻤﻋ ﻞﻳﻻﺩ ﺯﺍ ﻲﮑﻳ
ﻦﻳﺍ ﻪﮐ ﺖﺳﺍ ﻲﻌﻴﺳﻭ ﻩﺩﻭﺪﺤﻣ ﻲﻄﺧﺮﻴﻏ ﻱﺎﻫ ﻩﺪﻨﻨﮐ ﻝﺮ
ﻝﺮﺘﻨﮐ ﻦﻳﺍ ﻪﮐ ﺖﺳﺍ ﻲﻳﻻﺎﺑ ﺭﺎﻴﺴﺑ ﺖﻗﺩ ﻦﻴﻨﭽﻤﻫ ﻭ ﺪﻨﮐ ﻞﻤﻋ ﺪﻧﺍﻮﺗ ﻲﻣ ﻩﺪﻨﻨﮐ ﻝﺮﺘﻨﮐ ﺩﺭﺍﺩ ﻩﺪﻨﻨﮐ .
ﻪﻟﺎﺴﻣ ﻲﮑﻳ ﺪﻳﺁ ﻲﻣ ﺶﻴﭘ ﻪﻟﺎﺴﻣ ﻭﺩ ﺎﻫ ﻩﺪﻨﻨﮐ ﻝﺮﺘﻨﮐ ﻉﻮﻧ ﻦﻳﺍ ﻲﺣﺍﺮﻃ ﺭﺩ
Regulation
ﻭ
ﻪﻟﺎﺴﻣ ﻱﺮﮕﻳﺩ
Traking
ﺖﺳﺍ .
ﻲﻄﺧﺮﻴﻏ ﻲﮑﻴﻣﺎﻨﻳﺩ ﻢﺘﺴﻴﺳ
) ), ( ), (
(x t u t t f
x&=
ﺪﻳﺮﻴﮕﺑ ﺮﻈﻧ ﺭﺩ ﺍﺭ .
ﻪﻟﺎﺴﻣ ﺭﺩ
Regulation
ﻝﺮﺘﻨﮐ ﻥﻮﻧﺎﻗ ﺪﻳﺎﺑ ﻪﻴﻟﻭﺍ ﻂﻳﺍﺮﺷ ﺮﮔﺍ ﻪﮐ ﻢﻳﺭﻭﺁ ﺖﺳﺩ ﻪﺑ ﻱﺭﻮﻃ ﺍﺭ u
ﻝﻮﺒﻗ ﻞﺑﺎﻗ ﻱﺎﻀﻓ ﺯﺍ ﺎﺠﮐ ﺮﻫ ﺭﺩ ﻕﻮﻓ ﻢﺘﺴﻴﺳ )
(
Ωﻪﺑ ﺍﺭ ﻢﺘﻴﺳ ﻝﺮﺘﻨﮐ ﻥﻮﻧﺎﻗ ﻦﻳﺍ ﻩﺎﮕﻧﺁ ﺪﺷﺎﺑ
ﺪﻧﺎﺳﺮﺑ ﻝﺩﺎﻌﺗ ﻪﻄﻘﻧ .
ﻥﺎﻣﺯ ﺭﺩ ﻲﻨﻌﻳ
∞
→
ﺖﻟﺎﺣ ﻪﺑ
t=0
ﺪﺳﺮﺑ
x.
ﻪﻟﺎﺴﻣ ﺭﺩ
Trakin g
ﻝﺮﺘﻨﮐ ﻥﻮﻧﺎﻗ ﻥﺩﺭﻭﺁ ﺖﺳﺪﺑ ﻑﺪﻫ ﻂﻳﺍﺮﺷ ﺮﻫ ﺯﺍ ﻪﮐ ﻱﺭﻮﻃ ﺖﺳﺍ u
ﻱﺎﻀﻓ ﺭﺩ ﻪﻴﻟﻭﺍ ﻱﺎﻄﺧ ﻢﻴﻨﮐ ﻉﻭﺮﺷ
ΩTraking
ﻲﻨﻌﻳ
) ( ) (t y t y − d
ﻞﻴﻣ ﺮﻔﺻ ﺖﻤﺳ ﻪﺑ
ﻱﺎﻫ ﺖﻟﺎﺣ ﻦﻴﻨﭽﻤﻫ ﻭ ﺪﻨﮐ ﺪﻧﺎﻤﺑ ﺩﻭﺪﺤﻣ ﺰﻴﻧ ﻢﺘﺴﻴﺳ
.
ﺵﻭﺭ ﻲﻄﺧﺮﻴﻏ ﻱﺎﻫ ﻩﺪﻨﻨﮐ ﻝﺮﺘﻨﮐ ﻲﺣﺍﺮﻃ ﺭﺩ ﻱﺩﺮﺑﺭﺎﮐ ﺭﺎﻴﺴﺑ ﻱﺎﻬﺷﻭﺭ ﺯﺍ ﻲﮑﻳ
Feedback
linearization
ﺖﺳﺍ .
ﺵﻭﺭ Feedback linearization :
ﺮﻴﻏ ﺎﻫﺎﮔ ﺎﻳ ﻭ ﻲﻄﺧ ﻢﺘﺴﻴﺳ ﮏﻳ ﻪﺑ ﺍﺭ ﻲﻄﺧﺮﻴﻏ ﮏﻴﻣﺎﻨﻳﺩ ﺎﺑ ﻢﺘﺴﻴﺳ ﺍﺪﺘﺑﺍ ﺵﻭﺭ ﻦﻳﺍ ﺭﺩ ﺵﻭﺭ ﻂﺳﻮﺗ ﺲﭙﺳ ﻭ ﻩﺩﺮﮐ ﻞﻳﺪﺒﺗ ﻲﻄﺧ ﺎﺘﺳﺍ ﻱﺎﻫ
ﻲﻣ ﻝﺮﺘﻨﮐ ﺍﺭ ﻥﺁ ﻲﻄﺧ ﺩﺭﺍﺪﻧ ﻛ
ﺪﻨﻨ . ﺭﺩ
ﺖﻬﺟ ﻲﻄﺧ ﻩﺪﻨﻨﮐ ﻝﺮﺘﻨﮐ ﮏﻳ ﺏﺎﺨﺘﻧﺍ ﻭ ﻲﻄﺧﺮﻴﻏ ﺮﺛﺍ ﻑﺬﺣ ﻑﺪﻫ ﺵﻭﺭ ﻦﻳﺍ ﺭﺩ ﻊﻗﺍﻭ
ﺖﺳﺍ ﻱﺯﺎﺳ ﺭﺍﺪﻳﺎﭘ
.
٥
ﺖﺳﺍ ﺖﻤﺴﻗ ﻭﺩ ﻞﻣﺎﺷ ﺵﻭﺭ ﻦﻳﺍ .
۱ ( Linearization
Input State
۲ ( Linearization
Input-Output
ﺵﻭﺭ ﺭﺩ
Linearization Input-Output
ﻃ ﻪﻟﺎﺴﻣ ﻪﻟﺎﺴﻣ ﻲﺣﺍﺮ
Traking
ﺭﺩ ﺎﻣﺍ ﺖﺳﺍ
ﺵﻭﺭ
Linearization Input Stat
e
ﻪﻟﺎﺴﻣ ﻲﺣﺍﺮﻃ ﻪﻟﺎﺴﻣ
Regulation
ﺖﺳﺍ .
ﻝﺮﺘﻨﮐ ﻥﻮﻧﺎﻗ ﻪﮐ ﺖﺳﺍ ﻦﻳﺍ ﻑﺪﻫ ﺵﻭﺭ ﻭﺩ ﺮﻫ ﺭﺩ ﻪﺘﺳﺍﻮﺧ ﻪﮐ ﻢﻳﺭﻭﺁ ﺖﺳﺩ ﻪﺑ ﻱﺭﻮﻃ ﺍﺭ u
ﺩﺯﺎﺳ ﻩﺩﺭﻭﺁﺮﺑ ﺍﺭ ﺮﻈﻧ ﺩﺭﻮﻣ ﻪﻟﺎﺴﻣ ﻱﺎﻫ .
ﻝﺮﺘﻨﮐ ﻥﻮﻧﺎﻗ ﻲﺣﺍﺮﻃ ﻪﻟﺎﺴﻣ ﻲﻠﮐ ﺖﻟﺎﺣ ﺭﺩ ﻢﺘﺴﻴﺳ ﻱﺍﺮﺑ u
ﻡﺮﻓ ﻪﺑ ﻱﺩﻭﺭﻭ ﮏﺗ ﻲﻄﺧﺮﻴﻏ
) ), ( ), ( ( )
(t f x t u t t
x& =
ﺖﺳﺍ ﻪﻠﺣﺮﻣ ﻭﺩ ﻞﻣﺎﺷ .
۱ ( ﻲﻄﺧﺮﻴﻏ ﺖﻟﺎﺣ ﻞﻳﺪﺒﺗ ﻥﺩﺭﻭﺁ ﺖﺳﺩ ﻪﺑ )
ﻲﻨﻌﻳ ﺯﺍ ﻲﻄﺧﺮﻴﻏ ﻲﻌﺑﺎﺗ x
ﺪﺷﺎﺑ z ( ﻪﺑ
ﺕﺭﻮﺻ
) (x w Z =
ﻝﺮﺘﻨﮐ ﻥﻮﻧﺎﻗ ﻥﺩﺭﻭﺁ ﺖﺳﺩ ﻪﺑ ﺲﭙﺳ ﻭ ﺮﻴﻏ ﻲﻌﺑﺎﺗ ﺩﻮﺧ ﻪﮐ u
ﺯﺍ ﻲﻄﺧ ﻭ x
ﺖﺳﺍ v )
) , (x v g u=
( ﻪﺑ
ﻢﺘﺴﻴﺳ ﻪﺑ ﻲﻄﺧ ﺮﻴﻏ ﻢﺘﺴﻴﺳ ﻪﮐ ﻱﺭﻮﻃ
ﻲﻄﺧ
BV AZ
Z& = +
ﺩﻮﺷ ﻞﻳﺪﺒﺗ .
۲ ( ﻲﺣﺍﺮﻃ ﻱﺍﺮﺑ ﻲﻄﺧ ﺩﺭﺍﺪﻧﺎﺘﺳﺍ ﻱﺎﻫﺪﺘﻣ ﺯﺍ ﻲﮑﻳ ﺯﺍ ﻩﺩﺎﻔﺘﺳﺍ . v
ﺍ ﻪﻣﺍﺩﺍ ﺭﺩ ﻳ
ﻟﺮﺘﻨﮐ ﺵﻭﺭ ﻭﺩ ﻦ ﻲ
ﺳﺭﺮﺑ ﺩﺭﻮﻣ ﻪﺻﻼﺧ ﺭﻮﻃ ﻪﺑ ﺍﺭ ﻲ
ﻣ ﺭﺍﺮﻗ ﻲ ﻫﺩ ﻴ ﻢ .
٦
ﺵﻭﺭ Linearization Input-Output
:
ﺘﺴﻴﺳ ﺕﻻﺩﺎﻌﻣ ﺪﻴﻨﮐ ﺽﺮﻓ ﺪﺷﺎﺑ ﺮﻳﺯ ﺕﺭﻮﺻ ﻪﺑ ﺎﻣ ﻢ
:
) ۱ (
) x ( h y
u ) x ( g ) x ( f x
=
+
& =
) ۲ (
v ) x ( ) x ( u =α +β
ﻪﮐ ﻢﻳﺮﻴﮔ ﻲﻣ ﻪﺠﻴﺘﻧ ﻻﺎﺑ ﺕﻻﺩﺎﻌﻣ ﺯﺍ ﻪﮐ
) ۳ (
) x ( h y
v ) x ( ) x ( g ) x ( ) x ( g ) x ( f x
=
β + α +
& =
ﻢﻴﻧﺍﻮﺗ ﻲﻣ ﺎﻣ ﺕﻻﺩﺎﻌﻣ ﻦﻳﺍ ﺯﺍ ﻩﺩﺎﻔﺘﺳﺍ ﺎﺑ input-output
ﻱﺯﺎـﺳ ﻩﺩﺎﻴﭘ ﻢﺘﺴﻴﺳ ﻱﻭﺭ ﺮﺑ ﺍﺭ
ﻢﻴﻨﮐ . ﻝﺮﺘﻨﮐ ﻥﻮﻧﺎﻗ ﻪﮐ ﺖﺳﺍ ﻦﻳﺍ ﺎﻣ ﻑﺪﻫ ﻢﻴـﻨﮐ ﺪﻴﻟﻮﺗ ﺍﺭ u
. ﻢﻴﻧﺍﻮـﺘﺑ ﺪـﻳﺎﺑ ﺎـﻣ ﻲـﻨﻌﻳ u
ﺴﻴﺳ ﺎﺗ ﻢﻴﻨﮐ ﻝﺎﻤﻋﺍ ﻢﺘﺴﻴﺳ ﻪﺑ ﺍﺭ ﺐﺳﺎﻨﻣ ﺩﻮﺷ ﺭﺍﺪﻳﺎﭘ ﻢﺘ
.
ﺪﻳﺎﺑ ﺍﺪﺘﺑﺍ ﺭﺎﮐ ﻦﻳﺍ ﻱﺍﺮﺑ ﻖﻳﺮﻃ ﺯﺍ ﻭ ﻢﻳﺯﺎﺴﺑ ﺍﺭ v
ﻪـﻟﺩﺎﻌﻣ ﻪـﺑ ﻪﺟﻮﺗ ﺎﺑ ﻭ v )
۲ ( ﻢﻳﺯﺎـﺴﺑ ﺍﺭ u
ﻞﮑﺷ ﺕﺭﻮﺻ ﻪﺑ ﻲﻟﺮﺘﻨﮐ ﻞﮑﺷ
۲ - ﺖﺳﺍ .
ﻞﮑﺷ ﺭﺩ ۲
- ﮏـﻴﻣﺎﻨﻳﺩ ﻱﺯﺎﺳ ﺭﺍﺪﻳﺎﭘ ﻱﺍﺮﺑ ﻲﺟﺭﺎﺧ ﻪﻘﻠﺣ ﻭ ﻥﺩﺮﮐ ﻲﻄﺧ ﻱﺍﺮﺑ ﻲﻠﺧﺍﺩ ﻪﻘﻠﺣ
ﺩﻮﺷ ﻲﻣ ﻪﺘﻓﺮﮔ ﺭﺎﮑﺑ ﻪﺘﺴﺑ ﻪﻘﻠﺣ
.
ﻪﻠﺌﺴﻣ ﺭﺩ I-O-L
ﺎﺑ ﺎﻣ ﻢﻳﺭﺍﺩ ﺭﺎﮐ ﻭ ﺮﺳ ﻥﺩﺮﮐ ﻝﺎﺒﻧﺩ ﻪﻠﺌﺴﻣ .
ﻪـﮐ ﺖـﺳﺍ ﻦـﻳﺍ ﻑﺪـﻫ ﻲﻨﻌﻳ
ﺪﻨﮐ ﻝﺎﺒﻧﺩ ﺍﺭ ﺎﻣ ﺮﻈﻧ ﺩﺭﻮﻣ ﻱﺩﻭﺭﻭ ﻢﺘﺴﻴﺳ ﻲﺟﻭﺮﺧ .
٧
ﻪﻠﺌﺴﻣ ﺭﺩ I-O-L
ﻦﻴﺑ ﻢﻴﻘﺘﺴﻣ ﻪﻄﺑﺍﺭ ﺍﺪﺘﺑﺍ ﻪﮐ ﻢﻴﻨﮐ ﻲﻣ ﻲﻌﺳ ﺎﻣ ﻭ y
ﻢﻴﻨﮐ ﺍﺪﻴﭘ u .
ﺭﺩ
ﻢﻴﻨﮐ ﺏﺎﺴﺣ ﺰﻴﻧ ﺍﺭ ﻲﺒﺴﻧ ﻪﺟﺭﺩ ﺪﻳﺎﺑ ﻪﻠﺣﺮﻣ ﻦﻳﺍ .
ﺎﻌﻓﺩ ﺩﺍﺪﻌﺗ ﺯﺍ ﺖﺳﺍ ﺕﺭﺎﺒﻋ ﻲﺒﺴﻧ ﻪﺟﺭﺩ ﺕ
ﺯﺍ ﻱﺮﻴﮔ ﻖﺘﺸﻣ ﻦﻴﺑ ﻢﻴﻘﺘﺴﻣ ﻪﻄﺑﺍﺭ ﻪﺑ ﺎﺗ y
ﻭ y ﻢﻴﺳﺮﺑ u . ﻪﺟﺭﺩ ﺯﺍ ﻲﺒﺴﻧ ﻪﺟﺭﺩ ﺮﮔﺍ
ﻪﺟﺭﺩ ﺎﺑ ﻲﺒﺴﻧ ﻪﺟﺭﺩ ﺮﮔﺍ ﻭ ﻢﻴﻨﮐ ﻲﺳﺭﺮﺑ ﺰﻴﻧ ﺍﺭ ﺮﻔﺻ ﮏﻴﻣﺎﻨﻳﺩ ﺪﻳﺎﺑ ﺪﺷﺎﺑ ﺮﺘﻤﮐ ﻢﺘﺴﻴﺳ ﻩﺎﮕﻧﺁ ﺪﺷﺎﺑ ﻲﮑﻳ ﻢﺘﺴﻴﺳ I-O-L
ﻪﺑ Input state ﺕﺭﻮﺻ ﻦﻳﺍ ﺭﺩ ﻪﮐ ﺩﻮﺷ ﻲﻣ ﻞﻳﺪﺒﺗ
ﻭ ﻱﺮﻳﺬﭘ ﻝﺮﺘﻨﮐ ﻁﺮﺷ
involutively ﺍﺭ
ﻢﻴﻨﮐ ﻲﺳﺭﺮﺑ ﺪﻳﺎﺑ ﺰﻴﻧ .
ﺭﺩ ﻪﮐ ﺪﻴﻨﮐ ﺽﺮﻓ ﻦﻴﺑ ﻢﻴﻘﺘﺴﻣ ﻪﻄﺑﺍﺭ ﻪﺑ ﻱﺮﻴﮕﻘﺘﺸﻣ ﺭﺎﺑ n
ﻭ y ﺮﺑ u ﻪﺑ ﻢﻴﺳﺮﺑ ﻢﺘﺴﻴﺳ
ﺮﻳﺯ ﺕﺭﻮﺻ :
u ) x ( a f y
) n
( = 1 +
) ۴ (
ﻢﻴﻨﮐ ﻲﻣ ﻞﻤﻋ ﺮﻳﺯ ﺕﺭﻮﺻ ﻪﺑ ﺕﺭﻮﺼﻨﻳﺍ ﺭﺩ :
ﻞﮑﺷ ٢
ﮫﻠﯿﺳﻮﺑ يزﺎﺳ ﻲﻄﺧ :
Feedbacklinearization
٨
) ۵ (
0 5
5 4 1 5
3 5
2 5
1 5
1 2
1
1 1
1 2
1
= + +
+
−
−
=
−
= +
−
−
−
−
=
−
= +
=
−
−
−
) n ( ) n ( n
) n ( n )
n (
d ) n ( ) n (
d ) n (
e e k ...
e k e k )
) f v )( x ( u a )
v u ) x ( a f )
e k ...
e k e k y v )
v e y y )
&
&
ﻣ ﻩﺪﻫﺎﺸﻣ ﻪﮐ ﺭﻮﻄﻧﺎﻤﻫ ﻲ
ﻝﻮﻣﺮﻓ ﻪﺑ ﻪﺟﻮﺗ ﺎﺑ ﺩﻮﺷ )
۲ - ۵ ( ﺍﺪﺘﺑﺍ ﺎﻣ ﺲﭙﺳ ﻭ ﻢﻳﺯﺎﺳ ﻲﻣ ﺍﺭ v
ﻱﻭﺭ ﺯﺍ ﻢﻴﻧﺍﻮﺗ ﻲﻣ v
ﺪﻳﺁ ﻲﻣ ﺖﺳﺪﺑ ﺎﻣ ﻲﻟﺮﺘﻨﮐ ﻱﺩﻭﺭﻭ ﺐﻴﺗﺮﺗ ﻦﻳﺍ ﻪﺑ ﻭ ﻢﻳﺭﻭﺁ ﺖﺳﺪﺑ ﺍﺭ u .
ﻝﻮﻣﺮﻓ ﻪﺑ ﻪﺟﻮﺗ ﺎﺑ )
۵ - ۵ ( ﺳﺭﺩ ﺏﺎﺨﺘﻧﺍ ﺎﺑ ﻲﻣ ﺐﻳﺍﺮﺿ ﺖ
ﻪﺑ ﺍﺭ ﻢﺘﺴﻴﺳ ﻱﺎﻄﺧ ﻱﺎﻬﺒﻄﻗ ﻢﻴﻧﺍﻮﺗ
ﻢﻴﻨﮐ ﺮﻔﺻ ﺍﺭ ﺎﻄﺧ ﺐﻴﺗﺮﺗ ﻦﻳﺍ ﻪﺑ ﻭ ﻢﻳﺮﺒﺑ ﻢﻴﻫﺍﻮﺨﺑ ﻪﮐ ﻪﺤﻔﺻ ﻱﺎﺠﮐ ﺮﻫ .
ﺍ ﺭﺩ ﻳ ﺕﻻﺩﺎﻌﻣ ﻦ
f1ﺪﻳﺁ ﻲﻣ ﺖﺳﺪﺑ ﻢﺘﺴﻴﺳ ﻱﺎﻬﺘﻟﺎﺣ ﻱﻭﺭ ﺯﺍ .
ﺵﻭﺭ Linearization Input State
:
ﺍ ﺭﺩ ﻳ ﺣﺍﺮﻃ ﻪﻟﺎﺴﻣ ﺵﻭﺭ ﻦ ﻲ
ﻪﻟﺎﺴﻣ Regulation ﺖﺳﺍ
. ﺍﺮﺑ ﻱ ﺍ ﻝﺎـﻤﻋﺍ ـﻳ
ﻪـﺑ ﺵﻭﺭ ﻦ ـﻳ
ﮏ
ﺳ ﻴ ﻏ ﻢﺘﺴ ﻴ ﻄﺧ ﺮ ﻲ ﺎﺑﻳ ﺘﺴ ﻲ ﺳ ﻥﺁ ﻴ ﺍﺭﺍﺩ ﻢﺘﺴ ﻱ
ﺍﺮـﺷ ﻳ ـﺻﺎﺧ ﻂ ﻲ
ﺪـﺷﺎﺑ . ﺳ ﻊـﻗﺍﻭ ﺭﺩ ﻴ
ﻤﺘـﺴ ﻲ
Linearizable Input State
ﻝﺮﺘﻨﮐ ﻪﮐ ﺖﺳﺍ ﺬﭘ
ﻳ ﻭ ﺮ involutive ﺪـﺷﺎﺑ
. ﻪـﻣﺍﺩﺍ ﺭﺩ
ﺍﻳ ﺍﺮﺷ ﻦ ﻳ ﻠﮐ ﺪﻧﻭﺭ ﻭ ﻂ ﻲ
ﺍ ﻝﺎﻤﻋﺍ ﻳ ﺳﺭﺮﺑ ﺩﺭﻮﻣ ﺵﻭﺭ ﻦ ﻲ
ﻣ ﺭﺍﺮﻗ ﻲ ﮔ ﻴ ﺩﺮ .
۱ ( ﺍﺮـــﺑ ﻱ ـــﺳﺭﺮﺑ ﻲ ﺍﺮـــﺷ ﻳ ﺮﮐﺬـــﻟﺍ ﻕﻮـــﻓ ﻂ ﻪـــﻋﻮﻤﺠﻣ ﺍﺪـــﺘﺑﺍ
vector fields
{
g adfg ... adnf−1g}
ﮑﺸﺗ ﺍﺭ ﻴ ﻣ ﻞ ﻲ ﻫﺩ ﻴ ﻢ . ﺍ ﺮﮔﺍ ﻳ ﻪﻋﻮﻤﺠﻣ ﻦ ﻪﺘﺴﺑﺍﻭ ﺮﻴﻏ
ﻄﺧ ﻲ
ﺪـــﺷﺎﺑ , ﺳ ﻴ ﺬـــﭘ ﻝﺮـــﺘﻨﮐ ﻢﺘـــﺴ ﻳ
ﺖـــﺳﺍ ﺮ .
ـــﻨﭽﻤﻫ ﻴ
ﻪـــﻋﻮﻤﺠﻣ ﻦ vector fields
٩
{
g adfg ... adnf−2g }ﮑﺸﺗﺍﺭ ﻴ ﻣ ﻞ ﻲ ﻫﺩ ﻴ ﻢ . ﺍ ﺮﮔﺍ ﻳ ﻏ ﻪﻋﻮﻤﺠﻣ ﻦ ﻴ
ـﻄﺧ ﻪﺘـﺴﺑﺍﻭ ﺮ ﻲ
ﺳ ﺪﺷﺎﺑ ﻴ ﺍﺭ ﻢﺘﺴ involutive
ﻮﮔ ﻳ ﺪﻨ . ﺍﺮﺑﺎـﻨﺑ ﻳ ﺍ ﺮـﮔﺍ ﻦ ـﻳ
ﺳ ﺩﻮـﺑ ﺭﺍﺮـﻗﺮﺑ ﻁﺮـﺷﻭﺩ ﻦ ﻴ
ﻢﺘـﺴ
Linearizable Input State
ﻣ ﻭ ﺖﺳﺍ ﻲ
ﺍ ﻥﺍﻮﺗ ﻳ ﺍ ﺮﺑ ﺍﺭ ﺵﻭﺭ ﻦ ـﻳ
ﺳ ﻦ ﻴ ﻝﺎـﻤﻋﺍ ﻢﺘـﺴ
ﺩﺮﮐ . ﻧﻭﺭ ﻪﻣﺍﺩﺍ ﺪ
ﺍ ﻝﺎﻤﻋﺍ ﻳ ﺯ ﺕﺭﻮﺻ ﻪﺑ ﺵﻭﺭ ﻦ ﻳ
ﺖﺳﺍ ﺮ .
۲ ( ﺍﺮﺷ ﺮﮔﺍ ﻳ ﻄ ﻲ ﻟﻭﺍ ﺩﻮﺑ ﺭﺍﺮﻗﺮﺑ ﺪﺷ ﺮﮐﺫ ﻕﻮﻓ ﺭﺩ ﻪﮐ ﻴ
ﺖﻟﺎﺣ ﻦ
z1
ﻭﺭ ﻪﺑ ﻪﺟﻮﺗ ﺎﺑ ﺍﺭ ﺯ ﻂﺑﺍ
ﻳ ﻪﺑ ﺮ
ﻣ ﺖﺳﺩ ﻲ ﺭﻭﺁ ﻳ ﻢ .
≠
=
=
=
−
−
0
0 ...
1
1 1
1
1
2
z L
z L
z L z L
g ad
g g ad
ad g
n f
n f f
( ۶ )
ﺍ ﻪﺑ ﻻﺎﺑ ﻂﺑﺍﻭﺭ ﻊﻗﺍﻭ ﺭﺩ ﻳ
ﻟﺩ ﻦ ﻴ ﺍ ﺭﺩ ﻪﮐ ﺖﺳﺍ ﻞ ﻳ
ﺒﺴﻧ ﻪﺟﺭﺩ ﺖﻟﺎﺣ ﻦ ﻲ
ﺮﺑﺍﺮﺑ ﺖﺳﺍn .
۳ ( ﺪﺒﺗ ﻳ ﺖﻟﺎﺣ ﻞ ﺕﺭﻮﺻ ﻪﺑz
] ...
[ )
(x z1 L z1 L 1z1
z = f nf−
ﺩﻮﺑ ﺪﻫﺍﻮﺧ .
۴ ( ﻪﻄﺑﺍﺭ ﻪﺑ ﻪﺟﻮﺗ ﺎﺑ
v x x
u =α( )+β( )
ﺩﺎﻘﻣ ﻳ ﺮ
) α(x
ﻭ
) β(x
ﺯ ﺕﺭﻮﺻ ﻪﺑ ﻳ
ﻣ ﺖﺳﺩ ﻪﺑ ﺮ ﻲ
ﺁﻳ ﺪ .
1 1
1 1
1
) 1 (
) (
z L x L
z L L
z x L
n f g
n f g
n f
−
−
=
= − β
α
) ۷ (
١٠
ﻝﺪﻣ ﺭﻳ ﺿﺎ ﻲ ﻢﺘﺴﻴﺳ :
ﻲﺧﺮﭼ ﻝﻭﺪﻧﺎﭘ ﻲﮑﻴﻣﺎﻨﻳﺩ ﺕﻻﺩﺎﻌﻣ ﻥﺩﺭﻭﺁ ﺖﺳﺪﺑ ﻱﺍﺮﺑ ﻥﺎﺳﺁ ﻩﺍﺭ ﮏﻳ ﻲﺸﻨﻛﺍﻭ
ﻦﻳﺍ ﻪﮐ ﺖﺳﺍ ﻦﻳﺍ
ﺍ ﺭﺩ ﻢﻴﻨﮐ ﻝﺪﻣ ﻱﺩﺍﺯﺁ ﻪﺟﺭﺩ ﻭﺩ ﺕﺎﺑﺭ ﮏﻳ ﺪﻨﻧﺎﻤﺑ ﺍﺭ ﻢﺘﺴﻴﺳ ﻳ
ﻦ ﻭ ﻝﻭﺍ ﮏﻨﻴﻟ ﺍﺭ ﻝﻭﺪﻧﺎﭘ ﻥﺍﻮﺗ ﻲﻣ ﺖﻟﺎﺣ
ﺖﻓﺮﮔ ﺮﻈﻧ ﺭﺩ ﻡﻭﺩ ﮏﻨﻴﻟ ﺍﺭ ﮏﺴﻳﺩ ﺶﺧﺮﭼ .
ﻢﻴﻨﮐ ﻲﻣ ﺽﺮﻓ ﻪﻛ
ﺖﻬﺟ ﺭﺩ ﻱﺩﻮﻤﻋ ﺕﺭﻮﺼﺑ ﻝﻭﺪﻧﺎﭘ
ﺪﺧﺮﭼ ﻲﻣ ﺖﻋﺎﺳ ﻱﺎﻫ ﻪﺑﺮﻘﻋ .
ﺪﺷﺎﺑ ﻲﻣ ﺮﻳﺯ ﺕﺭﻮﺻ ﻪﺑ ﻢﺘﺴﻴﺳ ﻲﮑﻴﻣﺎﻨﻳﺩ ﺕﻻﺩﺎﻌﻣ ﺕﺎﻴﺿﺮﻓ ﻦﻳﺍ ﺎﺑ .
0 ) ( 1
2 12 1
11q +d q + q =
d && && φ ( ۸ )
τ
= + 22 2 1
21q d q
d && && (۹)
q1 ﻝﻭﺪﻧﺎﭘ ﻪﻳﻭﺍﺯ ,
q2
ﻭ ﮏﺴﻳﺩ ﻪﻳﻭﺍﺯ ﺪﺷﺎﺑ ﻲﻣ ﻢﺘﺴﻴﺳ ﻱﺩﻭﺭﻭ ﻭ ﺭﻮﺗﻮﻣ ﺭﻭﺎﺘﺸﮔ τ
.
ﻂﺑﺍﻭﺭ ﺭﺩ ﻩﺪﺷ ﻩﺪﻣﺁ ﻱﺎﻫﺮﺘﻣﺍﺭﺎﭘ ۸
ﻭ ۹ ﺪﻨﻳﺁ ﻲﻣ ﺖﺳﺩ ﻪﺑ ﺮﻳﺯ ﺕﺭﻮﺼﺑ .
2 1 1
2 1 2 2 1
11 ml m l I I
d = c + + +
2 22 21
12 d d I
d = = =
φ(q1)=−mgsin(q1) m =m1lc1+m2l1
ﻞﮑﺷ ﺭﺩ ﻝﻮﻬﺠﻣ ﻱﺎﻫﺮﺘﻣﺍﺭﺎﭘ ﻕﻮﻓ ﻂﺑﺍﻭﺭ ﺭﺩ ۱
ﺪﻨﺘﺴﻫ ﺺﺨﺸﻣ .
ﻱﺎﻫﺮﻴﻐﺘﻣ ﻦﺘﻓﺮﮔ ﺮﻈﻧ ﺭﺩ ﺎﺑ ﺍﺭ ﻢﺘﺴﻴﺳ ﺯﺍ ﻪﺘﻓﺎﻳ ﺶﻫﺎﮐ ﻝﺪﻣ ﮏﻳ ﺎﺠﻨﻳﺍ ﺭﺩ ﺕﺭﻮﺼﺑ ﺖﻟﺎﺣ
1
1 q
x =
ﻭ
1
2 q
x = &
ﻭ
2
3 q
x = &
ﻢﻴﻨﮐ ﻲﻣ ﻒﻳﺮﻌﺗ .
ﻝﻭﺪﻧﺎﭘ ﺖﻴﻌﻗﻮﻣ ﻝﺮﺘﻨﮐ ﺎﻣ ﻑﺪﻫ ﻊﻗﺍﻭ ﺭﺩ ,
ﻭ ﻝﻭﺪﻧﺎﭘ ﺖﻋﺮﺳ
ﻢﻴﻨﮐ ﻲﻣ ﺮﻈﻨﻓﺮﺻ ﮏﺴﻳﺩ ﺖﻴﻌﻗﻮﻣ ﻝﺮﺘﻨﮐ ﺯﺍ ﻭ ﺖﺳﺍ ﮏﺴﻳﺩ ﺖﻋﺮﺳ .
ﻢﺘﺴﻴﺳ ﺖﻟﺎﺣ ﻱﺎﻫﺮﻴﻐﺘﻣ ﻒﻳﺮﻌﺗ ﺎﺑ
ﺣ ﺕﻻﺩﺎﻌﻣ ﻕﻮﻓ ﺕﺭﻮﺻ ﻪﺑ ﺪﻳﺁ ﻲﻣ ﺭﺩ ﺮﻳﺯ ﻂﺑﺍﻭﺭ ﺕﺭﻮﺻ ﻪﺑ ﻢﺘﺴﻴﺳ ﺖﻟﺎ
.
x&1 =x2 (۱۰)
φ τ
D x d
D x d
) det det (
12 1
22
2 =− −
& (۱۱)
φ τ
D x d
D x d
) det det (
11 1
21
3 = +
& ( ۱۲)
١١
ﻕﻮﻓ ﻂﺑﺍﻭﺭ ﺭﺩ ﻪﮐ
0 detD=d11d22 −d12d21 >
ﺖﺳﺍ .
ﺖﺷﻮﻧ ﺮﻳﺯ ﺕﺭﻮﺻ ﻪﺑ ﺍﺭ ﻕﻮﻓ ﻂﺑﺍﻭﺭ ﻥﺍﻮﺗ ﻲﻣ .
τ ) ( ) (x g x f
x&= + ( ۱۳)
=
−
=
D d
D x d
g D x
d D x d x x f
det det 0 ) ( ,
) det (
) det (
) (
11 12
1 21
1 22 2
φ
φ ( ۱۴)
ﺎﺑ ﺍﺭ ﻝﻭﺪﻧﺎﭘ ﺲﻧﻻﺎﺑ ﻝﺮﺘﻨﮐ ﻢﻴﻫﺍﻮﺧ ﻲﻣ ﻢﻳﺍ ﻩﺩﺭﻭﺁ ﺖﺳﺩ ﻪﺑ ﺍﺭ ﻢﺘﺴﻴﺳ ﻲﮑﻴﻣﺎﻨﻳﺩ ﺕﻻﺩﺎﻌﻣ ﻪﮐ ﻝﺎﺣ ﻭﺭ ﺯﺍ ﻩﺩﺎﻔﺘﺳﺍ ﺵ
Feedback linearization ﻢﻴﻫﺩ ﻡﺎﺠﻧﺍ
.
ﺳﺭﺮﺑ ﻲ ﺵﻭﺭ Feedback linearization ﻭﺭ ﺮﺑ
ﻱ ﺸﺧﺮﭼ ﻝﻭﺪﻧﺎﭘ ﻲ
ﺸﻨﮐﺍﻭ ﻲ :
ﺭﺍﺪﻳﺎﭘ ﻢﺘﺴﻴﺳ ﻪﮐ ﻢﻴﻨﮐ ﻲﺣﺍﺮﻃ ﻱﺭﻮﻃ ﻲﻄﺧ ﺮﻴﻏ ﻢﺘﺴﻴﺳ ﻦﻳﺍ ﻱﺍﺮﺑ ﻱﺍ ﻩﺪﻨﻨﮐ ﻝﺮﺘﻨﮐ ﻢﻴﻫﺍﻮﺧ ﻲﻣ ﺩﺩﺮﮔ . ﻪﻟﺎﺴﻣ ﺎﺠﻨﻳﺍ ﺭﺩ ﻊﻗﺍﻭ ﺭﺩ ,
ﺖﺳﺍ ﻱﺯﺎﺳ ﺭﺍﺪﻳﺎﭘ ﻪﻟﺎﺴﻣ .
ﻝﺮﺘﻨﮐ ﻥﻮﻧﺎﻗ ﺪﻳﺎﺑ ﺍﺭ u
ﻢﻳﺭﻭﺁ ﺖﺳﺪﺑ ﻱﺭﻮﻃ
ﻝﻮﺒﻗ ﻞﺑﺎﻗ ﻱﺎﻀﻓ ﺯﺍ ﺎﺠﮐ ﺮﻫ ﺭﺩ ﻢﺘﺴﻴﺳ ﻪﻴﻟﻭﺍ ﻂﻳﺍﺮﺷ ﺮﮔﺍ ﻪﮐ )
(Ω ﻢﺘﺴﻴﺳ ﻝﺮﺘﻨﮐ ﻥﻮﻧﺎﻗ ﻦﻳﺍ ﻩﺎﮕﻧﺁ ﺪﺷﺎﺑ
ﺪﻧﺎﺳﺮﺑ ﻝﺩﺎﻌﺗ ﻪﻄﻘﻧ ﻪﺑ ﺍﺭ .
ﺵﻭﺭ ﺵﺭﺍﺰﮔ ﻦﻳﺍ ﺭﺩ ﺎﻣ Input-Output Linearization
ﻢﻴﻨﮐ ﻲﻣ ﻝﺎﻤﻋﺍ ﻢﺘﺴﻴﺳ ﻱﻭﺭ ﺮﺑ ﺍﺭ .
ﺘﺴﻳﺎﺑ ﺍﺪﺘﺑﺍ ﺎﻣ ﺵﻭﺭ ﻦﻳﺍ ﺭﺩ ﻢﻳﺭﻭﺁ ﺖﺳﺪﺑ ﻢﺘﺴﻴﺳ ﻲﺟﻭﺮﺧ ﻭ ﻱﺩﻭﺭﻭ ﻦﻴﺑ ﻢﻴﻘﺘﺴﻣ ﻪﻄﺑﺍﺭ ﮏﻳ ﻲ
. ﺭﺎﮐ ﻦﻳﺍ
ﺯﺍ ﻱﺮﻴﮔ ﻖﺘﺸﻣ ﺎﺑ ﺍﺭ ﻢﻴﻫﺩ ﻲﻣ ﻡﺎﺠﻧﺍ y
. ﺯﺍ ﺭﺎﺑ ﺮﻫ ﻲﻨﻌﻳ ﻦﻴﺑ ﻢﻴﻘﺘﺴﻣ ﻪﻄﺑﺍﺭ ﻪﮑﻨﻳﺍ ﺎﺗ ﻢﻳﺮﻴﮔ ﻲﻣ ﻖﺘﺸﻣy
ﻭ u ﺪﻳﺁ ﺖﺳﺪﺑ y .
ﺲﭙﺳ ﻭ ﺪﻨﮐ ﻑﺬﺣ ﺍﺭ ﻲﻄﺧ ﺮﻴﻏ ﺖﻤﺴﻗ ﺮﺛﺍ ﻪﮐ ﻢﻴﻨﮐ ﻲﻣ ﻲﺣﺍﺮﻃ ﻱﺭﻮﻃ ﺍﺭ u
ﻦﻴﻨﭽﻤﻫ ﺪﺑ ﻱﺍ ﻪﻧﻮﮔ ﻪﺑ ﺍﺭ v
ﺩﺯﺎﺳ ﺭﺍﺪﻳﺎﭘ ﺍﺭ ﻢﺘﺴﻴﺳ ﻪﮐ ﻢﻳﺭﻭﺁ ﺖﺳ .
ﺖﺳﺍ ﻩﺪﺷ ﻒﻳﺮﻌﺗ ﺮﻳﺯ ﺕﺭﻮﺻ ﻪﺑ ﻲﺟﻭﺮﺧ ﺕﻻﺩﺎﻌﻣ ﻩﺪﺷ ﻩﺩﺍﺩ ﻢﺘﺴﻴﺳ ﻱﺍﺮﺑ .
3 12 2
) 11
(x d x d x
h
y= = + ( ۱۵) ﺕﺎﻘﺘﺸﻣ ﻝﺎﺣ ﺑﺍﺭ ﻪﮐ ﻢﻴﻫﺩ ﻲﻣ ﻪﻣﺍﺩﺍ ﻲﻳﺎﺟ ﺎﺗ ﻭ ﻩﺩﺮﮐ ﻪﺒﺳﺎﺤﻣ ﺍﺭy
ﻱﺩﻭﺭﻭ ﻭ ﻲﺟﻭﺮﺧ ﻦﻴﺑ ﻲﻤﻴﻘﺘﺴﻣ ﻪﻄ
ﺪﻳﺁ ﺖﺳﺩ ﻪﺑ ﻢﺘﺴﻴﺳ .
١٢ τ
h L h L
y= f + g ( ۱۶)
h Lf
ﻭ
h Lg
Lie derivative ﻱﺎﻫ
ﻪﺑ ﺖﺒﺴﻧ h ﻭf
ﺼﺑ ﻪﮐﺪﻨﺘﺴﻫ g ﺪﻨﻳﺁ ﻲﻣ ﺖﺳﺩ ﻪﺑ ﺮﻳﺯ ﺕﺭﻮ
.
[ ]
( ) sin( )) det (
) det (
0 1 1
1 21
1 22 2
12
11 x mg x
D x d
D x d x d d
h
Lf =− =
−
= φ
φ
φ (۱۷)
ﻭ
[ ]
0det 0 det
11 12 2
12
11 =
−
=
D d
D d x d d
h
Lg ( ۱۸)
ﻢﻳﺭﺍﺩ ﺪﻧﻭﺭ ﻦﻳﺍ ﻪﻣﺍﺩﺍ ﺎﺑ .
0 ,
0 ,
2 2
3 ) 3 (
2 2
≠ +
=
=
= +
=
h L L h
L L h L y
L L h
L L L h L y
f g f
g f
f g f
f g f
τ
τ
&& τ
) ۱۹ (
ﻭ
) det cos(
) sin(
) det cos(
) ( ) sin(
) cos(
1 2 21
1 1 2 22
2 2 1 3
2 1 2
x g Dm h d
L L
x D x
g d m x x g m h L
x x g m h L
f g f f
−
=
+
−
=
=
ﺖﺳﺍ ﻱﺩﻭﺭﻭ ﺎﺑ ﻢﻴﻘﺘﺴﻣ ﻪﻄﺑﺍﺭ ﺯﺍ ﺲﭘ ﻲﺟﻭﺮﺧ ﺕﺎﻘﺘﺸﻣ ﻪﺒﺗﺮﻣ ﺮﺑﺍﺮﺑ ﻲﺒﺴﻧ ﻪﺟﺭﺩ ﻪﮑﻨﻳﺍ ﻪﺑ ﻪﺟﻮﺗ ﺎﺑ ﺮﺑﺍﺮﺑ ﻲﺒﺴﻧ ﻪﺟﺭﺩ ﻦﻳﺍﺮﺑﺎﻨﺑ ۳
ﺪﺷﺎﺑ ﻲﻣ .
ﻪﻟﺎﺴﻣ ﺍﺬﻟ ﺖﺳﺍ ﺮﺑﺍﺮﺑ ﻢﺘﺴﻴﺳ ﻪﺟﺭﺩ ﺎﺑ ﻲﺒﺴﻧ ﻪﺟﺭﺩ ﻥﻮﭼ Input-
Output Linearization ﻪﻟﺎﺴﻣ ﮏﻳ ﻪﺑ
Input State Linearization ﻮﺷ ﻲﻣ ﻞﻳﺪﺒﺗ
ﺩ .
ﻢﺘﺴﻴﺳ ﻦﻳﺍ ﺖﺳﺍ ﻢﺘﺴﻴﺳ ﻪﺟﺭﺩ ﻥﺎﻤﻫ ﻲﺒﺴﻧ ﻪﺟﺭﺩ ﻪﮐ ﺎﺠﻧﺁ ﺯﺍ ﻦﻴﻨﭽﻤﻫ Zero Dynamic
ﺩﺭﺍﺪﻧ .
١٣
ﻲﺒﺴﻧ ﻪﺟﺭﺩ ﻱﺍﺭﺍﺩ ﻢﺘﺴﻴﺳ ﺲﭘ ۳
ﻲﺟﻭﺮﺧ ﻪﺑ ﺦﺳﺎﭘ ﺭﺩ
3 12 2
) 11
(x d x d x
h
y= = +
ﻪﮐ ﺍﺮﻳﺯ ﺖﺳﺍ
h L Lg 2f
ﻪﻴﺣﺎﻧ ﺭﺩ
2
2 1 π
π < <
− q
ﺖﺳﺍ ﺮﻔﺻ ﺮﻴﻏ .
ﺳﺭﺮﺑ ﺎﺑ ﻲ ﺬﭘ ﻝﺮﺘﻨﮐ ﻁﺮﺷ ﻳﺮ
ﻱ ﻣ ﻩﺪﻫﺎﺸﻣ ﻲ
ﺍ ﻪﮐ ﺩﻮﺷ ﻳ
ﺳ ﻦ ﻴ ﺬﭘ ﻝﺮﺘﻨﮐ ﻢﺘﺴ ﻳ
ﺮﺗﺎﻣ ﻪﮐ ﺎﺠﻧﺁ ﺯﺍ ﻭ ﺖﺳﺍ ﺮ ﻳ
ﺲ
ﻳg ﺮﺗﺎﻣ ﮏ ﻳ ﺖﺳﺍ ﺖﺑﺎﺛ ﺲ involutive
ﻧﻴ ﻣ ﺰ ﻲ ﺪﺷﺎﺑ .
ﺍﺮﺑﺎﻨﺑ ﻳ ﺪﻳﺪﺟ ﺖﻟﺎﺣ ﻱﺎﻫﺮﻴﻐﺘﻣ ﻢﻴﻧﺍﻮﺗ ﻲﻣ ﻦ
3 2 1,ξ ,ξ ﻢﻴﻨﮐ ﻒﻳﺮﻌﺗ ﺮﻳﺯ ﺕﺭﻮﺼﺑ ﺍﺭ ξ
.
2 1 2
3
1 2
3 12 2 11 1
) cos(
) (
) sin(
) ( ) (
x x g m x h L
x g m x h L
x d x d x h
f f
=
=
=
=
+
=
=
ξ ξ ξ
) ۲۰ (
ﺖﺳﺍ ﺮﻳﺯ ﺕﺭﻮﺻ ﻪﺑ ﻢﺘﺴﻴﺳ ﺪﻳﺪﺟ ﺖﻟﺎﺣ ﺕﻻﺩﺎﻌﻣ ﻦﻳﺍﺮﺑﺎﻨﺑ :
+
=
=
=
τ ξ
ξ ξ
ξ ξ
h L L h L3f g 2f
3 3 2
2 1
&
&
&
) ۲۱ (
ﺵﻭﺭ ﺭﺩ
Feedback linearization ﺭ ﻢﺘﺴﻴﺳ ﻱﺩﻭﺭﻭ ﻢﻴﻫﺍﻮﺧ ﻲﻣ ﺎﻣ ﻊﻗﺍﻭ ﺭﺩ
ﻪﺑ ﻱﺍ ﻪﻧﻮﮔ ﻪﺑ ﺍ
ﺲﭙﺳ ﻭ ﺪﻨﮐ ﻞﻳﺪﺒﺗ ﻲﻄﺧ ﻡﺮﻓ ﻪﺑ ﻢﺘﺴﻴﺳ ﺖﻟﺎﺣ ﺕﻻﺩﺎﻌﻣ ﻪﮐ ﻢﻳﺭﻭﺁ ﺖﺳﺩ ﻢﻴﻨﮐ ﻦﻴﻌﺗ ﻱﺍ ﻪﻧﻮﮔ ﻪﺑ ﺍﺭ u
ﺪﻨﮐ ﺭﺍﺪﻳﺎﭘ ﺍﺭ ﻢﺘﺴﻴﺳ ﻪﮐ .
ﻪﻄﺑﺍﺭ ﻪﺑ ﻪﺟﻮﺗ ﺎﺑ ﻮﻴﺘﮐﺍﺭ ﻲﺧﺮﭼ ﻝﻭﺪﻧﺎﭘ ﻢﺘﺴﻴﺳ ﻱﺯﺎﺳ ﻲﻄﺧ ﻱﺍﺮﺑ ﻦﻳﺍﺮﺑﺎﻨﺑ ۲۱
, ﺮﻳﺯ ﺕﺭﻮﺻ ﻪﺑ ﺍﺭ τ
ﻢﻴﻨﮐ ﻲﻣ ﻒﻳﺮﻌﺗ .
)]
( )[
(
1 3
2 u L h x
x h L
Lg f − f
=
τ ( ۲۲)
ﻄﺧ ﺕﺭﻮﺻ ﻪﺑ ﻢﺘﺴﻴﺳ ﺪﻳﺪﺟ ﺖﻟﺎﺣ ﺕﻻﺩﺎﻌﻣ ﻦﻳﺍﺮﺑﺎﻨﺑ ﻲ
ﺪﻳﺁ ﻲﻣ ﺭﺩ .
=
=
=
3 u
3 2
2 1
ξ ξ ξ
ξ ξ
&
&
&
(۲۳)
ﺪﻳﺪﺟ ﻝﺮﺘﻨﮐ ﺮﻴﻐﺘﻣ ﺩﺮﮐ ﻒﻳﺮﻌﺗ ﺮﻳﺯ ﺕﺭﻮﺻ ﻪﺑ ﻥﺍﻮﺗ ﻲﻣ ﺍﺭ u
.
1 3 1 2 1
1ξ k ξ k ξ
k
u=− − − ( ۲۴)
١٤
ﮐ ﺖﺳﺍ ﻱﺭﺎﻴﺘﺧﺍ ﻪﺘﺴﺑ ﻪﻘﻠﺣ ﻱﺎﻫ ﺐﻄﻗ ﻥﺎﮑﻣ ﻪ .
ﻐﺗ ﺎﺑ ﻭ ﻴ ﺮ ﻣk ﻲ ﺩﺮﮐ ﺎﺠﺑﺎﺟ ﺍﺭ ﺎﻬﻧﺁ ﻥﺍﻮﺗ .
ﻪﻴﺣﺎﻧ ﺭﺩ ﺎﻬﻨﺗ ﻮﻴﺘﮐﺍﺭ ﻲﺧﺮﭼ ﻝﻭﺪﻧﺎﭘ ﻪﮐ ﻢﻳﺩﺍﺩ ﻥﺎﺸﻧ ﺎﻣ
2
1 <π
Feedback linearizable x
ﺖﺳﺍ
ﺎﭘ ﻭ ﻩﺩﺮﮐ ﻝﺮﺘﻨﮐ ﺍﺭ ﻢﺘﺴﻴﺳ ﺵﻭﺭ ﻦﻳﺍ ﺯﺍ ﻩﺩﺎﻔﺘﺳﺍ ﺎﺑ ﻢﻴﻧﺍﻮﺗ ﻲﻣ ﺎﻣ ﻪﻴﺣﺎﻧ ﻦﻳﺍ ﺭﺩ ﺎﻬﻨﺗ ﻭ ﻢﻴﻨﮐ ﺭﺍﺪﻳ
.
ﺎﺘﻧ ﻳ ﺒﺷ ﻭ ﺞ ﻴ ﺯﺎﺳ ﻪ ﻱ :
ﻪﺑ ﺞﻳﺎﺘﻧ ﻩﺪﻣﺁ ﺖﺳﺩ ﻢﺘﺴﻴﺳ ﻱﺯﺎﺳ ﻩﺩﺎﻴﭘ ﺭﺩ
ﺱﺎﺳﺍ ﺮﺑ ﻱﺎﻫﺮﺘﻣﺍﺭﺎﭘ
ﻪﺑ ﻝﻭﺪﺟ ﺭﺩ ﻩﺪﻣﺁ ﺖﺳﺩ ۱
ﻲﻣ ﺪﺷﺎﺑ .
ﻢﺘﺴﻴﺳ ﻱﺎﻫﺮﺘﻣﺍﺭﺎﭘ - ۱ ﻝﻭﺪﺟ
ﺩ ﺕﻻﺩﺎﻌﻣ ﻪﺑ ﻪﺟﻮﺗ ﺎﺑ ﻳ
ﻣﺎﻨ ﻴ ﮑ ﻲ ﭘﻴ ﺯﺎﺳ ﻩﺩﺎ ﻱ ﺳ ﻴ ﺯ ﺕﺭﻮﺻ ﻪﺑ ﻢﺘﺴ ﻳ
ﺖﺳﺍ ﺮ .
ﻞﻜﺷ ۳ - ﻩﺩﺎﻴﭘ ﻢﺘﺴﻴﺳ ﻱﺯﺎﺳ
١٥
ﺍ ﻪﺑ ﻪﺟﻮﺗ ﺎﺑ ﻳ
ﻤﻋﺍ ﺯﺍ ﻪﮑﻨ ﺵﻭﺭ ﻝﺎ
Swing up ﺳ ﻩﺭﺍﻮﻤﻫ ﺎﻣ ﺖﺳﺍ ﻩﺪﺷ ﺮﻈﻨﻓﺮﺻ
ﻴ ﺍ ﻩﺩﻭﺪﺤﻣ ﺭﺩ ﺍﺭ ﻢﺘﺴ ﻱ
ﺵﻭﺭ ﻪﮐ Feedback Linearizat ion
ﻣ ﺮﻈﻧ ﺭﺩ ﺖﺳﺍ ﻝﺎﻤﻋﺍ ﻞﺑﺎﻗ ﻲ
ﮔ ﻴﺮ ﻳ ﻢ . ﺎﺘﻧ ﻳ ﺫ ﺭﺩ ﻩﺪﺷ ﻩﺪﻣﺁ ﺞ ﻳ
ﻞ
ﺍﺮﺷ ﺱﺎﺳﺍﺮﺑ ﻳ
ﻟﻭﺍ ﻂ ﻴ ﺍﺮﺑ ﻪ ﻱ ﻌﻗﻮﻣ ﻴ ﻝﻭﺪﻧﺎﭘ ﺖ ﺖﺳﺍ ﻩﺪﻣﺁ ﺖﺳﺪﺑ
.
ﺎﺘﻧ ﻳ ﺍﺮﺑ ﺞ ﻱ ﻟﻭﺍ ﻁﺮﺷ ﻴ ﻪ
rad q1 =1
ﺎﮕﻨﻫ ﻲﻨﻌﻳ ﻩﺪﻣﺁ ﺖﺳﺩ ﻪﺑ ﺩﻮﺷ ﺎﻫﺭ ﺖﻴﻌﻗﻮﻣ ﻦﻳﺍ ﺯﺍ ﺯﺍ ﻝﻭﺪﻧﺎﭘ ﻪﻛ ﻲﻣ
ﺍﺮﺿ ﻭ ﻳ ﺐ
1 3 ,
30 2 ,
2 .
1= k = k =
k
ﺯ ﺕﺭﻮﺻ ﻪﺑ ﻳ
ﺖﺳﺍ ﺮ .
ﻞﮑﺷ ۴ - ﻌﻗﻮﻣ ﻴ ﻝﻭﺪﻧﺎﭘ ﺖ ﻪﻴﻟﻭﺍ ﺖﻴﻌﻗﻮﻣ ﻱﺍﺯﺍ ﻪﺑ
rad q1 =1
ﻣ ﻪﻈﺣﻼﻣ ﻪﮐ ﺭﻮﻄﻧﺎﻤﻫ ﻲ
ﻤﮐ ﻥﺎﻣﺯ ﺕﺪﻣ ﺯﺍ ﺲﭘ ﻝﻭﺪﻧﺎﭘ ﺩﻮﺷ ﻲ
ﻝﺩﺎﻌﺗ ﺖﻟﺎﺣ ﻪﺑ )
(x=0 ﻣ ﻲ ﺪﺳﺭ .
١٦
ﻞﮑﺷ ۵ - ﺩ ﺖﻋﺮﺳ ﻳ ﮏﺴ ﻪﻴﻟﻭﺍ ﺖﻴﻌﻗﻮﻣ ﻱﺍﺯﺍ ﻪﺑ
rad q1 =1
ﻞﮑﺷ ۶ - ﺍﺮﺑ ﻝﻭﺪﻧﺎﭘ ﻪﺑ ﻩﺪﺷ ﻝﺎﻤﻋﺍ ﺭﻭﺎﺘﺸﮔ ﻱ
ﻌﻗﻮﻣ ﻴ ﻟﻭﺍ ﺖ ﻴ ﻪ
rad q1 =1
١٧
ﻞﮑﺷ ﺭﺩ ۵
- ﺩ ﺖﻋﺮﺳ ﻪﺑ ﻁﻮﺑﺮﻣ ﺭﺍﺩﻮﻤﻧ ﻪﮐ ﻳ
ﻣ ﮏﺴ ﻲ ﺪﺷﺎﺑ , ﻣ ﻪﻈﺣﻼﻣ ﻲ
ﺩ ﺖﻋﺮﺳ ﻪﮐ ﺩﻮﺷ ﻳ
ﺯﺍ ﺲﭘ ﮏﺴ
ﻧﺎﺛ ﺪﻨﭼ ﺖﺷﺬﮔ ﻴ
ﺳﺭ ﻝﺩﺎﻌﺗ ﺖﻟﺎﺣ ﻪﺑ ﻪ ﻴ
ﻭ ﻩﺪ ﺘﺑﺎﺛ ﺭﺍﺪﻘﻣ ﻪﺑ ﻲ
ﻣ ﻲ ﺪﺳﺭ . ﻟﺎﻤﻋﺍ ﺭﻭﺎﺘﺸﮔ ﻥﻮﭼ ﻲ
ﻊﻗﺍﻭ ﺭﺩ
ﺍ ﻪﻈﺤﻟ ﺏﺎﺘﺷ ﻱ
ﺩﻳ ﮏﺴ ﻣ ﻲ ﺍﺮﺑﺎﻨﺑ ﺪﺷﺎﺑ ﻳ
ﺭﺩ ﻪﮐ ﺭﻮﻄﻧﺎﻤﻫ ﻦ ﻞﮑﺷ
۵ - ﺖﺑﺎﺛ ﺯﺍ ﺲﭘ ﺖﺳﺍ ﻩﺪﺷ ﻩﺩﺍﺩ ﻥﺎﺸﻧ
ﺩ ﺖﻋﺮﺳ ﻥﺪﺷ ﻳ
ﺩ ﺏﺎﺘﺷ ﻥﺪﺷ ﺮﻔﺻ ﻭ ﮏﺴ ﻳ
ﻣ ﺮﻔﺻ ﺭﻭﺎﺘﺸﮔ ﮏﺴ ﻲ
ﺩﻮﺷ .
ﺎﺘﻧ ﻪﻣﺍﺩﺍ ﺭﺩ ﻳ
ﺒﺷ ﺯﺍ ﻞﺻﺎﺣ ﺞ ﻴ
ﻪ ﺯﺎﺳ ﻱ ﺳ ﻴ ﺍﺮﺑ ﺍﺭ ﻢﺘﺴ ﻱ
ﻌﻗﻮﻣ ﻴ ﻟﻭﺍ ﺖ ﻴ ﻪ
rad q1 =1.5
ﺐﻳﺍﺮﺿ ﻭ
1 3 ,
30 2 ,
2 .
1= k = k =
k
ﺳﺭﺮﺑ ﺩﺭﻮﻣ ﻲ
ﻣ ﺭﺍﺮﻗ ﻲ ﻫﺩ ﻴ ﻢ .
ﻞﮑﺷ ۷ - ﻌﻗﻮﻣ ﻴ ﺍﺯﺍ ﻪﺑ ﻝﻭﺪﻧﺎﭘ ﺖ ﻱ
ﺖﻴﻌﻗﻮﻣ ﻟﻭﺍ
ﻴ ﻪ
rad q1 =1.5
ﻲﻣ ﻩﺪﻫﺎﺸﻣ
ﺖﺷﺬﮔ ﺯﺍ ﺲﭘ ﻝﻭﺪﻧﺎﭘ ﺖﻴﻌﻗﻮﻣ ﻪﻛ ﺩﻮﺷ
۳ ﺖﻴﻌﻗﻮﻣ ﺯﺍ ﻪﻴﻧﺎﺛ
rad q1 =1.5
ﻝﺩﺎﻌﺗ ﺖﻟﺎﺣ ﻪﺑ
ﻲﻨﻌﻳ
1 =0
ﻲﻣ q
ﺪﺳﺭ .
ﻞﻜﺷ ﺭﺩ ۸
ﻪﺑ ﻭ ﻩﺪﺷ ﺖﺑﺎﺛ ﻲﻤﻛ ﻥﺎﻣﺯ ﺕﺪﻣ ﺯﺍ ﺲﭘ ﻚﺴﻳﺩ ﺖﻋﺮﺳ ﺮﻔﺻ ﺖﻠﻋ ﻪﺑ ﻢﻫ ﺭﻭﺎﺘﺸﮔ ﻥﺁ ﺐﺟﻮﻣ
ﻲﻣ ﺮﻔﺻ ﻚﺴﻳﺩ ﺭﻭﺎﺘﺸﮔ ﻥﺪﺷ ﺩﻮﺷ
.
١٨
ﻞﮑﺷ ۸ - ﺩ ﺖﻋﺮﺳ ﻳ ﺍﺯﺍ ﻪﺑ ﮏﺴ ﻱ
ﺖﻴﻌﻗﻮﻣ ﻟﻭﺍ
ﻴ ﻪ
rad q1 =1.5
ﻞﮑﺷ ۹ - ﺍﺮﺑ ﻝﻭﺪﻧﺎﭘ ﻪﺑ ﻩﺪﺷ ﻝﺎﻤﻋﺍ ﺭﻭﺎﺘﺸﮔ ﻱ
ﻌﻗﻮﻣ ﻴ ﻟﻭﺍ ﺖ ﻴ ﻪ
rad q1 =1.5
١٩
ﻪﻴﺒــﺷ ﺞﻳﺎــﺘﻧ ﺐﻳﺍﺮــﺿ ﻱﺍﺯﺍ ﻪــﺑ ﻢﺘــﺴﻴﺳ ﻱﺯﺎــﺳ
k1=.05 ﻭ
k2=100 ﻭ
k3=20 ﻪــﻴﻟﻭﺍ ﺖــﻴﻌﻗﻮﻣ ﻭ
rad q1 =1.5
ﺖﺳﺍ ﻩﺪﻣﺁ ﻞﻳﺫ ﺭﺩ .
ﻞﮑﺷ ۱۰ - ﻪﻴﻟﻭﺍ ﺖﻴﻌﻗﻮﻣ ﻱﺍﺯﺍ ﻪﺑ ﻝﻭﺪﻧﺎﭘ ﺖﻴﻌﻗﻮﻣ rad
q1 =1.5 ﺐﻳﺍﺮﺿ ﻭ
k1=.05 ﻭ
k2=100 ﻭ
k3=20 ﻱﺍﺮﺑ u
ﺸﻣ ﻪﻛ ﺭﻮﻄﻧﺎﻤﻫ ﻲﻣ ﻩﺪﻫﺎ
ﻪﺑ ﺞﻳﺎﺘﻧ ﺩﻮﺷ ﻪﺑ ﺖﺒﺴﻧ ﺖﻟﺎﺣ ﻦﻳﺍ ﺭﺩ ﻩﺪﻣﺁ ﺖﺳﺩ
ﻊﻳﺮـﺳ ﻞﺒﻗ ﺖﻟﺎﺣ ﺭﺩ ﻭ ﻩﺩﻮـﺑ ﺮـﺗ
ﺯﺍ ﺮﺘﻤﻛ ۱
ﻲﻣ ﻝﺩﺎﻌﺗ ﺖﻟﺎﺣ ﻪﺑ ﻪﻴﻧﺎﺛ ﺪﺳﺭ
. ﻞﻜﺷ ﻱﺍﺮﺑ ﻱﺎﻫ
۱۱ ﻭ ۱۲ ﻢﻳﺭﺍﺩ ﺍﺭ ﺪﻧﻭﺭ ﻦﻴﻤﻫ ﻢﻫ .
ﻪـﻜﻨﻳﺍ ﻲﻨﻌﻳ
ﺖﺳﺍ ﺮﺘﺸﻴﺑ ﻞﺒﻗ ﺕﻻﺎﺣ ﻪﺑ ﺖﺒﺴﻧ ﺕﻻﺎﺣ ﻦﻳﺍ ﻱﺍﺮﺑ ﻝﺩﺎﻌﺗ ﺖﻟﺎﺣ ﻪﺑ ﻥﺪﻴﺳﺭ ﺖﻋﺮﺳ .
٢٠
ﻞﮑﺷ ۱۱ - ﺳ ﻪﻴﻟﻭﺍ ﺖﻴﻌﻗﻮﻣ ﻱﺍﺯﺍ ﻪﺑ ﮏﺴﻳﺩ ﺖﻋﺮ rad
q1=1.5 ﺐﻳﺍﺮﺿ ﻭ
k1=.05 ﻭ
k2=100 ﻭ
k3=20 ﻱﺍﺮﺑ u
ﻞﮑﺷ ۱۲ - ﻪﻴﻟﻭﺍ ﺖﻴﻌﻗﻮﻣ ﻱﺍﺮﺑ ﻝﻭﺪﻧﺎﭘ ﻪﺑ ﻩﺪﺷ ﻝﺎﻤﻋﺍ ﺭﻭﺎﺘﺸﮔ rad
q1 =1.5 ﺐﻳﺍﺮﺿ ﻭ
k1=.05 ﻭ
k2=100 ﻭ
k3=20 ﻱﺍﺮﺑ u
٢١
ﻪﺠﻴﺘﻧ ﻱﺮﻴﮔ :
ﺵﻭﺭ ﺮـﺛﺍ ﻩﮊﻭﺮـﭘ ﻦﻳﺍ ﺭﺩ Feedback Linearization
ﻲـﺸﺧﺮﭼ ﻝﻭﺪـﻧﺎﭘ ﻢﺘـﺴﻴﺳ ﻚـﻳ ﻱﻭﺭ ﺮـﺑ ﺍﺭ
ﻢﻳﺩﺍﺩ ﺭﺍﺮﻗ ﻲﺳﺭﺮﺑ ﺩﺭﻮﻣ ﻲﺸﻨﻛﺍﻭ .
ﻱﺮـﺳ ﻚـﻳ ﻱﺍﺭﺍﺩ ﺵﻭﺭ ﻦـﻳﺍ ﻢﻳﺪـﻳﺩ ﻢـﻫ ﻩﮊﻭﺮـﭘ ﻦﻳﺍ ﺭﺩ ﻪﻛ ﺭﻮﻄﻧﺎﻤﻫ
ﺖﻳﺩﻭﺪﺤﻣ ﺖﺳﺍ ﺎﻫ
. ﻱﺍﺭﺍﺩ ﺖـﺳﺍ ﻦـﻜﻤﻣ ﺎـﻫ ﻢﺘـﺴﻴﺳ ﻱﻭﺭ ﺮـﺑ ﻝﺎـﻤﻋﺍ ﺖـﻬﺟ ﺵﻭﺭ ﻦـﻳﺍ ﻊﻗﺍﻭ ﺭﺩ ﻲﻨﻌﻳ
ﺖﻳﺩﻭﺪﺤﻣ ﻲﺧﺮﺑ ﻱﺍﺮﺑ ﺖﺳﺍ ﻦﻜﻤﻣ ﻲﺘﺣ ﺎﻳ ﻭ ﺪﺷﺎﺑ ﻲﻳﺎﻫ
ﻢﺘﺴﻴﺳ ﻪﺑ ﺍﺭ ﺵﻭﺭ ﻦﻳﺍ ﻥﺍﻮﺘﻧ ﺎﻫ ﺩﺮﺑ ﺭﺎﻛ
. ﻦـﻳﺍ ﺭﺩ
ﺵﻭﺭ ﻩﮊﻭﺮﭘ Feedback Linearization
ﺖـﻴﻌﻗﻮﻣ ﺯﺍ ﻲـﺼﺨﺸﻣ ﻩﺩﻭﺪـﺤﻣ ﺭﺩ ﺎﻬﻨﺗ ﻝﻭﺪـﻧﺎﭘ
ﻱﻭﺭ ﺮـﺑ
ﻪـﺑ ﺵﻭﺭ ﻦـﻳﺍ ﺯﺍ ﻩﺩﺎﻔﺘـﺳﺍ ﺎﺑ ﻢﺘﺴﻴﺳ ﻱﺯﺎﺳﺭﺍﺪﻳﺎﭘ ﺖﻬﺟ ﺭﺩ ﻲﺑﻮﺧ ﺞﻳﺎﺘﻧ ﻭ ﺩﻮﺑ ﻝﺎﻤﻋﺍ ﻞﺑﺎﻗ ﻢﺘﺴﻴﺳ ﺖـﺳﺩ
ﺪﻣﺁ . ﻲﻣ ﺍﺭ ﺵﻭﺭ ﻦﻳﺍ ﻪﺑ ﻥﺪﻴﺳﺭ ﻱﺎﺘﺳﺍﺭ ﺭﺩ ﻥﺍﻮﺗ
ﺵﻭﺭ ﺎﺑ ﺮﺘﻬﺑ ﺞﻳﺎﺘﻧ ﻱﺎـﻫ
Robust ﻭ
Adaptive ﺐـﻴﻛﺮﺗ
ﺩﺮﻛ